Mechanical loading influences the structural and mechanical properties of articular cartilage. The cartilage matrix protein collagen II essentially determines the tensile properties of the tissue and is adapted in response to loading. The collagen II network is stabilized by the collagen II-binding cartilage oligomeric matrix protein (COMP), collagen IX, and matrilin-3. However, the effect of mechanical loading on these extracellular matrix proteins is not yet understood. Therefore, the aim of this study was to investigate if and how chondrocytes assemble the extracellular matrix proteins collagen II, COMP, collagen IX, and matrilin-3 in response to mechanical loading. Primary murine chondrocytes were applied to cyclic tensile strain (6%, 0.5 Hz, 30 min per day at three consecutive days). The localization of collagen II, COMP, collagen IX, and matrilin-3 in loaded and unloaded cells was determined by immunofluorescence staining. The messenger ribo nucleic acid (mRNA) expression levels and synthesis of the proteins were analyzed using reverse transcription-polymerase chain reaction (RT-PCR) and western blots. Immunofluorescence staining demonstrated that the pattern of collagen II distribution was altered by loading. In loaded chondrocytes, collagen II containing fibrils appeared thicker and strongly co-stained for COMP and collagen IX, whereas the collagen network from unloaded cells was more diffuse and showed minor costaining. Further, the applied load led to a higher amount of COMP in the matrix, determined by western blot analysis. Our results show that moderate cyclic tensile strain altered the assembly of the extracellular collagen network. However, changes in protein amount were only observed for COMP, but not for collagen II, collagen IX, or matrilin-3. The data suggest that the adaptation to mechanical loading is not always the result of changes in RNA and/or protein expression but might also be the result of changes in matrix assembly and structure.

References

References
1.
Wilson
,
W.
,
van Burken
,
C.
,
van Donkelaar
,
C.
,
Buma
,
P.
,
van Rietbergen
,
B.
, and
Huiskes
,
R.
,
2006
, “
Causes of Mechanically Induced Collagen Damage in Articular Cartilage
,”
J. Orthop. Res.
,
24
(
2
), pp.
220
228
.10.1002/jor.20027
2.
Hagiwara
,
Y.
,
Ando
,
A.
,
Chimoto
,
E.
,
Saijo
,
Y.
,
Ohmori‐Matsuda
,
K.
, and
Itoi
,
E.
,
2009
, “
Changes of Articular Cartilage After Immobilization in a Rat Knee Contracture Model
,”
J. Orthop. Res.
,
27
(
2
), pp.
236
242
.10.1002/jor.20724
3.
Eyre
,
D.
,
2002
, “
Collagen of Articular Cartilage
,”
Arthritis Res.
,
4
(
1
), pp.
30
35
.10.1186/ar380
4.
Vaughan
,
L.
,
Mendler
,
M.
,
Huber
,
S.
,
Bruckner
,
P.
,
Winterhalter
,
K. H.
,
Irwin
,
M. I.
, and
Mayne
,
R.
,
1988
, “
D-Periodic Distribution of Collagen Type IX Along Cartilage Fibrils
,”
J. Cell Biol.
,
106
(
3
), pp.
991
997
.10.1083/jcb.106.3.991
5.
Williamson
,
A. K.
,
Chen
,
A. C.
,
Masuda
,
K.
,
Thonar
,
E. J.
, and
Sah
,
R. L.
,
2003
, “
Tensile Mechanical Properties of Bovine Articular Cartilage: Variations With Growth and Relationships to Collagen Network Components
,”
J. Orthop. Res.
,
21
(
5
), pp.
872
880
.10.1016/S0736-0266(03)00030-5
6.
Zaucke
,
F.
, and
Grässel
,
S.
,
2009
, “
Genetic Mouse Models for the Functional Analysis of the Perifibrillar Components Collagen IX, COMP and Matrilin-3: Implications for Growth Cartilage Differentiation and Endochondral Ossification
,”
Histol. Histopathol.
,
24
(
8
), pp.
1067
1079
.
7.
Mann
,
H. H.
,
Özbek
,
S.
,
Engel
,
J.
,
Paulsson
,
M.
, and
Wagener
,
R.
,
2004
, “
Interactions Between the Cartilage Oligomeric Matrix Protein and Matrilins
,”
J. Biol. Chem.
,
279
(
24
), pp.
25294
25298
.10.1074/jbc.M403778200
8.
Eyre
,
D. R.
,
Pietka
,
T.
