Closure of the left atrioventricular orifice is achieved when the anterior and posterior leaflets of the mitral valve press together to form a coaptation zone along the free edge of the leaflets. This coaptation zone is critical to valve competency and is maintained by the support of the mitral annulus, chordae tendinae, and papillary muscles. Myocardial ischemia can lead to an altered performance of this mitral complex generating suboptimal mitral leaflet coaptation and a resultant regurgitant orifice. This paper reports on a two-part experiment undertaken to measure the dependence of coaptation force distribution on papillary muscle position in normal and functional regurgitant porcine mitral heart valves. Using a novel load sensor, the local coaptation force was measured in vitro at three locations (A1–P1, A2–P2, and A3–P3) along the coaptation zone. In part 1, the coaptation force was measured under static conditions in ten whole hearts. In part 2, the coaptation force was measured in four explanted mitral valves operating in a flow loop under physiological flow conditions. Here, two series of tests were undertaken corresponding to the normal and functional regurgitant state as determined by the position of the papillary muscles relative to the mitral valve annulus. The functional regurgitant state corresponded to grade 1. The static tests in part 1 revealed that the local force was directly proportional to the transmitral pressure and was nonuniformly distributed across the coaptation zone, been strongest at A1–P1. In part 2, tests of the valve in a normal state showed that the local force was again directly proportional to the transmitral pressure and was again nonuniform across the coaptation zone, been strongest at A1–P1 and weakest at A2–P2. Further tests performed on the same valves in a functional regurgitant state showed that the local force measured in the coaptation zone was directly proportional to the transmitral pressure. However, the force was now observed to be weakest at A1–P1 and strongest at A2–P2. Movement of the anterolateral papillary muscle (APM) away from both the annular and anterior–posterior (AP) planes was seen to contribute significantly to the altered force distribution in the coaptation zone. It was concluded that papillary muscle displacement typical of myocardial ischemia changes the coaptation force locally within the coaptation zone.

References

References
1.
Lloyd-Jones
,
D.
,
Adams
,
R.
,
Carnethon
,
M.
,
De Simone
,
G.
,
Ferguson
,
T. B.
,
Flegal
,
K.
,
Ford
,
E.
,
Furie
,
K.
,
Go
,
A.
,
Greenlund
,
K.
,
Haase
,
N.
,
Hailpern
,
S.
,
Ho
,
M.
,
Howard
,
V.
,
Kissela
,
B.
,
Kittner
,
S.
,
Lackland
,
D.
,
Lisabeth
,
L.
,
Marelli
,
A.
,
McDermott
,
M.
,
Meigs
,
J.
,
Mozaffarian
,
D.
,
Nichol
,
G.
,
O'Donnell
,
C.
,
Roger
,
V.
,
Rosamond
,
W.
,
Sacco
,
R.
,
Sorlie
,
P.
,
Stafford
,
R.
,
Steinberger
,
J.
,
Thom
,
T.
,
Wasserthiel-Smoller
,
S.
,
Wong
,
N.
,
Wylie-Rosett
,
J.
, and
Hong
,
Y.
,
American Heart Association Statistics Committee and Stroke Statistics Subcommittee
,
2009
, “
Heart Disease and Stroke Statistics—2009 Update: A Report From the American Heart Association Statistics Committee and Stroke Statistics Subcommittee
,”
Circulation
,
119
(
3
), pp.
e21
e181
.10.1161/CIRCULATIONAHA.108.191261
2.
Lamas
,
G. A.
,
Mitchell
,
G. F.
,
Flaker
,
G. C.
,
Smith
,
S. C.
, Jr.
,
Gersh
,
B. J.
,
Basta
,
L.
,
Moyé
,
L.
,
Braunwald
,
E.
, and
Pfeffer
,
M. A.
,
1997
, “
Clinical Significance of Mitral Regurgitation After Acute Myocardial Infarction
,”
Circulation
,
96
(
3
), pp.
827
833
.10.1161/01.CIR.96.3.827
3.
Jensen
,
H.
,
Jensen
,
M. Ø.
,
Ringgaard
,
S.
,
Smerup
,
M. H.
,
Sorensen
,
T. S.
,
Kim
,
W. Y.
,
Sloth
,
E.
,
Wierup
,
P.
,
Hasenkam
,
J. M.
, and
Nielsen
,
S. L.
,
2008
, “
Geometric Determinants of Chronic Functional Ischemic Mitral Regurgitation—Insights From Three-Dimensional Cardiac Magnetic Resonance Imaging
,”
J. Heart Valve Dis.
,
17
(
1
), pp.
