Hydrated soft tissues, such as articular cartilage, are often modeled as biphasic systems with individually incompressible solid and fluid phases, and biphasic models are employed to fit experimental data in order to determine the mechanical and hydraulic properties of the tissues. Two of the most common experimental setups are confined and unconfined compression. Analytical solutions exist for the unconfined case with the linear, isotropic, homogeneous model of articular cartilage, and for the confined case with the non-linear, isotropic, homogeneous model. The aim of this contribution is to provide an easily implementable numerical tool to determine a solution to the governing differential equations of (homogeneous and isotropic) unconfined and (inhomogeneous and isotropic) confined compression under large deformations. The large-deformation governing equations are reduced to equivalent diffusive equations, which are then solved by means of finite difference (FD) methods. The solution strategy proposed here could be used to generate benchmark tests for validating complex user-defined material models within finite element (FE) implementations, and for determining the tissue's mechanical and hydraulic properties from experimental data.

References

References
1.
Torzilli
,
P. A.
, and
Mow
,
V. C.
,
1976
, “
On the Fundamental Fluid Transport Mechanisms Through Normal and Pathological Articular Cartilage During Function—I. The Formulation
,”
J. Biomech.
,
9
(
8
), pp.
541
552
.10.1016/0021-9290(76)90071-3
2.
Torzilli
,
P. A.
, and
Mow
,
V. C.
,
1976
, “
On the Fundamental Fluid Transport Mechanisms Through Normal and Pathological Articular Cartilage During Function—II. The Analysis, Solution and Conclusions
,”
J. Biomech.
,
9
(
9
), pp.
587
606
.10.1016/0021-9290(76)90100-7
3.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
(
1
), pp.
73
84
.10.1115/1.3138202
4.
Armstrong
,
C. G.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1984
, “
An Analysis of the Unconfined Compression of Articular Cartilage
,”
J. Biomech.
,
106
(
2
), pp.
165
173
.10.1115/1.3138475
5.
Holmes
,
M. H.
, and
Mow
,
V. C.
,
1990
, “
The Nonlinear Characteristics of Soft Gels and Hydrated Connective Tissues in Ultrafiltration
,”
J. Biomech.
,
23
(
11
), pp.
1145
1156
.10.1016/0021-9290(90)90007-P
6.
Federico
,
S.
,
Grillo
,
A.
,
Giaquinta
,
G.
, and
Herzog
,
W.
,
2009
, “
A Semi-Analytical Solution for the Confined Compression of Hydrated Soft Tissue
,”
Meccanica
,
44
(
2
), pp.
197
205
.10.1007/s11012-008-9165-z
7.
Grillo
,
A.
,
Federico
,
S.
,
Wittum
,
G.
,
Imatani
,
S.
,
Giaquinta
,
G.
, and
Mićunović
,
M. V.
,
2009
, “
Evolution of a Fibre-Reinforced Growing Mixture
,”
Nuovo Cimento C
,
32
(
1
), pp.
97
119
.
8.
Federico
,
S.
, and
Grillo
,
A.
,
2012
, “
Elasticity and Permeability of Porous Fibre-Reinforced Materials Under Large Deformations
,”
Mech. Mater.
,
44
, pp.
58
71
.10.1016/j.mechmat.2011.07.010
9.
Tomic
,
A.
,
Grillo
,
A.
, and
Federico
,
S.
,
2014
, “
Poroelastic Materials Reinforced by Statistically Oriented Fibres—Numerical Implementation and Application to Articular Cartilage
,”
IMA J. Appl. Math.
,
79
(
5
), pp.
1027
1059
.10.1093/imamat/hxu039
10.
Maroudas
,
A.
, and
Bullough
,
P.
,
1968
, “
Permeability of Articular Cartilage
,”
Nature
,
219
(
5160
), pp.
1260
1261
.10.1038/2191260a0
11.
Schinagl
,
R. M.
,
Gurskis
,
D.
,
Chen
,
A. C.
, and
Sah
,
R. L.
,
1997
, “
Depth-Dependent Confined Compression Modulus of Full-Thickness Bovine Articular Cartilage
,”
J. Orthop. Res.
,
15
(
4
), pp.
