Different digital volume correlation (DVC) approaches are currently available or under development for bone tissue micromechanics. The aim of this study was to compare accuracy and precision errors of three DVC approaches for a particular three-dimensional (3D) zero-strain condition. Trabecular and cortical bone specimens were repeatedly scanned with a micro-computed tomography (CT). The errors affecting computed displacements and strains were extracted for a known virtual translation, as well as for repeated scans. Three DVC strategies were tested: two local approaches, based on fast-Fourier-transform (DaVis-FFT) or direct-correlation (DaVis-DC), and a global approach based on elastic registration and a finite element (FE) solver (ShIRT-FE). Different computation subvolume sizes were tested. Much larger errors were found for the repeated scans than for the virtual translation test. For each algorithm, errors decreased asymptotically for larger subvolume sizes in the range explored. Considering this particular set of images, ShIRT-FE showed an overall better accuracy and precision (a few hundreds microstrain for a subvolume of 50 voxels). When the largest subvolume (50–52 voxels) was applied to cortical bone, the accuracy error obtained for repeated scans with ShIRT-FE was approximately half of that for the best local approach (DaVis-DC). The difference was lower (250 microstrain) in the case of trabecular bone. In terms of precision, the errors shown by DaVis-DC were closer to the ones computed by ShIRT-FE (differences of 131 microstrain and 157 microstrain for cortical and trabecular bone, respectively). The multipass computation available for DaVis software improved the accuracy and precision only for the DaVis-FFT in the virtual translation, particularly for trabecular bone. The better accuracy and precision of ShIRT-FE, followed by DaVis-DC, were obtained with a higher computational cost when compared to DaVis-FFT. The results underline the importance of performing a quantitative comparison of DVC methods on the same set of samples by using also repeated scans, other than virtual translation tests only. ShIRT-FE provides the most accurate and precise results for this set of images. However, both DaVis approaches show reasonable results for large nodal spacing, particularly for trabecular bone. Finally, this study highlights the importance of using sufficiently large subvolumes, in order to achieve better accuracy and precision.

References

References
1.
Roberts
,
B. C.
,
Perilli
,
E.
, and
Reynolds
,
K. J.
,
2014
, “
Application of the Digital Volume Correlation Technique for the Measurement of Displacement and Strain Fields in Bone: A Literature Review
,”
J. Biomech.
,
47
(
5
), pp.
923
934
.10.1016/j.jbiomech.2014.01.001
2.
Bay
,
B. K.
,
Smith
,
T. S.
,
Fyhrie
,
D. P.
, and
Saad
,
M.
,
1999
, “
Digital Volume Correlation: Three-Dimensional Strain Mapping Using X-ray Tomography
,”
Exp. Mech.
,
39
(
3
), pp.
217
226
.10.1007/BF02323555
3.
Gates
,
M.
,
Lambros
,
J.
, and
Heath
,
M. T.
,
2010
, “
Towards High Performance Digital Volume Correlation
,”
Exp. Mech.
,
51
(
4
), pp.
491
507
.10.1007/s11340-010-9445-0
4.
Barber
,
D. C.
,
Oubel
,
E.
,
Frangi
,
A. F.
, and
Hose
,
D. R.
,
2007
, “
Efficient Computational Fluid Dynamics Mesh Generation by Image Registration
,”
Med. Image Anal.
,
11
(
6
), pp.
648
662
.10.1016/j.media.2007.06.011
5.
Khodabakhshi
,
G.
,
Walker
,
D.
,
Scutt
,
A.
,
Way
,
L.
,
Cowie
,
R. M.
, and
Hose
,
D. R.
,
2013
, “
Measuring Three-Dimensional Strain Distribution in Tendon
,”
J. Microsc.
,
249
(
3
), pp.
195
205
.10.1111/jmi.12009
6.
Gillard
,
F.
,
Boardman
,
R.
,
Mavrogordato
,
M.
,
Hollis
,
D.
,
Sinclair
,
I.
