Using a simplified two-dimensional divider-channel setup, we simulate the development process of red blood cell (RBC) flows in the entrance region of microvessels to study the wall shear stress (WSS) behaviors. Significant temporal and spatial variation in WSS is noticed. The maximum WSS magnitude and the strongest variation are observed at the channel inlet due to the close cell-wall contact. From the channel inlet, both the mean WSS and variation magnitude decrease, with a abrupt drop in the close vicinity near the inlet and then a slow relaxation over a relatively long distance; and a relative stable state with approximately constant mean and variation is established when the flow is well developed. The correlations between the WSS variation features and the cell free layer (CFL) structure are explored, and the effects of several hemodynamic parameters on the WSS variation are examined. In spite of the model limitations, the qualitative information revealed in this study could be useful for better understanding relevant processes and phenomena in the microcirculation.

References

References
1.
Ando
,
J.
, and
Yamamoto
,
K.
,
2009
, “
Vascular Mechanobiology: Endothelial Cell Responses to Fluid Shear Stress
,”
Circ. J.
,
73
(
11
), pp.
1983
1992
.10.1253/circj.CJ-09-0583
2.
Szymanski
,
M. P.
,
Metaxa
,
E.
,
Meng
,
H.
, and
Kolega
,
J.
,
2008
, “
Endothelial Cell Layer Subjected to Impinging Flow Mimicking the Apex of an Arterial Bifurcation
,”
Ann. Biomed. Eng.
,
36
(
10
), pp.
1681
1689
.10.1007/s10439-008-9540-x
3.
Chiu
,
J.-J.
, and
Chien
,
S.
,
2011
, “
Effects of Disturbed Flow on Vascular Endothelium: Pathophysiological Basis and Clinical Perspectives
,”
Physiol. Rev.
,
91
(
1
), pp.
327
387
.10.1152/physrev.00047.2009
4.
Resnick
,
N.
,
Yahav
,
H.
,
Shay-Salit
,
A.
,
Shushy
,
M.
,
Schubert
,
S.
,
Zilberman
,
L. C. M.
, and
Wofovitz
,
E.
,
2003
, “
Fluid Shear Stress and the Vascular Endothelium: for Better and for Worse
,”
Prog. Biophys. Mol. Biol.
,
81
(
3
), pp.
177
199
.10.1016/S0079-6107(02)00052-4
5.
Stroka
,
K.
, and
Aranda-Espinoza
,
H.
,
2010
, “
A Biophysical View of the Interplay Between Mechanical Forces and Signaling Pathways During Transendothelial Cell Migration
,”
FEBS J.
,
277
(
5
), pp.
1145
1158
.10.1111/j.1742-4658.2009.07545.x
6.
Himburg
,
H. A.
,
Grzybowski
,
D. M.
,
Hazel
,
A. L.
,
LaMack
,
J. A.
,
Li
,
X. M.
, and
Friedman
,
M. H.
,
2004
, “
Spatial Comparison Between Wall Shear Stress Measures and Porcine Arterial Endothelial Permeability
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
286
(
5
), pp.
H1916
H1922
.10.1152/ajpheart.00897.2003
7.
Lehoux
,
S.
, and
Tedgui
,
A.
,
1998
, “
Signal Transduction of Mechanical Stresses in the Vascular Wall
,”
Hypertension
,
32
(
2
), pp.
338
345
.10.1161/01.HYP.32.2.338
8.
Pahakis
,
M.
,
Kosky
,
J.
,
Dull
,
R. O.
, and
Tarbell
,
J. M.
,
2007
, “
The Role of Endothelial Glycocalyx Components in Mechanotransduction of Fluid Shear Stress
,”
Biochem. Biophys. Res. Commun.
,
355
(
1
), pp.
228
233
.10.1016/j.bbrc.2007.01.137
9.
