Vascular growth and remodeling during embryonic development are associated with blood flow and pressure induced stress distribution, in which residual strains and stresses play a central role. Residual strains are typically measured by performing in vitro tests on the excised vascular tissue. In this paper, we investigated the possibility of estimating residual strains and stresses using physiological pressure–radius data obtained through in vivo noninvasive measurement techniques, such as optical coherence tomography or ultrasound modalities. This analytical approach first tested with in vitro results using experimental data sets for three different arteries such as rabbit carotid artery, rabbit thoracic artery, and human carotid artery based on Fung’s pseudostrain energy function and Delfino’s exponential strain energy function (SEF). We also examined residual strains and stresses in the human swine iliac artery using the in vivo experimental ultrasound data sets corresponding to the systolic-to-diastolic region only. This allowed computation of the in vivo residual stress information for loading and unloading states separately. Residual strain parameters as well as the material parameters were successfully computed with high accuracy, where the relative errors are introduced in the range of 0–7.5%. Corresponding residual stress distributions demonstrated global errors all in acceptable ranges. A slight discrepancy was observed in the computed reduced axial force. Results of computations performed based on in vivo experimental data obtained from loading and unloading states of the artery exhibited alterations in material properties and residual strain parameters as well. Emerging noninvasive measurement techniques combined with the present analytical approach can be used to estimate residual strains and stresses in vascular tissues as a precursor for growth estimates. This approach is also validated with a finite element model of a general two-layered artery, where the material remodeling states and residual strain generation are investigated.

References

References
1.
Fung
,
Y. C.
,
1991
, “
What Are the Residual Stresses Doing in Our Blood Vessels?
,”
Ann. Biomed. Eng.
,
19
(
3
), pp.
237
249
.10.1007/BF02584301
2.
Frobert
,
O.
,
Gregersen
,
H.
,
Bjerre
,
J.
,
Bagger
,
J. P.
, and
Kassab
,
G. S.
,
1998
, “
Relation Between Zero-Stress State and Branching Order of Porcine Left Coronary Arterial Tree
,”
Am. J. Physiol.
,
275
(
6 Pt. 2
), pp.
H2283
H2290
.
3.
Merodio
,
J.
,
Ogden
,
R. W.
, and
Rodríguez
,
J.
,
2013
, “
The Influence of Residual Stress on Finite Deformation Elastic Response
,”
Int. J. Non-Linear Mech.
,
56
, pp.
43
49
.10.1016/j.ijnonlinmec.2013.02.010
4.
Rachev
,
A.
, and
Greenwald
,
S. E.
,
2003
, “
Residual Strains in Conduit Arteries
,”
J. Biomech.
,
36
(
5
), pp.
661
670
.10.1016/S0021-9290(02)00444-X
5.
Costa
,
M. F. M.
, and
Teixeira
,
V.
,
2011
, “
Residual Stress Measurement in PVD Optical Coatings by Microtopography
,”
Measurement
,
44
(
3
), pp.
549
553
.10.1016/j.measurement.2010.11.010
6.
Scruby
,
C. B.
,
Antonelli
,
G.
,
Buttle
,
D. J.
,
Dalzell
,
W.
,
Gori
,
M.
,
Gulliver
,
J. A.
,
de Michelis
,
C.
,
Ravenscroft
,
F. A.
, and
Ruzzier
,
M.
,
1996
, “
Development of Non-Invasive Methods for Measurement of Stress in Welded Steel Structures
,”
Eur. J. Non-Destr. Test.
,
3
(2), pp. 46–54.10.1016/0963-8695(96)84017-5
7.
Fung
,
Y. C.
,
Fronek
,
K.
, and
Patitucci
,
P.
,
1979
, “
Pseudoelasticity of Arteries and the Choice of Its Mathematical Expression
,”
Am. J. Physiol.
,
237
(
5
), pp.
H620
H631
.
8.
Chuong
,
C. J.
, and
Fung
,
Y. C.
,
1986
, “
On Residual Stresses in Arteries
,”
ASME J. Biomech. Eng.
,
108
(
2
), pp.
189
192
.10.1115/1.3138600
9.
Takamizawa
,
K.
, and
Hayashi
,
K.
,
1987
, “
Strain Energy Density Function and Uniform Strain Hypothesis for Arterial Mechanics
,”
J. Biomech.
,
20
(
1
), pp.
7
17
.10.1016/0021-9290(87)90262-4
10.