,
Weis
,
M. A.
, and
Wu
,
J. J.
,
2004
, “
Covalent Cross-Linking of the NC1 Domain of Collagen Type IX to Collagen Type II in Cartilage
,”
J. Biol. Chem.
,
279
(
4
), pp.
2568
2574
.10.1074/jbc.M311653200
9.
Holden
,
P.
,
Meadows
,
R. S.
,
Chapman
,
K. L.
,
Grant
,
M. E.
,
Kadler
,
K. E.
, and
Briggs
,
M. D.
,
2001
, “
Cartilage Oligomeric Matrix Protein Interacts With Type IX Collagen, and Disruptions to These Interactions Identify a Pathogenetic Mechanism in a Bone Dysplasia Family
,”
J. Biol. Chem.
,
276
(
8
), pp.
6046
6055
.10.1074/jbc.M009507200
10.
Rosenberg
,
K.
,
Olsson
,
H.
,
Mörgelin
,
M.
, and
Heinegård
,
D.
,
1998
, “
Cartilage Oligomeric Matrix Protein Shows High Affinity Zinc-Dependent Interaction With Triple Helical Collagen
,”
J. Biol. Chem.
,
273
(
32
), pp.
20397
20403
.10.1074/jbc.273.32.20397
11.
Parsons
,
P.
,
Gilbert
,
S. J.
,
Vaughan-Thomas
,
A.
,
Sorrell
,
D. A.
,
Notman
,
R.
,
Bishop
,
M.
,
Hayes
,
A. J.
,
Mason
,
D. J.
, and
Duance
,
V. C.
,
2011
, “
Type IX Collagen Interacts With Fibronectin Providing an Important Molecular Bridge in Articular Cartilage
,”
J. Biol. Chem.
,
286
(
40
), pp.
34986
34997
.10.1074/jbc.M111.238188
12.
Budde
,
B.
,
Blumbach
,
K.
,
Ylostalo
,
J.
,
Zaucke
,
F.
,
Ehlen
,
H. W. A.
,
Wagener
,
R.
,
Ala-Kokko
,
L.
,
Paulsson
,
M.
,
Bruckner
,
P.
, and
Grassel
,
S.
,
2005
, “
Altered Integration of Matrilin-3 Into Cartilage Extracellular Matrix in the Absence of Collagen IX
,”
Mol. Cell. Biol.
,
25
(
23
), pp.
10465
10478
.10.1128/MCB.25.23.10465-10478.2005
13.
Thur
,
J.
,
Rosenberg
,
K.
,
Nitsche
,
D. P.
,
Pihlajamaa
,
T.
,
Ala-Kokko
,
L.
,
Heinegård
,
D.
,
Paulsson
,
M.
, and
Maurer
,
P.
,
2001
, “
Mutations in Cartilage Oligomeric Matrix Protein Causing Pseudoachondroplasia and Multiple Epiphyseal Dysplasia Affect Binding of Calcium and Collagen I, II, and IX
,”
J. Biol. Chem.
,
276
(
9
), pp.
6083
6092
.10.1074/jbc.M009512200
14.
Chen
,
F. H.
,
Herndon
,
M. E.
,
Patel
,
N.
,
Hecht
,
J. T.
,
Tuan
,
R. S.
, and
Lawler
,
J.
,
2007
, “
Interaction of Cartilage Oligomeric Matrix Protein/Thrombospondin 5 With Aggrecan
,”
J. Biol. Chem.
,
282
(
34
), pp.
24591
24598
.10.1074/jbc.M611390200
15.
Van der Rest
,
M.
, and
Mayne
,
R.
,
1988
, “
Type IX Collagen Proteoglycan From Cartilage is Covalently Cross-Linked to Type II Collagen
,”
J. Biol. Chem.
,
263
(
4
), pp.
1615
1618
.
16.
Otten
,
C.
,
Hansen
,
U.
,
Talke
,
A.
,
Wagener
,
R.
,
Paulsson
,
M.
, and
Zaucke
,
F.
,
2010
, “
A Matrilin-3 Mutation Associated With Osteoarthritis Does Not Affect Collagen Affinity but Promotes the Formation of Wider Cartilage Collagen Fibrils
,”
Hum. Mutat.
,
31
(
3
), pp.
254
263
.10.1002/humu.21182
17.
Briggs
,
M. D.
,
Hoffman
,
S. M. G.
,
King
,
L. M.
,
Olsen
,
A. S.
,
Mohrenweiser
,
H.
