It has been shown that arteries may buckle into tortuous shapes under lumen pressure, which in turn could alter blood flow. However, the mechanisms of artery instability under pulsatile flow have not been fully understood. The objective of this study was to simulate the buckling and post-buckling behaviors of the carotid artery under pulsatile flow using a fully coupled fluid–structure interaction (FSI) method. The artery wall was modeled as a nonlinear material with a two-fiber strain-energy function. FSI simulations were performed under steady-state flow and pulsatile flow conditions with a prescribed flow velocity profile at the inlet and different pressures at the outlet to determine the critical buckling pressure. Simulations were performed for normal (160 ml/min) and high (350 ml/min) flow rates and normal (1.5) and reduced (1.3) axial stretch ratios to determine the effects of flow rate and axial tension on stability. The results showed that an artery buckled when the lumen pressure exceeded a critical value. The critical mean buckling pressure at pulsatile flow was 17–23% smaller than at steady-state flow. For both steady-state and pulsatile flow, the high flow rate had very little effect (<5%) on the critical buckling pressure. The fluid and wall stresses were drastically altered at the location with maximum deflection. The maximum lumen shear stress occurred at the inner side of the bend and maximum tensile wall stresses occurred at the outer side. These findings improve our understanding of artery instability in vivo.

References

References
1.
Han
,
H.-C.
,
2007
, “
A Biomechanical Model of Artery Buckling
,”
J. Biomech.
,
40
(
16
), pp.
3672
3678
.10.1016/j.jbiomech.2007.06.018
2.
Han
,
H.-C.
,
2008
, “
Nonlinear Buckling of Blood Vessels: A Theoretical Study
,”
J. Biomech.
,
41
(
12
), pp.
2708
2713
.10.1016/j.jbiomech.2008.06.012
3.
Han
,
H. C.
,
2009
, “
Blood Vessel Buckling Within Soft Surrounding Tissue Generates Tortuosity
,”
J. Biomech.
,
42
(
16
), pp.
2797
2801
.10.1016/j.jbiomech.2009.07.033
4.
Del Corso
,
L.
,
Moruzzo
,
D.
,
Conte
,
B.
,
Agelli
,
M.
,
Romanelli
,
A. M.
,
Pastine
,
F.
,
Protti
,
M.
,
Pentimone
,
F.
, and
Baggiani
,
G.
,
1998
, “
Tortuosity, Kinking, and Coiling of the Carotid Artery: Expression of Atherosclerosis or Aging?
Angiology
,
49
(
5
), pp.
361
371
.10.1177/000331979804900505
5.
Han
,
H.-C.
,
Chesnutt
,
J. W.
,
Garcia
,
J.
,
Liu
,
Q.
, and
Wen
,
Q.
,
2013
, “
Artery Buckling: New Phenotypes, Models, and Applications
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1399
1410
.10.1007/s10439-012-0707-0
6.
Han
,
H. C.
,
2012
, “
Twisted Blood Vessels: Symptoms, Etiology and Biomechanical Mechanisms
,”
J. Vasc. Res.
,
49
(
3
), pp.
185
197
.10.1159/000335123
7.
Datir
,
P.
,
Lee
,
A. Y.
,
Lamm
,
S. D.
, and
Han
,
H. C.
,
2011
, “
Effects of Geometric Variations on the Buckling of Arteries
,”
ASME Int. J. Appl. Mech.
,
3
(
2
), pp.
385
406
.10.1142/S1758825111001044
8.
Northcutt
,
A.
,
Datir
,
P.
, and
Han
,
H. C.
,
2009
, “
Computational Simulations of Buckling of Oval and Tapered Arteries
,”
Tributes to Yuan-Cheng Fung on His 90th Birthday. Biomechanics: From Molecules to Man
,
S.
Chien
,
P. C. Y.
Chen
,
G. W.
Schmid-Schönbein
,
P.