,
Pierron
,
F.
, and
Browne
,
M.
,
2014
, “
The Application of Digital Volume Correlation (DVC) to Study the Microstructural Behaviour of Trabecular Bone During Compression
,”
J. Mech. Behav. Biomed. Mater.
,
29
, pp.
480
499
.10.1016/j.jmbbm.2013.09.014
7.
Madi
,
K.
,
Tozzi
,
G.
,
Zhang
,
Q. H.
,
Tong
,
J.
,
Cossey
,
A.
,
Au
,
A.
,
Hollis
,
D.
, and
Hild
,
F.
,
2013
, “
Computation of Full-Field Displacements in a Scaffold Implant Using Digital Volume Correlation and Finite Element Analysis
,”
Med. Eng. Phys.
,
35
(
9
), pp.
1298
1312
.10.1016/j.medengphy.2013.02.001
8.
Liu
,
L.
, and
Morgan
,
E. F.
,
2007
, “
Accuracy and Precision of Digital Volume Correlation in Quantifying Displacements and Strains in Trabecular Bone
,”
J. Biomech.
,
40
(
15
), pp.
3516
3520
.10.1016/j.jbiomech.2007.04.019
9.
Dall′Ara
,
E.
,
Barber
,
D.
, and
Viceconti
,
M.
,
2014
, “
About the Inevitable Compromise Between Spatial Resolution and Accuracy of Strain Measurement for Bone Tissue: A 3D Zero-Strain Study
,”
J. Biomech.
,
47
(
12
), pp.
2956
2963
.10.1016/j.jbiomech.2014.07.019
10.
Tozzi
,
G.
,
Zhang
,
Q. H.
, and
Tong
,
J.
,
2014
, “
Microdamage Assessment of Bone–Cement Interfaces Under Monotonic and Cyclic Compression
,”
J. Biomech.
,
47
(
14
), pp.
3466
3474
.10.1016/j.jbiomech.2014.09.012
11.
Pan
,
B.
,
Wang
,
B.
,
Wu
,
D.
, and
Lubineau
,
G.
,
2014
, “
An Efficient and Accurate 3D Displacements Tracking Strategy for Digital Volume Correlation
,”
Opt. Lasers Eng.
,
58
, pp.
126
135
.10.1016/j.optlaseng.2014.02.003
12.
Christen
,
D.
,
Levchuk
,
A.
,
Schori
,
S.
,
Schneider
,
P.
,
Boyd
,
S. K.
, and
Muller
,
R.
,
2012
, “
Deformable Image Registration and 3D Strain Mapping for the Quantitative Assessment of Cortical Bone Microdamage
,”
J. Mech. Behav. Biomed. Mater.
,
8
, pp.
184
193
.10.1016/j.jmbbm.2011.12.009
13.
Smith
,
T. S.
,
Bay
,
B. K.
, and
Rashid
,
F.
,
2002
, “
Digital Volume Correlation Including Rotational Degrees of Freedom During Minimization
,”
Exp. Mech.
,
42
(
3
), pp.
272
278
.10.1007/BF02410982
14.
Roux
,
S.
,
Hild
,
F.
,
Viot
,
P.
, and
Bernard
,
D.
,
2008
, “
Three-Dimensional Image Correlation From X-ray Computed Tomography of Solid Foam
,”
Composites, Part A
,
39
(
8
), pp.
1253
1265
.10.1016/j.compositesa.2007.11.011
15.
Benoit
,
A.
,
Guerard
,
S.
,
Gillet
,
B.
,
Guillot
,
G.
,
Hild
,
F.
,
Mitton
,
D.
,
Perie
,
J. N.
, and
Roux
,
S.
,
2009
, “
3D Analysis From Micro-MRI During In Situ Compression on Cancellous Bone
,”
J. Biomech.
,
42
(
14
), pp.
2381
2386
.10.1016/j.jbiomech.2009.06.034
16.