,
Leroy
,
J. G.
,
Mortier
,
G. R.
,
Rimoin
,
D. L.
,
Lachman
,
R. S.
, and
Gaines
,
E. S.
,
1995
, “
Pseudoachondroplasia and Multiple Epiphyseal Dysplasia Due to Mutations in the Cartilage Oligomeric Matrix Protein Gene
,”
Nat. Genet.
,
10
(
3
), pp.
330
336
.10.1038/ng0795-330
18.
Chapman
,
K. L.
,
Mortier
,
G. R.
,
Chapman
,
K.
,
Loughlin
,
J.
,
Grant
,
M. E.
, and
Briggs
,
M. D.
,
2001
, “
Mutations in the Region Encoding the von Willebrand Factor A Domain of Matrilin-3 Are Associated With Multiple Epiphyseal Dysplasia
,”
Nat. Genet.
,
28
(
4
), pp.
393
396
.10.1038/ng573
19.
Lohiniva
,
J.
,
Paassilta
,
P.
,
Seppänen
,
U.
,
Vierimaa
,
O.
,
Kivirikko
,
S.
, and
Ala‐Kokko
,
L.
,
2000
, “
Splicing Mutations in the COL3 Domain of Collagen IX Cause Multiple Epiphyseal Dysplasia
,”
Am. J. Med. Genet.
,
90
(
3
), pp.
216
222
.10.1002/(SICI)1096-8628(20000131)90:3<216::AID-AJMG6>3.0.CO;2-1
20.
Nicolae
,
C.
,
Ko
,
Y. P.
,
Miosge
,
N.
,
Niehoff
,
A.
,
Studer
,
D.
,
Enggist
,
L.
,
Hunziker
,
E. B.
,
Paulsson
,
M.
,
Wagener
,
R.
, and
Aszodi
,
A.
,
2007
, “
Abnormal Collagen Fibrils in Cartilage of Matrilin-1/Matrilin-3-Deficient Mice
,”
J. Biol. Chem.
,
282
(
30
), pp.
22163
22175
.10.1074/jbc.M610994200
21.
Blumbach
,
K.
,
Bastiaansen Jenniskens
,
Y. M.
,
DeGroot
,
J.
,
Paulsson
,
M.
,
van Osch
,
G.
, and
Zaucke
,
F.
,
2009
, “
Combined Role of Type IX Collagen and Cartilage Oligomeric Matrix Protein in Cartilage Matrix Assembly: Cartilage Oligomeric Matrix Protein Counteracts Type IX Collagen–Induced Limitation of Cartilage Collagen Fibril Growth in Mouse Chondrocyte Cultures
,”
Arthritis Rheum.
,
60
(
12
), pp.
3676
3685
.10.1002/art.24979
22.
Van der Weyden
,
L.
,
Wei
,
L.
,
Luo
,
J.
,
Yang
,
X.
,
Birk
,
D. E.
,
Adams
,
D. J.
,
Bradley
,
A.
, and
Chen
,
Q.
,
2006
, “
Functional Knockout of the Matrilin-3 Gene Causes Premature Chondrocyte Maturation to Hypertrophy and Increases Bone Mineral Density and Osteoarthritis
,”
Am. J. Pathol.
,
169
(
2
), pp.
515
527
.10.2353/ajpath.2006.050981
23.
Otten
,
C.
,
Wagener
,
R.
,
Paulsson
,
M.
, and
Zaucke
,
F.
,
2005
, “
Matrilin-3 Mutations That Cause Chondrodysplasias Interfere With Protein Trafficking While a Mutation Associated With Hand Osteoarthritis Does Not
,”
J. Med. Genet.
,
42
(
10
), pp.
774
779
.10.1136/jmg.2004.029462
24.
Ragan
,
P. M.
,
Badger
,
A. M.
,
Cook
,
M.
,
Chin
,
V. I.
,
Gowen
,
M.
,
Grodzinsky
,
A. J.
, and
Lark
,
M. W.
,
1999
, “
Down-Regulation of Chondrocyte Aggrecan and Type-II Collagen Gene Expression Correlates With Increases in Static Compression Magnitude and Duration
,”
J. Orthop. Res.
,
17
(
6
), pp.
836
842
.10.1002/jor.1100170608
25.
Smith
,
R. L.
,
Rusk
,
S.
,
Ellison
,
B.
,
Wessells
,
P.
,
Tsuchiya
,
K.
,
Carter
,
D.
,
Caler
,
W.