16
23
.
4.
Jensen
,
H.
,
Jensen
,
M. O.
,
Smerup
,
M. H.
,
Ringgaard
,
S.
,
Sørensen
,
T. S.
,
Andersen
,
N. T.
,
Wierup
,
P.
,
Hasenkam
,
J. M.
, and
Nielsen
,
S. L.
,
2010
, “
Three-Dimensional Assessment of Papillary Muscle Displacement in a Porcine Model of Ischemic Mitral Regurgitation
,”
J. Thorac. Cardiovasc. Surg.
,
140
(
6
), pp.
1312
1318
.10.1016/j.jtcvs.2009.12.042
5.
Kaji
,
S.
,
Nasu
,
M.
,
Yamamuro
,
A.
,
Tanabe
,
K.
,
Nagai
,
K.
,
Tani
,
T.
,
Tamita
,
K.
,
Shiratori
,
K.
,
Kinoshita
,
M.
,
Senda
,
M.
,
Okada
,
Y.
, and
Morioka
,
S.
,
2005
, “
Annular Geometry in Patients With Chronic Ischemic Mitral Regurgitation: Three-Dimensional Magnetic Resonance Imaging Study
,”
Circulation
,
112
(
9 Suppl
), pp.
I409
I414
.10.1161/CIRCULATIONAHA.104.525246
6.
Corsi
,
C.
,
Lang
,
R. M.
,
Veronesi
,
F.
,
Weinert
,
L.
,
Caiani
,
E. G.
,
MacEneaney
,
P.
,
Lamberti
,
C.
, and
Mor-Avi
,
V.
,
2005
, “
Volumetric Quantification of Global and Regional Left Ventricular Function From Real-Time Three-Dimensional Echocardiographic Images
,”
Circulation
,
112
(
8
), pp.
1161
1170
.10.1161/CIRCULATIONAHA.104.513689
7.
Valocik
,
G.
,
Kamp
,
O.
, and
Visser
,
C. A.
,
2005
, “
Three-Dimensional Echocardiography in Mitral Valve Disease
,”
Eur. J. Echocardiogr.
,
6
(
6
), pp.
443
454
.10.1016/j.euje.2005.02.007
8.
Hueb
,
A. C.
,
Jatene
,
F. B.
,
Moreira
,
L. F.
,
Pomerantzeff
,
P. M.
,
Kallás
,
E.
, and
de Oliveira
,
S. A.
,
2002
, “
Ventricular Remodeling and Mitral Valve Modifications in Dilated Cardiomyopathy: New Insights From Anatomic Study
,”
J. Thorac. Cardiovasc. Surg.
,
124
(
6
), pp.
1216
1224
.10.1067/mtc.2002.125342
9.
Nielsen
,
S. L.
,
Nygaard
,
H.
,
Fontaine
,
A. A.
,
Fontaine
,
A. A.
,
Hasenkam
,
J. M.
,
He
,
S.
, and
Yoganathan
,
A. P.
,
1999
, “
Papillary Muscle Misalignment Causes Multiple Mitral Regurgitant Jets: An Ambiguous Mechanism for Functional Mitral Regurgitation
,”
J. Heart Valve Dis.
,
8
(
5
), pp.
551
564
.
10.
Prot
,
V.
,
Skallerud
,
B.
,
Sommer
,
G.
, and
Holzapfel
,
G. A.
,
2010
, “
On Modelling and Analysis of Healthy and Pathological Human Mitral Valves: Two Case Studies
,”
J. Mech. Behav. Biomed. Mater.
,
3
(
2
), pp.
167
177
.10.1016/j.jmbbm.2009.05.004
11.
Sakai
,
T.
,
Okita
,
Y.
,
Ueda
,
Y.
,
Tahata
,
T.
,
Ogino
,
H.
,
Matsuyama
,
K.
, and
Miki
,
S.
,
1999
, “
Distance Between Mitral Anulus and Papillary Muscles: Anatomic Study in Normal Human Hearts
,”
J. Thorac. Cardiovasc. Surg.
,
118
(
4
), pp.
636
641
.10.1016/S0022-5223(99)70008-5
12.