Omens
,
J. H.
, and
Fung
,
Y. C.
,
1990
, “
Residual Strain in Rat Left Ventricle
,”
Circ. Res.
,
66
(1), pp.
37
45
.10.1161/01.RES.66.1.37
11.
Summerour
,
S. R.
,
Emery
,
J. L.
,
Fazeli
,
B.
,
Omens
,
J. H.
, and
McCulloch
,
A. D.
,
1998
, “
Residual Strain in Ischemic Ventricular Myocardium
,”
ASME J. Biomech. Eng.
,
120
(
6
), pp.
710
714
.10.1115/1.2834883
12.
Weis
,
S. M.
,
Emery
,
J. L.
,
Becker
,
K. D.
,
McBride
,
D. J.
, Jr.
,
Omens
,
J. H.
, and
McCulloch
,
A. D.
,
2000
, “
Myocardial Mechanics and Collagen Structure in the Osteogenesis Imperfecta Murine (Oim)
,”
Circ. Res.
,
87
, pp.
663
669
.10.1161/01.RES.87.8.663
13.
Liu
,
S. Q.
, and
Fung
,
Y. C.
,
1992
, “
Influence of STZ-Induced Diabetes on Zero-Stress States of Rat Pulmonary and Systemic Arteries
,”
Diabetes
,
41
(
2
), pp.
136
146
.10.2337/diab.41.2.136
14.
Pang
,
Q.
,
Lu
,
X.
,
Gregersen
,
H.
,
von Oettingen
,
G.
, and
Astrup
,
J.
,
2001
, “
Biomechanical Properties of Porcine Cerebral Bridging Veins With Reference to the Zero-Stress State
,”
J. Vasc. Res.
,
38
(
1
), pp.
83
90
.10.1159/000051033
15.
Han
,
H. C.
, and
Fung
,
Y. C.
,
1991
, “
Residual Strains in Porcine and Canine Trachea
,”
J. Biomech.
,
24
(
5
), pp.
307
315
.10.1016/0021-9290(91)90349-R
16.
Xu
,
G.
,
Kemp
,
P. S.
,
Hwu
,
J. A.
,
Beagley
,
A. M.
,
Bayly
,
P. V.
, and
Taber
,
L. A.
,
2010
, “
Opening Angles and Material Properties of the Early Embryonic Chick Brain
,”
ASME J. Biomech. Eng.
,
132
(
1
), p.
011005
.10.1115/1.4000169
17.
Taber
,
L. A.
,
Hu
,
N.
,
Pexieder
,
T.
,
Clark
,
E. B.
, and
Keller
,
B. B.
,
1993
, “
Residual Strain in the Ventricle of the Stage 16-24 Chick Embryo
,”
Circ. Res.
,
72
(2), pp.
455
462
.10.1161/01.RES.72.2.455
18.
Alford
,
P. W.
, and
Taber
,
L. A.
,
2008
, “
Computational Study of Growth and Remodelling in the Aortic Arch
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
(
5
), pp.
525
538
.10.1080/10255840801930710
19.
Wang
,
R.
, and
Gleason
,
R. L.
, Jr
.
,
2010
, “
A Mechanical Analysis of Conduit Arteries Accounting for Longitudinal Residual Strains
,”
Ann. Biomed. Eng.
,
38
(
4
), pp.
1377
1387
.10.1007/s10439-010-9916-6
20.
Lu
,
X.
,
Zhao
,
J. B.
,
Wang
,
G. R.
,
Gregersen
,
H.
, and
Kassab
,
G. S.
,
2001
, “
Remodeling of the Zero-Stress State of Femoral Arteries in Response to Flow Overload
,”
Am. J. Physiol. Heart Circ. Physiol.
,
280
(
4
), pp.
H1547
H1559
.
21.
Bischoff
,
J. E.
,
Arruda
,
E. A.
, and
Grosh
,
K.
,
2002
, “
A Microstructurally Based Orthotropic Hyperelastic Constitutive Law
,”
ASME J. Appl. Mech.
,
69
(
5
), pp.
570
579
.10.1115/1.1485754
22.
Holzapfel
,
G.
,
Gasser
,
T.
, and
Ogden
,
R.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity Phys. Sci. Solids
,
61
(
1–3
), pp.
1
48
.10.1023/A:1010835316564
23.
Zhang
,
Y.
,
Dunn
,
M. L.
,
Drexler
,
E. S.
,
McCowan
,
C. N.
,
Slifka
,
A. J.
,
Ivy
,
D. D.
, and
Shandas
,
R.