,
Sandell
,
L.
, and
Schurman
,
D.
,
1996
, “
In Vitro Stimulation of Articular Chondrocyte mRNA and Extracellular Matrix Synthesis by Hydrostatic Pressure
,”
J. Orthop. Res.
,
14
(
1
), pp.
53
60
.10.1002/jor.1100140110
26.
Ikenoue
,
T.
,
Trindade
,
M. C.
,
Lee
,
M. S.
,
Lin
,
E. Y.
,
Schurman
,
D. J.
,
Goodman
,
S. B.
, and
Smith
,
R. L.
,
2003
, “
Mechanoregulation of Human Articular Chondrocyte Aggrecan and Type II Collagen Expression by Intermittent Hydrostatic Pressure In Vitro
,”
J. Orthop. Res.
,
21
(
1
), pp.
110
116
.10.1016/S0736-0266(02)00091-8
27.
Naito
,
K.
,
Watari
,
T.
,
Muta
,
T.
,
Furuhata
,
A.
,
Iwase
,
H.
,
Igarashi
,
M.
,
Kurosawa
,
H.
,
Nagaoka
,
I.
, and
Kaneko
,
K.
,
2010
, “
Low‐Intensity Pulsed Ultrasound (LIPUS) Increases the Articular Cartilage Type II Collagen in a Rat Osteoarthritis Model
,”
J. Orthop. Res.
,
28
(
3
), pp.
361
369
.10.1002/jor.20995
28.
Kanbe
,
K.
,
Yang
,
X.
,
Wei
,
L.
,
Sun
,
C.
, and
Chen
,
Q.
,
2007
, “
Pericellular Matrilins Regulate Activation of Chondrocytes by Cyclic Load Induced Matrix Deformation
,”
J. Bone Miner. Res.
,
22
(
2
), pp.
318
328
.10.1359/JBMR.061104
29.
Wong
,
M.
,
Siegrist
,
M.
, and
Goodwin
,
K.
,
2003
, “
Cyclic Tensile Strain and Cyclic Hydrostatic Pressure Differentially Regulate Expression of Hypertrophic Markers in Primary Chondrocytes
,”
Bone
,
33
(
4
), pp.
685
693
.10.1016/S8756-3282(03)00242-4
30.
Ng
,
K. W.
,
Mauck
,
R. L.
,
Wang
,
C. C. B.
,
Kelly
,
T. A. N.
,
Ho
,
M. M. Y.
,
Chen
,
F. H.
,
Ateshian
,
G. A.
, and
Hung
,
C. T.
,
2009
, “
Duty Cycle of Deformational Loading Influences the Growth of Engineered Articular Cartilage
,”
Cell. Mol. Bioeng.
,
2
(
3
), pp.
386
394
.10.1007/s12195-009-0070-x
31.
Bieler
,
F. H.
,
Ott
,
C. E.
,
Thompson
,
M. S.
,
Seidel
,
R.
,
Ahrens
,
S.
,
Epari
,
D. R.
,
Wilkening
,
U.
,
Schaser
,
K. D.
,
Mundlos
,
S.
, and
Duda
,
G. N.
,
2009
, “
Biaxial Cell Stimulation: A Mechanical Validation
,”
J. Biomech.
,
42
(
11
), pp.
1692
1696
.10.1016/j.jbiomech.2009.04.013
32.
Brown
,
T. D.
,
2000
, “
Techniques for Mechanical Stimulation of Cells In Vitro: A Review
,”
J. Biomech.
,
33
(
1
), pp.
3
14
.10.1016/S0021-9290(99)00177-3
33.
Agarwal
,
S.
,
Deschner
,
J.
,
Long
,
P.
,
Verma
,
A.
,
Hofman
,
C.
,
Evans
,
C. H.
, and
Piesco
,
N.
,
2004
, “
Role of NF-kappaB Transcription Factors in Antiinflammatory and Proinflammatory Actions of Mechanical Signals
,”
Arthritis Rheum.
,
50
(
11
), pp.
3541
3548
.10.1002/art.20601
34.
DiCesare
,
P. E.
,
Mörgelin
,
M.
, and
Paulsson
,
M.
,
1994
, “
Cartilage Oligomeric Matrix Protein and Thrombospondin 1
,”
Eur. J. Biochem.
,
223
(
3
), pp.
927
937
.10.1111/j.1432-1033.1994.tb19070.x
35.
Klatt
,
A. R.
,
Nitsche
,
D. P.
,
Kobbe
,
B.