Tong
, and
S. L.-Y.
Woo
, eds.,
World Scientific Publishing
,
Hackensack, NJ
, pp.
53
64
.
9.
Chesnutt
,
J. K.
, and
Han
,
H. C.
,
2011
, “
Tortuosity Triggers Platelet Activation and Thrombus Formation in Microvessels
,”
ASME J. Biomech. Eng.
,
133
(
12
), p.
121004
.10.1115/1.4005478
10.
Ku
,
D. N.
,
1997
, “
Blood Flow in Arteries
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
399
434
.10.1146/annurev.fluid.29.1.399
11.
McDaniel
,
M. C.
,
Galbraith
,
E. M.
,
Jeroudi
,
A. M.
,
Kashlan
,
O. R.
,
Eshtehardi
,
P.
,
Suo
,
J.
,
Dhawan
,
S.
,
Voeltz
,
M.
,
Devireddy
,
C.
,
Oshinski
,
J.
,
Harrison
,
D. G.
,
Giddens
,
D. P.
, and
Samady
,
H.
,
2011
, “
Localization of Culprit Lesions in Coronary Arteries of Patients With ST-Segment Elevation Myocardial Infarctions: Relation to Bifurcations and Curvatures
,”
Am. Heart J.
,
161
(
3
), pp.
508
515
.10.1016/j.ahj.2010.11.005
12.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Arterioscler. Thromb. Vasc. Biol.
,
5
(
3
), pp.
293
302
.10.1161/01.ATV.5.3.293
13.
Han
,
H. C.
,
2009
, “
The Theoretical Foundation for Artery Buckling Under Internal Pressure
,”
ASME J. Biomech. Eng.
,
131
(
12
), p.
124501
.10.1115/1.4000080
14.
Rachev
,
A.
,
2009
, “
A Theoretical Study of Mechanical Stability of Arteries
,”
ASME J. Biomech. Eng.
,
131
(
5
), p.
051006
.10.1115/1.3078188
15.
Han
,
H.-C.
,
2011
, “
Determination of the Critical Buckling Pressure of Blood Vessels Using the Energy Approach
,”
Ann. Biomed. Eng.
,
39
(
3
), pp.
1032
1040
.10.1007/s10439-010-0212-2
16.
Liu
,
Q.
, and
Han
,
H.-C.
,
2012
, “
Mechanical Buckling of Artery Under Pulsatile Pressure
,”
J. Biomech.
,
45
(
7
), pp.
1192
1198
.10.1016/j.jbiomech.2012.01.035
17.
Lee
,
A. Y.
,
Han
,
B.
,
Lamm
,
S. D.
,
Fierro
,
C. A.
, and
Han
,
H.-C.
,
2012
, “
Effects of Elastin Degradation and Surrounding Matrix Support on Artery Stability
,”
Am. J. Physiol. Heart Circ. Physiol.
,
302
(
4
), pp.
H873
H884
.10.1152/ajpheart.00463.2011
18.
Gijsen
,
F. J. H.
,
Allanic
,
E.
,
van de Vosse
,
F. N.
, and
Janssen
,
J. D.
,
1999
, “
The Influence of the Non-Newtonian Properties of Blood on the Flow in Large Arteries: Unsteady Flow in a 90 deg Curved Tube
,”
J. Biomech.
,
32
(
7
), pp.
705
713
.10.1016/S0021-9290(99)00014-7
19.
Liu
,
B.
,
2007
, “
The Influences of Stenosis on the Downstream Flow Pattern in Curved Arteries
,”
Med. Eng. Phys.
,
29
(
8
), pp.
868
876
.10.1016/j.medengphy.2006.09.009
20.
Qiao
,
A. K.
,
Guo
,
X. L.
,
Wu
,
S. G.
,
Zeng
,
Y. J.
, and
Xu
,
X. H.
,
2004
, “
Numerical Study of Nonlinear Pulsatile Flow in S-Shaped Curved Arteries
,”
Med. Eng. Phys.