Song
,
J. M.
,
Kim
,
M. J.
,
Kim
,
Y. J.
,
Kang
,
S. H.
,
Kim
,
J. J.
,
Kang
,
D. H.
, and
Song
,
J. K.
,
2008
, “
Three-Dimensional Characteristics of Functional Mitral Regurgitation in Patients With Severe Left Ventricular Dysfunction: A Real-Time Three-Dimensional Colour Doppler Echocardiography Study
,”
Heart
,
94
(
5
), pp.
590
596
.10.1136/hrt.2007.119123
13.
Yu
,
H. Y.
,
Su
,
M. Y.
,
Liao
,
T. Y.
,
Peng
,
H. H.
,
Lin
,
F. Y.
, and
Tseng
,
W. Y.
,
2004
, “
Functional Mitral Regurgitation in Chronic Ischemic Coronary Artery Disease: Analysis of Geometric Alterations of Mitral Apparatus With Magnetic Resonance Imaging
,”
J. Thorac. Cardiovasc. Surg.
,
128
(
4
), pp.
543
551
.10.1016/j.jtcvs.2004.04.015
14.
Yu
,
H. Y.
,
Su
,
M. Y.
,
Chen
,
Y. S.
,
Lin
,
F. Y.
, and
Tseng
,
W. Y.
,
2005
, “
Mitral Tetrahedron as a Geometrical Surrogate for Chronic Ischemic Mitral Regurgitation
,”
Am. J. Physiol. Heart Circ. Physiol.
,
289
(
3
), pp.
H1218
1225
.10.1152/ajpheart.00169.2005
15.
Jensen
,
M. O.
,
Fontaine
,
A. A.
, and
Yoganathan
,
A. P.
,
2001
, “
Improved In Vitro Quantification of the Force Exerted by the Papillary Muscle on the Left Ventricular Wall: Three-Dimensional Force Vector Measurement System
,”
Ann. Biomed. Eng.
,
29
(
5
), pp.
406
413
.10.1114/1.1366672
16.
He
,
S.
,
Fontaine
,
A. A.
,
Schwammenthal
,
E.
,
Yoganathan
,
A. P.
, and
Levine
,
R. A.
,
1997
, “
Integrated Mechanism for Functional Mitral Regurgitation: Leaflet Restriction Versus Coapting Force: In Vitro Studies
,”
Circulation
,
96
(
6
), pp.
1826
1834
.10.1161/01.CIR.96.6.1826
17.
He
,
S.
,
Jimenez
,
J.
,
He
,
Z.
, and
Yoganathan
,
A. P.
,
2003
, “
Mitral Leaflet Geometry Perturbations With Papillary Muscle Displacement and Annular Dilatation: An In-Vitro Study of Ischemic Mitral Regurgitation
,”
J. Heart Valve Dis.
,
12
(
3
), pp.
300
307
.
18.
Nielsen
,
S. L.
,
Nygaard
,
H.
,
Fontaine
,
A. A.
,
Hasenkam
,
J. M.
,
He
,
S.
,
Andersen
,
N. T.
, and
Yoganathan
,
A. P.
,
1999
, “
Chordal Force Distribution Determines Systolic Mitral Leaflet Configuration and Severity of Functional Mitral Regurgitation
,”
J. Am. Coll. Cardiol.
,
33
(
3
), pp.
843
853
.10.1016/S0735-1097(98)00627-5
19.
Nielsen
,
S. L.
,
Nygaard
,
H.
,
Mandrup
,
L.
,
Fontaine
,
A. A.
,
Hasenkam
,
J. M.
,
He
,
S.
, and
Yoganathan
,
A. P.
,
2002
, “
Mechanism of Incomplete Mitral Leaflet Coaptation—Interaction of Chordal Restraint and Changes in Mitral Leaflet Coaptation Geometry: Insight From In Vitro Validation of the Premise of Force Equilibrium
,”
ASME J. Biomech. Eng.
,
124
(
5
), pp.
596
608
.10.1115/1.1500741
20.
Lefebvre
,
X. P.
,
He
,
S.
,
Levine
,
R. A.
, and
Yoganathan
,
A. P.
,
1995
, “
Systolic Anterior Motion of the Mitral Valve in Hypertrophic Cardiomyopathy: An In Vitro Pulsatile Flow Study
,”
J. Heart Valve Dis.
,
4
(
4
), pp.
422
438
.
21.
Levine
,
R. A.
,
Vlahakes
,
G. J.
,
Lefebvre
,
X.