,
Morgelin
,
M.
,
Paulsson
,
M.
, and
Wagener
,
R.
,
2000
, “
Molecular Structure and Tissue Distribution of Matrilin-3, A Filament-Forming Extracellular Matrix Protein Expressed During Skeletal Development
,”
J. Biol. Chem.
,
275
(
6
), pp.
3999
4006
.10.1074/jbc.275.6.3999
36.
Bruckner
,
P.
,
Mendler
,
M.
,
Steinmann
,
B.
,
Huber
,
S.
, and
Winterhalter
,
K. H.
,
1988
, “
The Structure of Human Collagen Type IX and Its Organization in Fetal and Infant Cartilage Fibrils
,”
J. Biol. Chem.
,
263
(
32
), pp.
16911
16917
.
37.
Hamann
,
N.
,
Zaucke
,
F.
,
Heilig
,
J.
,
Oberländer
,
K.
,
Brüggemann
,
G. P.
, and
Niehoff
,
A.
,
2014
, “
Effect of Different Running Modes on the Morphological, Biochemical, and Mechanical Properties of Articular Cartilage
,”
Scand. J. Med. Sci. Sports
,
24
(
1
), pp.
179
188
.10.1111/j.1600-0838.2012.01513.x
38.
Zaucke
,
F.
,
Dinser
,
R.
,
Maurer
,
P.
, and
Paulsson
,
M.
,
2001
, “
Cartilage Oligomeric Matrix Protein (COMP) and Collagen IX are Sensitive Markers for the Differentiation State of Articular Primary Chondrocytes
,”
Biochem. J.
,
358
(
Pt. 1
), pp.
17
24
.10.1042/0264-6021:3580017
39.
Halász
,
K.
,
Kassner
,
A.
,
Mörgelin
,
M.
, and
Heinegård
,
D.
,
2007
, “
COMP Acts as a Catalyst in Collagen Fibrillogenesis
,”
J. Biol. Chem.
,
282
(
43
), pp.
31166
31173
.10.1074/jbc.M705735200
40.
Bruckner
,
P.
, and
van der Rest
,
M.
,
1994
, “
Structure and Function of Cartilage Collagens
,”
Microsc. Res. Tech.
,
28
(
5
), pp.
378
384
.10.1002/jemt.1070280504
41.
Heinegård
,
D.
,
2009
, “
Proteoglycans and More—From Molecules to Biology
,”
Int. J. Exp. Pathol.
,
90
(
6
), pp.
575
586
.10.1111/j.1365-2613.2009.00695.x
42.
Wu
,
P.
,
DeLassus
,
E.
,
Patra
,
D.
,
Liao
,
W.
, and
Sandell
,
L. J.
,
2013
, “
Effects of Serum and Compressive Loading on the Cartilage Matrix Synthesis and Spatiotemporal Deposition Around Chondrocytes in 3D Culture
,”
Tissue Eng., Part A
,
19
(
9–10
), pp.
1199
1208
.10.1089/ten.tea.2012.0559
43.
Wong
,
M.
,
Siegrist
,
M.
, and
Cao
,
X.
,
1999
, “
Cyclic Compression of Articular Cartilage Explants Is Associated With Progressive Consolidation and Altered Expression Pattern of Extracellular Matrix Proteins
,”
Matrix Biol.
,
18
(
4
), pp.
391
399
.10.1016/S0945-053X(99)00029-3
44.
Hagg
,
R.
,
Bruckner
,
P.
, and
Hedbom
,
E.
,
1998
, “
Cartilage Fibrils of Mammals Are Biochemically Heterogeneous: Differential Distribution of Decorin and Collagen IX
,”
J. Cell Biol.
,
142
(
1
), pp.
285
294
.10.1083/jcb.142.1.285
45.
Giannoni
,
P.
,
Siegrist
,
M.
,
Hunziker
,
E.
, and
Wong
,
M.
,
2003
, “
The Mechanosensitivity of Cartilage Oligomeric Matrix Protein (COMP)
,”
Biorheology
,
40
, pp.
101
109
.
46.
Bian
,
L.
,
Fong
,
J. V.
,
Lima
,
E. G.
,
Stoker
,
A. M.
,
Ateshian
,
G. A.
,
Cook
,
J. L.
, and
Hung
,
C. T.
,
2010
, “
Dynamic Mechanical Loading Enhances Functional Properties of Tissue-Engineered Cartilage Using Mature Canine Chondrocytes
,”
Tissue Eng., Part A
,
16
(
5
), pp.
