Transport of solutes through diffusion is an important metabolic mechanism for the avascular cartilage tissue. Three types of interconnected physical phenomena, namely mechanical, electrical, and chemical, are all involved in the physics of transport in cartilage. In this study, we use a carefully designed experimental-computational setup to separate the effects of mechanical and chemical factors from those of electrical charges. Axial diffusion of a neutral solute (Iodixanol) into cartilage was monitored using calibrated microcomputed tomography (micro-CT) images for up to 48 hr. A biphasic-solute computational model was fitted to the experimental data to determine the diffusion coefficients of cartilage. Cartilage was modeled either using one single diffusion coefficient (single-zone model) or using three diffusion coefficients corresponding to superficial, middle, and deep cartilage zones (multizone model). It was observed that the single-zone model cannot capture the entire concentration-time curve and under-predicts the near-equilibrium concentration values, whereas the multizone model could very well match the experimental data. The diffusion coefficient of the superficial zone was found to be at least one order of magnitude larger than that of the middle zone. Since neutral solutes were used, glycosaminoglycan (GAG) content cannot be the primary reason behind such large differences between the diffusion coefficients of the different cartilage zones. It is therefore concluded that other features of the different cartilage zones such as water content and the organization (orientation) of collagen fibers may be enough to cause large differences in diffusion coefficients through the cartilage thickness.

References

References
1.
Leddy
,
H. A.
, and
Guilak
,
F.
,
2003
, “
Site-Specific Molecular Diffusion in Articular Cartilage Measured Using Fluorescence Recovery After Photobleaching
,”
Ann. Biomed. Eng.
,
31
(
7
), pp.
753
760
.10.1114/1.1581879
2.
Torzilli
,
P. A.
,
Adams
,
T. C.
, and
Mis
,
R. J.
,
1987
, “
Transient Solute Diffusion in Articular Cartilage
,”
ASME J. Biomech. Eng.
,
20
(
2
), pp.
203
214
.10.1016/0021-9290(87)90311-3
3.
Williams
,
R. M.
,
Zipfel
,
W. R.
,
Tinsley
,
M. L.
, and
Farnum
,
C. E.
,
2007
, “
Solute Transport in Growth Plate Cartilage: In Vitro and In Vivo
,”
Biophys. J.
,
93
(
3
), pp.
1039
1050
.10.1529/biophysj.106.097675
4.
Abazari
,
A.
,
Elliott
,
J. A. W.
,
McGann
,
L. E.
, and
Thompson
,
R. B.
,
2012
, “
MR Spectroscopy Measurement of the Diffusion of Dimethyl Sulfoxide in Articular Cartilage and Comparison to Theoretical Predictions
,”
Osteoarthritis Cartilage
,
20
(
9
), pp.
1004
1010
.10.1016/j.joca.2012.04.023
5.
Abazari
,
A.
,
Thompson
,
R. B.
,
Elliott
,
J. A.
, and
McGann
,
L. E.
,
2012
, “
Transport Phenomena in Articular Cartilage Cryopreservation as Predicted by the Modified Triphasic Model and the Effect of Natural Inhomogeneities
,”
Biophys. J.
,
102
(
6
), pp.
1284
1293
.10.1016/j.bpj.2011.12.058
6.
Kokkonen
,
H. T.
,
Mäkelä
,
J.
,
Kulmala
,
K. A. M.
,
Rieppo
,
L.
,
Jurvelin
,
J. S.
,
Tiitu
,
V.
,
Karjalainen
,
H. M.
,
Korhonen
,
R. K.
,
Kovanen
,
V.
, and
Töyräs
,
J.
,
2011
, “
Computed Tomography Detects Changes in Contrast Agent Diffusion After Collagen Cross-Linking Typical to Natural Aging of Articular Cartilage
,”
Osteoarthritis Cartilage
,
19
(
10
), pp.
1190
1198
.10.1016/j.joca.2011.07.008
7.