Feaver
,
R. E.
,
Gelfand
,
B. D.
, and
Blackman
,
B. R.
,
2013
, “
Human Haemodynamic Frequency Harmonics Regulate the Inflammatory Phenotype of Vascular Endothelial Cells
,”
Nat. Commun.
,
4
, Art. No. 1529.10.1038/ncomms2530
10.
Uzarski
,
J. S.
,
Scott
,
E. W.
, and
McFetridge
,
P. S.
,
2013
, “
Adaptation of Endothelial Cells to Physiologically-Modeled, Variable Shear Stress
,”
PLoS One
,
8
(
2
), p.
e57004
.10.1371/journal.pone.0057004
11.
Dolan
,
J. M.
,
Meng
,
H.
,
Singh
,
S.
,
Paluch
,
R.
, and
Kolega
,
J.
,
2011
, “
High Fluid Shear Stress and Spatial Shear Stress Gradients Affect Endothelial Proliferation, Survival, and Alignment
,”
Ann. Biomed. Eng.
,
39
(
6
), pp.
1620
1631
.10.1007/s10439-011-0267-8
12.
Xiong
,
W.
, and
Zhang
,
J.
,
2010
, “
Shear Stress Variation Induced by Red Blood Cell Motion in Microvessel
,”
Ann. Biomed. Eng.
,
38
(
8
), pp.
2649
2659
.10.1007/s10439-010-0017-3
13.
Yin
,
X.
, and
Zhang
,
J.
,
2012
, “
Cell-Free Layer and Wall Shear Stress Variation in Microvessels
,”
Biorheology
,
49
(
4
), pp.
261
270
.10.3233/BIR-2012-0608
14.
Freund
,
J. B.
, and
Vermot
,
J.
,
2014
, “
The Wall-Stress Footprint of Blood Cells Flowing in Microvessels
,”
Biophys. J.
,
106
(
3
), pp.
752
762
.10.1016/j.bpj.2013.12.020
15.
Pries
,
A. R.
,
Ley
,
K.
,
Claassen
,
M.
, and
Gaehtgens
,
P.
,
1989
, “
Red Cell Distribution at Microvascular Bifurcations
,”
Microvasc. Res.
,
38
(
1
), pp.
81
101
.10.1016/0026-2862(89)90018-6
16.
Ong
,
P. K.
, and
Kim
,
S.
,
2013
, “
Effect of Erythrocyte Aggregation on Spatiotemporal Variations in Cell-Free Layer Formation Near on Arteriolar Bifurcation
,”
Microcirculation
,
20
(
5
), pp.
440
453
.10.1111/micc.12045
17.
Ong
,
P. K.
,
Jain
,
S.
, and
Kim
,
S.
,
2012
, “
Spatio-Temporal Variations in Cell-Free Layer Formation Near Bifurcations of Small Arterioles
,”
Microvasc. Res.
,
83
(
2
), pp.
118
125
.10.1016/j.mvr.2011.11.003
18.
Barber
,
J. O.
,
Alberding
,
J. P.
,
Restrepo
,
J. M.
, and
Secomb
,
T. W.
,
2008
, “
Simulated Two-Dimensional Red Blood Cell Motion, Deformation, and Partitioning in Microvessel Bifurcations
,”
Ann. Biomed. Eng.
,
36
(
10
), pp.
1690
1698
.10.1007/s10439-008-9546-4
19.
Xiong
,
W.
, and
Zhang
,
J.
,
2012
, “
Two-Dimensional Lattice Boltzmann Study of Red Blood Cell Motion Through Microvascular Bifurcation: Cell Deformability and Suspending Viscosity Effects
,”
Biomech. Model. Mechanobiol.
,
11
(
3–4
), pp.
575
583
.10.1007/s10237-011-0334-y
20.
Yin
,
X.
,
Thomas
,
T.
, and
Zhang
,
J.