1781
1790
.10.1089/ten.tea.2009.0482
47.
Doi
,
H.
,
Nishida
,
K.
,
Yorimitsu
,
M.
,
Komiyama
,
T.
,
Kadota
,
Y.
,
Tetsunaga
,
T.
,
Yoshida
,
A.
,
Kubota
,
S.
,
Takigawa
,
M.
, and
Ozaki
,
T.
,
2008
, “
Interleukin-4 Downregulates the Cyclic Tensile Stress-Induced Matrix Metalloproteinases-13 and Cathepsin B Expression by Rat Normal Chondrocytes
,”
Acta Med. Okayama
,
62
(
2
), pp.
119
126
.
48.
Demarteau
,
O.
,
Wendt
,
D.
,
Braccini
,
A.
,
Jakob
,
M.
,
Schäfer
,
D.
,
Heberer
,
M.
, and
Martin
,
I.
,
2003
, “
Dynamic Compression of Cartilage Constructs Engineered From Expanded Human Articular Chondrocytes
,”
Biochem. Biophys. Res. Commun.
,
310
(
2
), pp.
580
588
.10.1016/j.bbrc.2003.09.099
49.
Toyoda
,
T.
,
Seedhom
,
B. B.
,
Kirkham
,
J.
, and
Bonass
,
W. A.
,
2003
, “
Upregulation of Aggrecan and Type II Collagen mRNA Expression in Bovine Chondrocytes by the Application of Hydrostatic Pressure
,”
Biorheology
,
40
(
1
), pp.
79
85
.
50.
Huang
,
J.
,
Ballou
,
L. R.
, and
Hasty
,
K. A.
,
2007
, “
Cyclic Equibiaxial Tensile Strain Induces Both Anabolic and Catabolic Responses in Articular Chondrocytes
,”
Gene
,
404
(
1–2
), pp.
101
109
.10.1016/j.gene.2007.09.007
51.
Ru-song
,
Z.
,
Zhu-li
,
Y.
,
Yan-xiao
,
D.
,
Chong-ying
,
Y.
,
Ping-ping
,
J.
, and
Xiao
,
Y.
,
2012
, “
Effect of Tensile Stress on Type Collagen and Aggrecan II Expression in Rat Condylar Chondrocytes
,”
Chin. J. Tissue Eng. Res.
,
16
(
20
), pp.
3649
3653
.
52.
Shimizu
,
A.
,
Watanabe
,
S.
,
Iimoto
,
S.
, and
Yamamoto
,
H.
,
2004
, “
Interleukin-4 Protects Matrix Synthesis in Chondrocytes Under Excessive Mechanical Stress in vitro
,”
Mod. Rheumatol.
,
14
(
4
), pp.
296
300
.10.3109/s10165-004-0312-7
53.
Armstrong
,
C.
,
Bahrani
,
A.
, and
Gardner
,
D.
,
1980
, “
Changes in the Deformational Behavior of Human Hip Cartilage With Age
,”
ASME J. Biomech. Eng.
,
102
(
3
), pp.
214
220
.10.1115/1.3149576
54.
Guilak
,
F.
,
1995
, “
Compression-Induced Changes in the Shape and Volume of the Chondrocyte Nucleus
,”
J. Biomech.
,
28
(
12
), pp.
1529
1541
.10.1016/0021-9290(95)00100-X
55.
Gassner
,
R.
,
Buckley
,
M. J.
,
Georgescu
,
H.
,
Studer
,
R.
,
Stefanovich-Racic
,
M.
,
Piesco
,
N. P.
,
Evans
,
C. H.
, and
Agarwal
,
S.
,
1999
, “
Cyclic Tensile Stress Exerts Antiinflammatory Actions on Chondrocytes by Inhibiting Inducible Nitric Oxide Synthase
,”
J. Immunol.
,
163
(
4
), pp.
2187
2192
.
56.
Xu
,
Z.
,
Buckley
,
M. J.
,
Evans
,
C. H.
, and
Agarwal
,
S.
,
2000
, “
Cyclic Tensile Strain Acts as an Antagonist of IL-1ß Actions in Chondrocytes
,”
J. Immunol.
,
165
(
1
), pp.
453
460
.10.4049/jimmunol.165.1.453
57.
Tanimoto
,
K.
,
Kitamura
,
R.
,
Tanne
,
Y.
,
Kamiya
,
T.