Kulmala
,
K. A. M.
,
Korhonen
,
R. K.
,
Julkunen
,
P.
,
Jurvelin
,
J. S.
,
Quinn
,
T. M.
,
Kröger
,
H.
, and
Töyräs
,
J.
,
2010
, “
Diffusion Coefficients of Articular Cartilage for Different CT and MRI Contrast Agents
,”
Med. Eng. Phys.
,
32
(
8
), pp.
878
882
.10.1016/j.medengphy.2010.06.002
8.
Siebelt
,
M.
,
Groen
,
H. C.
,
Koelewijn
,
S. J.
,
de Blois
,
E.
,
Sandker
,
M.
,
Waarsing
,
J. H.
,
Muller
,
C.
,
van Osch
,
G. J.
,
de Jong
,
M.
, and
Weinans
,
H.
,
2014
, “
Increased Physical Activity Severely Induces Osteoarthritic Changes in Knee Joints With Papain Induced Sulphate-Glycosaminoglycan Depleted Cartilage
,”
Arthritis Res. Ther.
,
16
(
1
), p.
R32
.10.1186/ar4461
9.
Siebelt
,
M.
,
van der Windt
,
A. E.
,
Groen
,
H. C.
,
Sandker
,
M.
,
Waarsing
,
J. H.
,
Müller
,
C.
,
de Jong
,
M.
,
Jahr
,
H.
, and
Weinans
,
H.
,
2014
, “
FK506 Protects Against Articular Cartilage Collagenous Extra-Cellular Matrix Degradation
,”
Osteoarthritis Cartilage
,
22
(
4
), pp.
591
600
.10.1016/j.joca.2014.02.003
10.
Piscaer
,
T. M.
,
Sandker
,
M.
,
van der Jagt
,
O. P.
,
Verhaar
,
J. A.
,
de Jong
,
M.
, and
Weinans
,
H.
,
2013
, “
Real-Time Assessment of Bone Metabolism in Small Animal Models for Osteoarthritis Using Multi Pinhole-SPECT/CT
,”
Osteoarthritis Cartilage/Osteoarthritis Res. Soc.
,
21
(
6
), pp.
882
888
.10.1016/j.joca.2013.03.004
11.
Weinans
,
H.
,
Siebelt
,
M.
,
Agricola
,
R.
,
Botter
,
S. M.
,
Piscaer
,
T. M.
, and
Waarsing
,
J. H.
,
2012
, “
Pathophysiology of Peri-Articular Bone Changes in Osteoarthritis
,”
Bone
,
51
(
2
), pp.
190
196
.10.1016/j.bone.2012.02.002
12.
Ko
,
L. S.
, and
Quinn
,
T. M.
,
2013
, “
Matrix Fixed Charge Density Modulates Exudate Concentration During Cartilage Compression
,”
Biophys. J.
,
104
(
4
), pp.
943
950
.10.1016/j.bpj.2012.12.036
13.
Leddy
,
H. A.
, and
Guilak
,
F.
,
2008
, “
Site-Specific Effects of Compression on Macromolecular Diffusion in Articular Cartilage
,”
Biophys. J.
,
95
(
10
), pp.
4890
4895
.10.1529/biophysj.108.137752
14.
Salo
,
E. N.
,
Nissi
,
M. J.
,
Kulmala
,
K. A. M.
,
Tiitu
,
V.
,
Töyräs
,
J.
, and
Nieminen
,
M. T.
,
2012
, “
Diffusion of Gd-DTPA2—Into Articular Cartilage
,”
Osteoarthritis Cartilage
,
20
(
2
), pp.
117
126
.10.1016/j.joca.2011.11.016
15.
van Tiel
,
J.
,
Siebelt
,
M.
,
Waarsing
,
J. H.
,
Piscaer
,
T. M.
,
van Straten
,
M.
,
Booij
,
R.