Hussein
,
A. I.
,
Barbone
,
P. E.
, and
Morgan
,
E. F.
,
2012
, “
Digital Volume Correlation for Study of the Mechanics of Whole Bones
,”
Procedia IUTAM
,
4
, pp.
116
125
.10.1016/j.piutam.2012.05.013
17.
Hussein
,
A. I.
,
Mason
,
Z. D.
, and
Morgan
,
E. F.
,
2013
, “
Presence of Intervertebral Discs Alters Observed Stiffness and Failure Mechanisms in the Vertebra
,”
J. Biomech.
,
46
(
10
), pp.
1683
1688
.10.1016/j.jbiomech.2013.04.004
18.
Cheminet
,
A.
,
Leclaire
,
B.
,
Champagnat
,
F.
,
Plyer
,
A.
,
Yegavian
,
R.
, and
Le Besnerais
,
G.
,
2014
, “
Accuracy Assessment of a Lucas–Kanade Based Correlation Method for 3D PIV
,”
17th International Symposium on Applications of Laser Techniques to Fluid Mechanics
, Lisbon, Portugal, July 7–10, pp.
1
13
.
19.
Scarano
,
F.
,
2013
, “
Tomographic PIV: Principles and Practice
,”
Meas. Sci. Technol.
,
24
(
1
), p.
012001
.10.1088/0957-0233/24/1/012001
20.
Barber
,
D. C.
, and
Hose
,
D. R.
,
2005
, “
Automatic Segmentation of Medical Images Using Image Registration: Diagnostic and Simulation Applications
,”
J. Med. Eng. Technol.
,
29
(
2
), pp.
53
63
.10.1080/03091900412331289889
21.
Hild
,
F.
, and
Roux
,
S.
,
2012
, “
Comparison of Local and Global Approaches to Digital Image Correlation
,”
Exp. Mech.
,
52
(
9
), pp.
1503
1519
.10.1007/s11340-012-9603-7
22.
Nicolella
,
D. P.
,
Nicholls
,
A. E.
,
Lankford
,
J.
, and
Davy
,
D. T.
,
2001
, “
Machine Vision Photogrammetry: A Technique for Measurement of Microstructural Strain in Cortical Bone
,”
J. Biomech.
,
34
(
1
), pp.
135
139
.10.1016/S0021-9290(00)00163-9
23.
Lionello
,
G.
, and
Cristofolini
,
L.
,
2014
, “
A Practical Approach to Optimizing the Preparation of Speckle Patterns for Digital-Image Correlation
,”
Meas. Sci. Technol.
,
25
(
10
), p.
107001
.10.1088/0957-0233/25/10/107001
24.
Fung
,
Y. C.
,
1980
, “
Bone and Cartilage
,”
Biomechanics—Mechanical Properties of Living Tissues
,
Springer Verlag
,
New York
, pp.
383
415
.
25.
Currey
,
J. D.
,
1982
, “
Bone as a Mechanical Structure
,”
Biomechanics—Principles and Applications
, Vol.
1
, Springer, pp.
75
85
.10.1007/978-94-009-7678-8_5
26.
Bayraktar
,
H. H.
,
Morgan
,
E. F.
,
Niebur
,
G. L.
,
Morris
,
G. E.
,
Wong
,
E. K.
, and
Keaveny
,
T. M.
,
2004
, “
Comparison of the Elastic and Yield Properties of Human Femoral Trabecular and Cortical Bone Tissue
,”
J. Biomech.
,
37
(
1
), pp.
27
35
.10.1016/S0021-9290(03)00257-4
27.
Ohman
,
C.
,
Dall′Ara
,
E.
,
Baleani
,
M.
,
Van Sint Jan
,
S.
, and
Viceconti
,
M.
,
2008
, “
The Effects of Embalming Using a 4% Formalin Solution on the Compressive Mechanical Properties of Human Cortical Bone
,”
Clin. Biomech.
,
23
(
10
), pp.
1294
1298
.10.1016/j.clinbiomech.2008.07.007
You do not currently have access to this content.