,
Kunimatsu
,
R.
,
Yoshioka
,
M.
,
Tanaka
,
N.
,
Tanaka
,
E.
, and
Tanne
,
K.
,
2009
, “
Modulation of Hyaluronan Catabolism in Chondrocytes by Mechanical Stimuli
,”
J. Biomed. Mater. Res.
,
93A
(
1
), pp.
373
380
.10.1002/jbm.a.32540
58.
Tanimoto
,
K.
,
Kamiya
,
T.
,
Tanne
,
Y.
,
Kunimatsu
,
R.
,
Mitsuyoshi
,
T.
,
Tanaka
,
E.
, and
Tanne
,
K.
,
2011
, “
Superficial Zone Protein Affects Boundary Lubrication on the Surface of Mandibular Condylar Cartilage
,”
Cell Tissue Res.
,
344
(
2
), pp.
333
340
.10.1007/s00441-011-1156-z
59.
Wang
,
D.
,
Taboas
,
J. M.
, and
Tuan
,
R. S.
,
2011
, “
PTHrP Overexpression Partially Inhibits a Mechanical Strain-Induced Arthritic Phenotype in Chondrocytes
,”
Osteoarthritis Cartilage
,
19
(
2
), pp.
213
221
.10.1016/j.joca.2010.11.003
60.
Yorimitsu
,
M.
,
Nishida
,
K.
,
Shimizu
,
A.
,
Doi
,
H.
,
Miyazawa
,
S.
,
Komiyama
,
T.
,
Nasu
,
Y.
,
Yoshida
,
A.
,
Watanabe
,
S.
, and
Ozaki
,
T.
,
2008
, “
Intra-Articular Injection of Interleukin-4 Decreases Nitric Oxide Production by Chondrocytes and Ameliorates Subsequent Destruction of Cartilage in Instability-Induced Osteoarthritis in Rat Knee Joints
,”
Osteoarthritis Cartilage
,
16
(
7
), pp.
764
771
.10.1016/j.joca.2007.11.006
61.
Das
,
R. H. J.
,
Jahr
,
H.
,
Verhaar
,
J. A. N.
,
van der Linden
,
J. C.
,
van Osch
,
G.
, and
Weinans
,
H.
,
2008
, “
In Vitro Expansion Affects the Response of Chondrocytes to Mechanical Stimulation
,”
Osteoarthritis Cartilage
,
16
(
3
), pp.
385
391
.10.1016/j.joca.2007.07.014
62.
Castillo
,
E. R.
,
Lieberman
,
G. M.
,
McCarty
,
L. S.
, and
Lieberman
,
D. E.
,
2014
, “
Effects of Pole Compliance and Step Frequency on the Biomechanics and Economy of Pole Carrying During Human Walking
,”
J. Appl. Physiol.
,
117
(
5
), pp.
507
517
.10.1152/japplphysiol.00119.2014
63.
Öberg
,
T.
,
Karsznia
,
A.
, and
Öberg
,
K.
,
1993
, “
Basic Gait Parameters: Reference Data for Normal Subjects, 10–79 Years of Age
,”
J. Rehabil. Res. Dev.
,
30
, pp.
210
223
.
64.
Honda
,
K.
,
Ohno
,
S.
,
Tanimoto
,
K.
,
Ijuin
,
C.
,
Tanaka
,
N.
,
Doi
,
T.
,
Kato
,
Y.
, and
Tanne
,
K.
,
2000
, “
The Effects of High Magnitude Cyclic Tensile Load on Cartilage Matrix Metabolism in Cultured Chondrocytes
,”
Eur. J. Cell Biol.
,
79
(
9
), pp.
601
609
.10.1078/0171-9335-00089
65.
Ueki
,
M.
,
Tanaka
,
N.
,
Tanimoto
,
K.
,
Nishio
,
C.
,
Honda
,
K.
,
Lin
,
Y. Y.
,
Tanne
,
Y.
,
Ohkuma
,
S.
,
Kamiya
,
T.
, and
Tanaka
,
E.
,
2008
, “
The Effect of Mechanical Loading on the Metabolism of Growth Plate Chondrocytes
,”
Ann. Biomed. Eng.
,
36
(
5
), pp.
793
800
.10.1007/s10439-008-9462-7
66.
Davisson
,
T.
,
Kunig
,
S.
,
Chen
,
A.
,
Sah
,
R.
, and
Ratcliffe
,
A.