,
Dijkshoorn
,
M. L.
,
Kleinrensink
,
G. J.
,
Verhaar
,
J. A.
,
Krestin
,
G. P.
,
Weinans
,
H.
, and
Oei
,
E. H.
,
2012
, “
CT Arthrography of the Human Knee to Measure Cartilage Quality With Low Radiation dose
,”
Osteoarthritis Cartilage/Osteoarthritis Res. Soc.
,
20
(
7
), pp.
678
685
.10.1016/j.joca.2012.03.007
16.
Siebelt
,
M.
,
Waarsing
,
J. H.
,
Kops
,
N.
,
Piscaer
,
T. M.
,
Verhaar
,
J. A.
,
Oei
,
E. H.
, and
Weinans
,
H.
,
2011
, “
Quantifying Osteoarthritic Cartilage Changes Accurately Using In Vivo Micro-CT Arthrography in Three Etiologically Distinct Rat Models
,”
J. Orthop. Res.: Orthop. Res. Soci.
,
29
(
11
), pp.
1788
1794
.10.1002/jor.21444
17.
Siebelt
,
M.
,
Waarsing
,
J. H.
,
Groen
,
H. C.
,
Muller
,
C.
,
Koelewijn
,
S. J.
,
de Blois
,
E.
,
Verhaar
,
J. A.
,
de Jong
,
M.
, and
Weinans
,
H.
,
2014
, “
Inhibited Osteoclastic Bone Resorption Through Alendronate Treatment in Rats Reduces Severe Osteoarthritis Progression
,”
Bone
,
66
, pp.
163
170
.10.1016/j.bone.2014.06.009
18.
Leddy
,
H. A.
,
Awad
,
H. A.
, and
Guilak
,
F.
,
2004
, “
Molecular Diffusion in Tissue-Engineered Cartilage Constructs: Effects of Scaffold Material, Time, and Culture Conditions
,”
J. Biomed. Mater. Res., Part B
,
70
(
2
), pp.
397
406
.10.1002/jbm.b.30053
19.
Greene
,
G. W.
,
Zappone
,
B.
,
Zhao
,
B.
,
Söderman
,
O.
,
Topgaard
,
D.
,
Rata
,
G.
, and
Israelachvili
,
J. N.
,
2008
, “
Changes in Pore Morphology and Fluid Transport in Compressed Articular Cartilage and the Implications for Joint Lubrication
,”
Biomaterials
,
29
(
33
), pp.
4455
4462
.10.1016/j.biomaterials.2008.07.046
20.
Bansal
,
P. N.
,
Joshi
,
N. S.
,
Entezari
,
V.
,
Grinstaff
,
M. W.
, and
Snyder
,
B. D.
,
2010
, “
Contrast Enhanced Computed Tomography can Predict the Glycosaminoglycan Content and Biomechanical Properties of Articular Cartilage
,”
Osteoarthritis Cartilage
,
18
(
2
), pp.
184
191
.10.1016/j.joca.2009.09.003
21.
Chin
,
H. C.
,
Moeini
,
M.
, and
Quinn
,
T. M.
,
2013
, “
Solute Transport Across the Articular Surface of Injured Cartilage
,”
Arch, Biochem. Biophys.
,
535
(
2
), pp.
241
247
.10.1016/j.abb.2013.04.011
22.
Decker
,
S. G. A.
,
Moeini
,
M.
,
Chin
,
H. C.
,
Rosenzweig
,
D. H.
, and
Quinn
,
T. M.
,
2013
, “
Adsorption and Distribution of Fluorescent Solutes Near the Articular Surface of Mechanically Injured Cartilage
,”
Biophys. J.
,
105
(
10
), pp.
2427
2436
.10.1016/j.bpj.2013.09.037
23.
Huttunen
,
J. M. J.
,
Kokkonen
,
H. T.
,
Jurvelin
,
J. S.
,
Töyräs
,
J.