,
2005
, “
A Microstructural Hyperelastic Model of Pulmonary Arteries Under Normo- and Hypertensive Conditions
,”
Ann. Biomed. Eng.
,
33
(
8
), pp.
1042
1052
.10.1007/s10439-005-5771-2
24.
Chuong
,
C. J.
, and
Fung
,
Y. C.
,
1983
, “
Three-Dimensional Stress Distribution in Arteries
,”
ASME J. Biomech. Eng.
,
105
(
3
), pp.
268
274
.10.1115/1.3138417
25.
Delfino
,
A.
,
Stergiopulos
,
N.
,
Moore
,
J. E.
, Jr
.
, and
Meister
,
J. J.
,
1997
, “
Residual Strain Effects on the Stress Field in a Thick Wall Finite Element Model of the Human Carotid Bifurcation
,”
J. Biomech.
,
30
(
8
), pp.
777
786
.10.1016/S0021-9290(97)00025-0
26.
Mekkaoui
,
C.
,
Friggi
,
A.
,
Rolland
,
P. H.
,
Bodard
,
H.
,
Piquet
,
P.
,
Bartoli
,
J. M.
, and
Mesana
,
T.
,
2001
, “
Simultaneous Measurements of Arterial Diameter and Blood Pressure to Determine the Arterial Compliance, Wall Mechanics and Stresses In Vivo
,”
Eur. J. Vasc. Endovascular Surg.
,
21
(
3
), pp.
208
213
.10.1053/ejvs.2001.1320
27.
Beloussov
,
L. V.
,
Saveliev
,
S. V.
,
Naumidi
,
I. I.
, and
Novoselov
,
V. V.
,
1994
, “
Mechanical Stresses in Embryonic Tissues: Patterns, Morphogenetic Role, and Involvement in Regulatory Feedback
,”
Int. Rev. Cytol.
,
150
, pp.
1
34
.10.1016/S0074-7696(08)61535-1
28.
Rodriguez
,
E. K.
,
Hoger
,
A.
, and
McCulloch
,
A. D.
,
1994
, “
Stress-Dependent Finite Growth in Soft Elastic Tissues
,”
J. Biomech.
,
27
(
4
), pp.
455
467
.10.1016/0021-9290(94)90021-3
29.
Kowalski
,
W. J.
,
Teslovich
,
N. C.
,
Menon
,
P. G.
,
Tinney
,
J. P.
,
Keller
,
B. B.
, and
Pekkan
,
K.
,
2014
, “
Left Atrial Ligation Alters Intracardiac Flow Patterns and the Biomechanical Landscape in the Chick Embryo
,”
Dev. Dyn.
,
243
(
5
), pp.
652
662
.10.1002/dvdy.24107
30.
Restrepo
,
M.
,
Mirabella
,
L.
,
Tang
,
E.
,
Haggerty
,
C. M.
,
Khiabani
,
R. H.
,
Fynn-Thompson
,
F.
,
Valente
,
A. M.
,
McElhinney
,
D. B.
,
Fogel
,
M. A.
, and
Yoganathan
,
A. P.
,
2014
, “
Fontan Pathway Growth: A Quantitative Evaluation of Lateral Tunnel and Extracardiac Cavopulmonary Connections Using Serial Cardiac Magnetic Resonance
,”
Ann. Thorac. Surg.
,
97
(
3
), pp.
916
922
.10.1016/j.athoracsur.2013.11.015
31.
Taber
,
L. A.
,
2009
, “
Towards a Unified Theory for Morphomechanics
, ”
Philos. Trans. R. Soc., A
,
367
(
1902
), pp.
3555
3583
.10.1098/rsta.2009.0100
32.
Saugel
,
B.
,
Dueck
,
R.
, and
Wagner
,
J. Y.
,
2014
, “
Measurement of Blood Pressure
,”
Best Pract. Res., Clin. Anaesthesiol.
,
28
(
4
), pp.
309
322
.10.1016/j.bpa.2014.08.001
33.
Naik
,
B. I.
, and
Durieux
,
M. E.
,
2014
, “
Hemodynamic Monitoring Devices: Putting it All Together
,”
Best Pract. Res., Clin. Anaesthesiol.
,
28
(
4
), pp.
477
488
.10.1016/j.bpa.2014.09.004
34.