,
2002
, “
Static and Dynamic Compression Modulate Matrix Metabolism in Tissue Engineered Cartilage
,”
J. Orthop. Res.
,
20
(
4
), pp.
842
848
.10.1016/S0736-0266(01)00160-7
67.
Nugent
,
G.
,
Schmidt
,
T.
,
Schumacher
,
B.
,
Voegtline
,
M.
,
Bae
,
W.
,
Jadin
,
K.
, and
Sah
,
R.
,
2006
, “
Static and Dynamic Compression Regulate Cartilage Metabolism of PRoteoGlycan 4 (PRG4)
,”
Biorheology
,
43
(
3
), pp.
191
200
.
68.
Sah
,
R. L. Y.
,
Kim
,
Y. J.
,
Doong
,
J. Y. H.
,
Grodzinsky
,
A. J.
,
Plass
,
A. H. K.
, and
Sandy
,
J. D.
,
1989
, “
Biosynthetic Response of Cartilage Explants to Dynamic Compression
,”
J. Orthop. Res.
,
7
(
5
), pp.
619
636
.10.1002/jor.1100070502
69.
Fitzgerald
,
J. B.
,
Jin
,
M.
, and
Grodzinsky
,
A. J.
,
2006
, “
Shear and Compression Differentially Regulate Clusters of Functionally Related Temporal Transcription Patterns in Cartilage Tissue
,”
J. Biol. Chem.
,
281
(
34
), pp.
24095
24103
.10.1074/jbc.M510858200
70.
Vanderploeg
,
E. J.
,
Imler
,
S. M.
,
Brodkin
,
K. R.
,
Garcı́a
,
A. J.
, and
Levenston
,
M. E.
,
2004
, “
Oscillatory Tension Differentially Modulates Matrix Metabolism and Cytoskeletal Organization in Chondrocytes and Fibrochondrocytes
,”
J. Biomech.
,
37
(
12
), pp.
1941
1952
.10.1016/j.jbiomech.2004.02.048
71.
Fan
,
J. C.
, and
Waldman
,
S. D.
,
2010
, “
The Effect of Intermittent Static Biaxial Tensile Strains on Tissue Engineered Cartilage
,”
Ann. Biomed. Eng.
,
38
(
4
), pp.
1672
1682
.10.1007/s10439-010-9917-5
72.
Han
,
X.
,
Guo
,
L.
,
Wang
,
F.
,
Zhu
,
Q.
, and
Yang
,
L.
,
2014
, “
Contribution of PTHrP to Mechanical Strain-Induced Fibrochondrogenic Differentiation in Entheses of Achilles Tendon of Miniature Pigs
,”
J. Biomech.
,
47
(
10
), pp.
2406
2414
.10.1016/j.jbiomech.2014.04.022
73.
Marlovits
,
S.
,
Hombauer
,
M.
,
Truppe
,
M.
,
Vecsei
,
V.
, and
Schlegel
,
W.
,
2004
, “
Changes in the Ratio of Type-I and Type-II Collagen Expression During Monolayer Culture of Human Chondrocytes
,”
J. Bone Joint Surg., Br.
Vol.,
86
(
2
), pp.
286
295
.10.1302/0301-620X.86B2.14918
74.
Schnabel
,
M.
,
Marlovits
,
S.
,
Eckhoff
,
G.
,
Fichtel
,
I.
,
Gotzen
,
L.
,
Vecsei
,
V.
, and
Schlegel
,
J.
,
2002
, “
Dedifferentiation-Associated Changes in Morphology and Gene Expression in Primary Human Articular Chondrocytes in Cell Culture
,”
Osteoarthritis Cartilage
,
10
(
1
), pp.
62
70
.10.1053/joca.2001.0482
75.
Krug
,
D.
,
Klinger
,
M.
,
Haller
,
R.
,
Hargus
,
G.
,
Büning
,
J.
,
Rohwedel
,
J.
, and
Kramer
,
J.
,
2013
, “
Minor Cartilage Collagens Type IX and XI are Expressed During Embryonic Stem Cell-Derived In Vitro Chondrogenesis
,”
Ann. Anat.
,
195
(
1
), pp.
88
97
.10.1016/j.aanat.2012.06.004
76.
Schulze-Tanzil
,
G.
,
2009
, “
Activation and Dedifferentiation of Chondrocytes: Implications in Cartilage Injury and Repair
,”
Ann. Anat.
,
191
(
4
), pp.
325
338
.10.1016/j.aanat.2009.05.003
You do not currently have access to this content.