,
2013
, “
Multiple Red Blood Cell Flows Through Microvascular Bifurcations: Cell Free Layer, Cell Trajectory, and Hematocrit Separation
,”
Microvasc. Res.
,
89
, pp.
47
56
.10.1016/j.mvr.2013.05.002
21.
Ishikawa
,
T.
,
Fujiwara
,
H.
,
Matsuki
,
N.
,
Yoshimoto
,
T.
,
Imai
,
Y.
,
Ueno
,
H.
, and
Yamaguchi
,
T.
,
2011
, “
Asymmetry of Blood Flow and Cancer Cell Adhesion in a Microchannel With Symmetric Bifurcation and Confluence
,”
Biomed. Microdevices
,
13
(
1
), pp.
159
167
.10.1007/s10544-010-9481-7
22.
Oulaid
,
O.
, and
Zhang
,
J.
,
2015
, “
Cell Free Layer Development Process in the Entrance Region of Microvessels
,”
Biomech. Model. Mechanobiol
(in press).10.1007%2Fs10237-014-0636-y
23.
Zhang
,
J.
,
Johnson
,
P. C.
, and
Popel
,
A. S.
,
2009
, “
Effects of Erythrocyte Deformability and Aggregation on the Cell Free Layer and Apparent Viscosity of Microscopic Blood Flows
,”
Microvasc. Res.
,
77
(
3
), pp.
265
272
.10.1016/j.mvr.2009.01.010
24.
Zhang
,
J.
,
Johnson
,
P. C.
, and
Popel
,
A. S.
,
2007
, “
An Immersed Boundary Lattice Boltzmann Approach to Simulate Deformable Liquid Capsules and Its Application to Microscopic Blood Flows
,”
Phys. Biol.
,
4
(
4
), pp.
285
295
.10.1088/1478-3975/4/4/005
25.
Evans
,
E. A.
, and
Fung
,
Y. C.
,
1972
, “
Improved Measurements of the Erythrocyte Geometry
,”
Microvasc. Res.
,
4
(
4
), pp.
335
347
.10.1016/0026-2862(72)90069-6
26.
Bagchi
,
P.
,
Johnson
,
P. C.
, and
Popel
,
A. S.
,
2005
, “
Computational Fluid Dynamic Simulation of Aggregation of Deformable Cells in a Shear Flow
,”
ASME J. Biomech. Eng.
,
127
(
7
), pp.
1070
1080
.10.1115/1.2112907
27.
Pozrikidis
,
C.
,
2001
, “
Effect of Membrane Bending Stiffness on the Deformation of Capsules in Simple Shear Flow
,”
J. Fluid Mech.
,
440
, pp.
269
291
.10.1017/S0022112001004657
28.
Liu
,
Y.
, and
Liu
,
W. K.
,
2006
, “
Rheology of Red Blood Cell Aggregation by Computer Simulation
,”
J. Comput. Phys.
,
220
(
1
), pp.
139
154
.10.1016/j.jcp.2006.05.010
29.
Neu
,
B.
, and
Meiselman
,
H. J.
,
2002
, “
Depletion-Mediated Red Blood Cell Aggregation in Polymer Solutions
,”
Biophys. J.
,
83
(
5
), pp.
2482
2490
.10.1016/S0006-3495(02)75259-4
30.
Succi
,
S.
,
2001
,
The Lattice Boltzmann Equation
,
Oxford University
,
Oxford
.
31.
Zhang
,
J.
,
2011
, “
Lattice Boltzmann Method for Microfluidics: Models and Applications
,”
Microfluid. Nanofluid.
,
10
(
1
), pp.
1
28
.10.1007/s10404-010-0624-1
32.
Peskin
,
C. S.
,
1977
, “
Numerical Analysis of Blood Flow in the Heart
,”
J. Comput. Phys.
,
25
(
3
), pp.
220
252
.10.1016/0021-9991(77)90100-0
33.
Zhang
,
J.