Quail
,
M. A.
,
Steeden
,
J. A.
,
Knight
,
D.
,
Segers
,
P.
,
Taylor
,
A. M.
, and
Muthurangu
,
V.
,
2014
, “
Development and Validation of a Novel Method to Derive Central Aortic Systolic Pressure From the MR Aortic Distension Curve
,”
J. Magn. Reson. Imaging
,
40
(
5
), pp.
1064
1070
.10.1002/jmri.24471
35.
Meidert
,
A. S.
,
Huber
,
W.
,
Muller
,
J. N.
,
Schofthaler
,
M.
,
Hapfelmeier
,
A.
,
Langwieser
,
N.
,
Wagner
,
J. Y.
,
Eyer
,
F.
,
Schmid
,
R. M.
, and
Saugel
,
B.
,
2014
, “
Radial Artery Applanation Tonometry for Continuous Non-Invasive Arterial Pressure Monitoring in Intensive Care Unit Patients: Comparison With Invasively Assessed Radial Arterial Pressure
,”
Br. J. Anaesth.
,
112
(
3
), pp.
521
528
.10.1093/bja/aet400
36.
Janelle
,
G. M.
, and
Gravenstein
,
N.
,
2006
, “
An Accuracy Evaluation of the T-Line Tensymeter (Continuous Noninvasive Blood Pressure Management Device) Versus Conventional Invasive Radial Artery Monitoring in Surgical Patients
,”
Anesth. Analg.
,
102
(
2
), pp.
484
490
.10.1213/01.ane.0000194873.52453.bd
37.
Szmuk
,
P.
,
Pivalizza
,
E.
,
Warters
,
R. D.
,
Ezri
,
T.
, and
Gebhard
,
R.
,
2008
, “
An Evaluation of the T-Line® Tensymeter Continuous Noninvasive Blood Pressure Device During Induced Hypotension
,”
Anaesthesia
,
63
(
3
), pp.
307
312
.10.1111/j.1365-2044.2007.05369.x
38.
Meidert
,
A. S.
,
Huber
,
W.
,
Hapfelmeier
,
A.
,
Schofthaler
,
M.
,
Muller
,
J. N.
,
Langwieser
,
N.
,
Wagner
,
J. Y.
,
Schmid
,
R. M.
, and
Saugel
,
B.
,
2013
, “
Evaluation of the Radial Artery Applanation Tonometry Technology for Continuous Noninvasive Blood Pressure Monitoring Compared With Central Aortic Blood Pressure Measurements in Patients With Multiple Organ Dysfunction Syndrome
,”
J. Crit. Care
,
28
(
6
), pp.
908
912
.10.1016/j.jcrc.2013.06.012
39.
Hong
,
H.
,
Dur
,
O.
,
Zhang
,
H.
,
Zhu
,
Z.
,
Pekkan
,
K.
, and
Liu
,
J.
,
2013
, “
Fontan Conversion Templates: Patient-Specific Hemodynamic Performance of the Lateral Tunnel Versus the Intraatrial Conduit With Fenestration
,”
Pediatr. Cardiol.
,
34
(
6
), pp.
1447
1454
.10.1007/s00246-013-0669-5
40.
Kowalski
,
W. J.
,
Teslovich
,
N. C.
,
Chen
,
C.-Y.
,
Keller
,
B. B.
, and
Pekkan
,
K.
,
2014
, “
Simultaneous Real-Time Quantification of Blood Flow and Vascular Growth in the Chick Embryo Using Optical Coherence Tomography
,”
Proc. SPIE
8953
, p.
895307
.10.1117/12.2044932
41.
Lindsey
,
S. E.
,
Menon
,
P. G.
,
Kowalski
,
W. J.
,
Shekhar
,
A.
,
Yalcin
,
H. C.
,
Nishimura
,
N.
,
Schaffer
,
C. B.
,
Butcher
,
J. T.
, and
Pekkan
,
K.
,
2014
, “
Growth and Hemodynamics After Early Embryonic Aortic Arch Occlusion
,”
Biomech. Model. Mechanobiol.
10.1007/s10237-014-0633-1
42.
Maher
,
E.
,
Early
,
M.
,
Creane
,
A.
,
Lally
,
C.
, and
Kelly
,
D. J.
,
2012
, “
Site Specific Inelasticity of Arterial Tissue
,”
J. Biomech.
,
45
(
8
), pp.
1393
1399
.10.1016/j.jbiomech.2012.02.026
You do not currently have access to this content.