499
506
.10.1002/jor.1100150404
12.
Grillo
,
A.
,
Giverso
,
C.
,
Favino
,
M.
,
Krause
,
R.
,
Lampe
,
M.
, and
Wittum
,
G.
,
2012
, “
Mass Transport in Porous Media With Variable Mass
,”
Numerical Analysis of Heat and Mass Transfer in Porous Media
(Advanced and Structured Materials, Vol.
27
),
J. M. P. Q.
Delgado
,
A. G. B.
de Lima
, and
M. V.
d. Silva
, eds.,
Springer-Verlag
,
Heidelberg, Berlin
, pp.
27
61
.
13.
Madeo
,
A.
,
dell'Isola
,
F.
, and
Darve
,
F.
,
2013
, “
A Continuum Model for Deformable, Second Gradient Porous Media Partially Saturated With Compressible Fluids
,”
J. Mech. Phys. Solids
,
61
(
11
), pp.
2196
2211
.10.1016/j.jmps.2013.06.009
14.
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2010
, “
Anisotropic Hydraulic Permeability Under Finite Deformation
,”
ASME J. Biomech. Eng.
,
132
(
11
), p.
111004
.10.1115/1.4002588
15.
Federico
,
S.
, and
Herzog
,
W.
,
2008
, “
On the Anisotropy and Inhomogeneity of Permeability in Articular Cartilage
,”
Biomech. Model. Mechanobiol.
,
7
(
5
), pp.
367
378
.10.1007/s10237-007-0091-0
16.
Pierce
,
D. M.
,
Ricken
,
T.
, and
Holzapfel
,
G. A.
,
2013
, “
A Hyperelastic Biphasic Fibre-Reinforced Model of Articular Cartilage Considering Distributed Collagen Fibre Orientations: Continuum Basis, Computational Aspects and Applications
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
12
), pp.
1344
1361
.10.1080/10255842.2012.670854
17.
Lekszycki
,
T.
, and
dell'Isola
,
F.
,
2012
, “
A Mixture Model With Evolving Mass Densities for Describing Synthesis and Resorption Phenomena in Bones Reconstructed With Bio-Resorbable Materials
,”
Z. Angew. Math. Mech.
,
92
(
6
), pp.
426
444
.10.1002/zamm.201100082
18.
Andreaus
,
U.
,
Giorgio
,
I.
, and
Madeo
,
A.
,
2015
, “
Modeling of the Interaction Between Bone Tissue and Resorbable Biomaterial as Linear Elastic Materials With Voids
,”
Z. Angew. Math. Phys.
,
66
(
1
), pp.
209
237
.10.1007/s00033-014-0403-z
19.
Wilson
,
W.
,
Huyghe
,
J. M.
, and
van Donkelaar
,
C. C.
,
2007
, “
Depth-Dependent Compressive Equilibrium Properties of Articular Cartilage Explained by Its Composition
,”
Biomech. Model. Mechanobiol.
,
6
(
1–2
), pp.
43
53
.10.1007/s10237-006-0044-z
20.
Federico
,
S.
, and
Herzog
,
W.
,
2008
, “
On the Permeability of Fibre-Reinforced Porous Materials
,”
Int. J. Solids Struct.
,
45
(
7–8
), pp.
2160
2172
.10.1016/j.ijsolstr.2007.11.014
21.
Loret
,
B.
, and
Simoes
,
F. M. F.
,
2004
, “
Articular Cartilage With Intra- and Extrafibrillar Waters: A Chemo-Mechanical Model
,”
Mech. Mater.
,
36
(
5–6
), pp.
515
541
.10.1016/S0167-6636(03)00074-7
22.
Loret
,
B.
, and
Simoes
,
F. M. F.
,
2005
, “
A Framework for Deformation, Generalized Diffusion, Mass Transfer and Growth in Multi-Species Multi-Phase Biological Tissues
,”
Eur. J. Mech., A
,
24
(
5
), pp.
757
781
.10.1016/j.euromechsol.2005.05.005
You do not currently have access to this content.