,
2011
, “
Effect of Suspending Viscosity on Red Blood Cell Dynamics and Blood Flows in Microvessels
,”
Microcirculation
,
18
(
17
), pp.
562
573
.10.1111/j.1549-8719.2011.00116.x
34.
Zhang
,
J.
,
Johnson
,
P. C.
, and
Popel
,
A. S.
,
2008
, “
Red Blood Cell Aggregation and Dissociation in Shear Flows Simulated by Lattice Boltzmann Method
,”
J. Biomech.
,
41
(
1
), pp.
47
55
.10.1016/j.jbiomech.2007.07.020
35.
Skalak
,
R.
, and
Chien
,
S.
,
1987
,
Handbook of Bioengineering
,
McGraw-Hill
,
New York
.
36.
Bronzino
,
J. D.
,
2006
,
Biomedical Engineering Fundamentals
,
3rd ed.
,
CRC
,
Boca Raton
.
37.
Tan
,
Y.
,
Sun
,
D.
,
Wang
,
J.
, and
Huang
,
W.
,
2010
, “
Mechanical Characterization of Human Red Blood Cells Under Different Osmotic Conditions by Robotic Manipulation With Optical Tweezers
,”
IEEE Trans. Biomed. Eng.
,
57
(
7
), pp.
1816
1825
.10.1109/TBME.2010.2042448
38.
Dao
,
M.
,
Lim
,
C. T.
, and
Suresh
,
S.
,
2005
, “
Erratum: Mechanics of the Human Red Blood Cell Deformed by Optical Tweezers [Journal of the Mechanics and Physics of Solids, 51 (2003) 2259–2280]
,”
J. Mech. Phys. Solids
,
53
, pp.
493
494
.10.1016/j.jmps.2004.10.003
39.
Lim
,
C.
,
Dao
,
M.
,
Suresh
,
S.
,
Sow
,
C.
, and
Chew
,
K.
,
2004
, “
Large Deformation of Living Cells Using Laser Traps
,”
Acta Mater.
,
52
(
7
), pp.
1837
1845
.10.1016/j.actamat.2003.12.028
40.
Breyiannis
,
G.
, and
Pozrikidis
,
C.
,
2000
, “
Simple Shear Flow of Suspensions of Elastic Capsules
,”
Theor. Comput. Fluid Dyn.
,
13
(
5
), pp.
327
347
.10.1007/s001620050003
41.
Ye
,
S. S.
,
Ng
,
Y. C.
,
Tan
,
J.
,
Leo
,
H. L.
, and
Kim
,
S.
,
2014
, “
Two-Dimensional Strain-Hardening Membrane Model for Large Deformation Behavior of Multiple Red Blood Cells in High Shear Conditions
,”
Theor. Biol. Med. Modell.
,
11
(
19
), pp.
1
21
.10.1186/1742-4682-11-19
42.
Yin
,
X.
, and
Zhang
,
J.
,
2012
, “
An Improved Bounce-Back Scheme for Complex Boundary Conditions in Lattice Boltzmann Method
,”
J. Comput. Phys.
,
231
(
11
), pp.
4295
4303
.10.1016/j.jcp.2012.02.014
43.
Pries
,
A. R.
,
Ley
,
K.
, and
Gaehtgens
,
P.
,
1986
, “
Generalization of the Fahraeus Principle for Microvessel Networks
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
20
, pp.
Hl324
Hl332
.10.1186/1742-4682-11-19
44.
Lipowsky
,
H. H.
,
2005
, “
Microvascular Rheology and Hemodynamics
,”
Microcirculation
,
12
(
1
), pp.
5
15
.10.1080/10739680590894966
45.
Popel
,
A. S.
, and
Johnson
,
P. C.
,
2005
, “
Microcirculation and Hemorheology
,”
Annu. Rev. Fluid Mech.
,
37
, pp.
43
69
.10.1146/annurev.fluid.37.042604.133933
You do not currently have access to this content.