, and
Kaipio
,
J. P.
,
2014
, “
Estimation of Fixed Charge Density and Diffusivity Profiles in Cartilage Using Contrast Enhanced Computer Tomography
,”
Int. J. Numer. Methods Eng.
,
98
(
5
), pp.
371
390
.10.1002/nme.4634
24.
Kokkonen
,
H. T.
,
Jurvelin
,
J. S.
,
Tiitu
,
V.
, and
Toyras
,
J.
,
2011
, “
Detection of Mechanical Injury of Articular Cartilage Using Contrast Enhanced Computed Tomography
,”
Osteoarthritis Cartilage/Osteoarthritis Res. Soc.
,
19
(
3
), pp.
295
301
.10.1016/j.joca.2010.12.012
25.
Meganck
,
J. A.
,
Kozloff
,
K. M.
,
Thornton
,
M. M.
,
Broski
,
S. M.
, and
Goldstein
,
S. A.
,
2009
, “
Beam Hardening Artifacts in Micro-Computed Tomography Scanning can be Reduced by X-ray Beam Filtration and the Resulting Images Can be Used to Accurately Measure BMD
,”
Bone
,
45
(
6
), pp.
1104
1116
.10.1016/j.bone.2009.07.078
26.
Bansal
,
P. N.
,
Stewart
,
R. C.
,
Entezari
,
V.
,
Snyder
,
B. D.
, and
Grinstaff
,
M. W.
,
2011
, “
Contrast Agent Electrostatic Attraction Rather than Repulsion to Glycosaminoglycans Affords a Greater Contrast Uptake Ratio and Improved Quantitative CT Imaging in Cartilage
,”
Osteoarthritis Cartilage/Osteoarthritis Res. Soc.
,
19
(
8
), pp.
970
976
.10.1016/j.joca.2011.04.004
27.
Aula
,
A. S.
,
Jurvelin
,
J. S.
, and
Töyräs
,
J.
,
2009
, “
Simultaneous Computed Tomography of Articular Cartilage and Subchondral Bone
,”
Osteoarthritis Cartilage
,
17
(
12
), pp.
1583
1588
.10.1016/j.joca.2009.06.010
28.
Tuomo
,
S. S.
,
Virpi Tiitu
,
V.
,
Thomas
,
M. Q.
, and
Juha
,
T.
,
2013
, “
Bath Concentration of Anionic Contrast Agents Does Not Affect Their Diffusion and Distribution in Articular cartilage In Vitro
,”
Cartilage
,
4
(
1
), pp.
42
51
.10.1177/1947603512451023
29.
Silvast
,
T. S.
,
Jurvelin
,
J. S.
,
Lammi
,
M. J.
, and
Töyräs
,
J.
,
2009
, “
pQCT Study on Diffusion and Equilibrium Distribution of Iodinated Anionic Contrast Agent in Human Articular Cartilage—Associations to Matrix Composition and Integrity
,”
Osteoarthritis Cartilage
,
17
(
1
), pp.
26
32
.10.1016/j.joca.2008.05.012
30.
Pan
,
J.
,
Zhou
,
X.
,
Li
,
W.
,
Novotny
,
J. E.
,
Doty
,
S. B.
, and
Wang
,
L.
,
2009
, “
In Situ Measurement of Transport Between Subchondral Bone and Articular Cartilage
,”
J. Orthop. Res.: Orthop. Res. Soc.
,
27
(
10
), pp.
1347
1352
.10.1002/jor.20883
31.
Mauck
,
R. L.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2003
, “
Modeling of Neutral Solute Transport in a Dynamically Loaded Porous Permeable Gel: Implications for Articular Cartilage Biosynthesis and Tissue Engineering
,”
ASME J. Biomech. Eng.
,
125
(
5
), pp.
602
614
.10.1115/1.1611512
32.
Ateshian
,
G. A.
,
Albro
,
M. B.
,
Maas
,
S.