,
Guerrero
,
J. L.
,
Cape
,
E. G.
,
Yoganathan
,
A. P.
, and
Weyman
,
A. E.
,
1995
, “
Papillary Muscle Displacement Causes Systolic Anterior Motion of the Mitral Valve
,”
Circulation
,
91
(
4
), pp.
1189
1195
.10.1161/01.CIR.91.4.1189
22.
Gogoladze
,
G.
,
Dellis
,
S. L.
,
Donnino
,
R.
,
Ribakove
,
G.
,
Greenhouse
,
D. G.
,
Galloway
,
A.
, and
Grossi
,
E.
,
2010
, “
Analysis of the Mitral Coaptation Zone in Normal and Functional Regurgitant Valves
,”
Ann. Thorac. Surg.
,
89
(
4
), pp.
1158
1161
.10.1016/j.athoracsur.2009.12.061
23.
Quinn
,
M.
,
2007
, “
Medical Device Suitable for Use in Treatment of a Valve
,” WIPO International Bureau, International Publication No. WO 2007/144865 A1.
24.
Ritchie
,
J.
,
Warnock
,
J. N.
, and
Yoganathan
,
A. P.
,
2005
, “
Structural Characterization of the Chordae Tendineae in Native Porcine Mitral Valves
,”
Ann. Thorac. Surg.
,
80
(
1
), pp.
189
197
.10.1016/j.athoracsur.2005.02.011
25.
Tibayan
,
F. A.
,
Rodriguez
,
F.
,
Zasio
,
M. K.
,
Bailey
,
L.
,
Liang
,
D.
,
Daughters
,
G. T.
,
Langer
,
F.
,
Ingels
,
N. B.
, Jr.
, and
Miller
,
D. C.
,
2003
, “
Geometric Distortions of the Mitral Valvular–Ventricular Complex in Chronic Ischemic Mitral Regurgitation
,”
Circulation
,
108
(
Suppl 1
), pp.
II116
II121
.10.1161/01.cir.0000087940.17524.8a
26.
Kumanohoso
,
T.
,
Otsuji
,
Y.
,
Yoshifuku
,
S.
,
Matsukida
,
K.
,
Koriyama
,
C.
,
Kisanuki
,
A.
,
Minagoe
,
S.
,
Levine
,
R. A.
, and
Tei
,
C.
,
2003
, “
Mechanism of Higher Incidence of Ischemic Mitral Regurgitation in Patients With Inferior Myocardial Infarction: Quantitative Analysis of Left Ventricular and Mitral Valve Geometry in 103 Patients With Prior Myocardial Infarction
,”
J. Thorac. Cardiovasc. Surg.
,
125
(
1
), pp.
135
143
.10.1067/mtc.2003.78
27.
Kwan
,
J.
,
Shiota
,
T.
,
Agler
,
D. A.
,
Popović
,
Z. B.
,
Qin
,
J. X.
,
Gillinov
,
M. A.
,
Stewart
,
W. J.
,
Cosgrove
,
D. M.
,
McCarthy
,
P. M.
, and
Thomas
,
J. D.
,
Real-Time Three-Dimensional Echocardiography Study
,
2003
, “
Geometric Differences of the Mitral Apparatus Between Ischemic and Dilated Cardiomyopathy With Significant Mitral Regurgitation: Real-Time Three-Dimensional Echocardiography Study
,”
Circulation
,
107
(
8
), pp.
1135
1140
.10.1161/01.CIR.0000053558.55471.2D
28.
Saito
,
K.
,
Okura
,
H.
,
Watanabe
,
N.
,
Obase
,
K.
,
Tamada
,
T.
,
Koyama
,
T.
,
Hayashida
,
A.
,
Neishi
,
Y.
,
Kawamoto
,
T.
, and
Yoshida
,
K.
,
2012
, “
Influence of Chronic Tethering of the Mitral Valve on Mitral Leaflet Size and Coaptation in Functional Mitral Regurgitation
,”
JACC Cardiovasc. Imaging
,
5
(
4
), pp.
337
345
.10.1016/j.jcmg.2011.10.004
29.
Ormiston
,
J. A.
,
Shah
,
P. M.
,
Tei
,
C.
, and
Wong
,
M.
,
1981
, “
Size and Motion of the Mitral Valve Annulus in Man. I. A Two-Dimensional Echocardiographic Method and Findings in Normal Subjects
,”
Circulation
,
64
(
1
), pp.
113
120
.10.1161/01.CIR.64.1.113
You do not currently have access to this content.