, and
Weiss
,
J. A.
,
2011
, “
Finite Element Implementation of Mechanochemical Phenomena in Neutral Deformable Porous Media Under Finite Deformation
,”
ASME J. Biomech. Eng.
,
133
(
8
), p.
081005
.10.1115/1.4004810
33.
Ateshian
,
G. A.
,
Maas
,
S.
, and
Weiss
,
J. A.
,
2012
, “
Solute Transport Across a Contact Interface in Deformable Porous Media
,”
ASME J. Biomech. Eng.
,
45
(
6
), pp.
1023
1027
.10.1016/j.jbiomech.2012.01.003
34.
Ateshian
,
G. A.
,
2007
, “
On the Theory of Reactive Mixtures for Modeling Biological Growth
,”
Biomech. Model. Mechanobiol.
,
6
(
6
), pp.
423
445
.10.1007/s10237-006-0070-x
35.
Sun
,
D. N.
,
Gu
,
W. Y.
,
Guo
,
X. E.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1999
, “
A Mixed Finite Element Formulation of Triphasic Mechano-Electrochemical Theory for Charged, Hydrated Biological Soft Tissues
,”
Int. J. Numer. Methods Eng.
,
45
(
10
), pp.
1375
1402
.10.1002/(SICI)1097-0207(19990810)45:10<1375::AID-NME635>3.0.CO;2-7
36.
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2013
, “
Finite Element Modeling of Solutes in Hydrated Deformable Biological Tissues
,”
Comput. Models Biomech.
2013
, pp.
231
249
.10.1007/978-94-007-5464-5_17
37.
Ateshian
,
G. A.
,
Maas
,
S.
, and
Weiss
,
J. A.
,
2010
, “
Finite Element Algorithm for Frictionless Contact of Porous Permeable Media Under Finite Deformation and Sliding
,”
ASME J. Biomech. Eng.
,
132
(
6
), p.
061006
.10.1115/1.4001034
38.
Bonet
,
J.
, and
Wood
,
R. D.
,
1997
,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University
,
Cambridge, NewYork
.
39.
Sophia Fox
,
A. J.
,
Bedi
,
A.
, and
Rodeo
,
S. A.
,
2009
, “
The Basic Science of Articular Cartilage: Structure, Composition, and Function
,”
Sports Health
,
1
(
6
), pp.
461
468
.10.1177/1941738109350438
40.
Nair
,
N.
,
Kim
,
W. J.
,
Braatz
,
R. D.
, and
Strano
,
M. S.
,
2008
, “
Dynamics of Surfactant-Suspended Single-Walled Carbon Nanotubes in a Centrifugal Field
,”
Langmuir: ACS J. Surf. Colloids
,
24
(
5
), pp.
1790
1795
.10.1021/la702516u
41.
Crank
,
J.
,
1979
,
The Mathematics of Diffusion
,
Clarendon
,
Oxford, UK
.
42.
Jackson
,
A.
, and
Gu
,
W.
,
2009
, “
Transport Properties of Cartilaginous Tissues
,”
Curr. Rheumatol. Rev.
,
5
(
1
), pp.
40
50
.10.2174/157339709787315320
43.
Schadow
,
S.
,
Siebert
,
H. C.
,
Lochnit
,
G.
,
Kordelle
,
J.
,
Rickert
,
M.
, and
Steinmeyer
,
J.
,
2013
, “
Collagen Metabolism of Human Osteoarthritic Articular Cartilage as Modulated by Bovine Collagen Hydrolysates
,”
PLoS One
,
8
(
1
), p.
e53955
.10.1371/journal.pone.0053955
44.
Ameye
,
L. G.
, and
Chee
,
W. S.
,
2006
, “
Osteoarthritis and Nutrition. From Nutraceuticals to Functional Foods: A Systematic Review of the Scientific Evidence
,”
Arthritis Res. Ther.
,
8
(
4
), p.
R127
.10.1186/ar2016
You do not currently have access to this content.