,
26
(
7
), pp.
545
552
.10.1016/j.medengphy.2004.04.008
21.
Beulen
,
B. W. A. M. M.
,
Rutten
,
M. C. M.
, and
van de Vosse
,
F. N.
,
2009
, “
A Time-Periodic Approach for Fluid–Structure Interaction in Distensible Vessels
,”
J. Fluids Struct.
,
25
(
5
), pp.
954
966
.10.1016/j.jfluidstructs.2009.03.002
22.
Janela
,
J.
,
Moura
,
A.
, and
Sequeira
,
A.
,
2010
, “
A 3D Non-Newtonian Fluid–Structure Interaction Model for Blood Flow in Arteries
,”
J. Comput. Appl. Math.
,
234
(
9
), pp.
2783
2791
.10.1016/j.cam.2010.01.032
23.
Bathe
,
M.
, and
Kamm
,
R. D.
,
1999
, “
A Fluid–Structure Interaction Finite Element Analysis of Pulsatile Blood Flow Through a Compliant Stenotic Artery
,”
ASME J. Biomech. Eng.
,
121
(
4
), pp.
361
369
.10.1115/1.2798332
24.
Tang
,
D.
,
Yang
,
C.
,
Kobayashi
,
S.
, and
Ku
,
D. N.
,
2001
, “
Steady Flow and Wall Compression in Stenotic Arteries: A Three-Dimensional Thick-Wall Model With Fluid–Wall Interactions
,”
ASME J. Biomech. Eng.
,
123
(
6
), pp.
548
557
.10.1115/1.1406036
25.
Yang
,
C.
,
Canton
,
G.
,
Yuan
,
C.
,
Ferguson
,
M.
,
Hatsukami
,
T. S.
, and
Tang
,
D.
,
2010
, “
Advanced Human Carotid Plaque Progression Correlates Positively With Flow Shear Stress Using Follow-Up Scan Data: An In Vivo MRI Multi-Patient 3D FSI Study
,”
J. Biomech.
,
43
(
13
), pp.
2530
2538
.10.1016/j.jbiomech.2010.05.018
26.
Kock
,
S. A.
,
Nygaard
,
J. V.
,
Eldrup
,
N.
,
Fründ
,
E.-T.
,
Klærke
,
A.
,
Paaske
,
W. P.
,
Falk
,
E.
, and
Yong Kim
,
W.
,
2008
, “
Mechanical Stresses in Carotid Plaques Using MRI-Based Fluid–Structure Interaction Models
,”
J. Biomech.
,
41
(
8
), pp.
1651
1658
.10.1016/j.jbiomech.2008.03.019
27.
Tang
,
D.
,
Yang
,
C.
,
Kobayashi
,
S.
,
Zheng
,
J.
,
Teng
,
Z.
,
Billiar
,
K.
,
Bach
,
R.
,
Ku
,
D. N.
, and
Woodard
,
P. K.
,
2009
, “
3D MRI-Based Anisotropic FSI Models With Cyclic Bending for Human Coronary Atherosclerotic Plaque Mechanical Analysis
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061010
.10.1115/1.3127253
28.
Zhang
,
W.
,
Herrera
,
C.
,
Atluri
,
S. N.
, and
Kassab
,
G. S.
,
2005
, “
Effect of Surrounding Tissue on Vessel Fluid and Solid Mechanics
,”
ASME J. Biomech. Eng.
,
126
(
6
), pp.
760
769
.10.1115/1.1824128
29.
Liu
,
Q.
,
Wen
,
Q.
,
Mottahedi
,
M.
, and
Han
,
H. C.
,
2014
, “
Artery Buckling Analysis Using a Four-Fiber Wall Model
,”
J. Biomech.
,
47
(
11
), pp.
2790
2796
.10.1016/j.jbiomech.2014.06.005
30.
Bathe
,
K. J.
,
2012
,
ADINA Theory and Modeling Guide
Volume
III
:
ADINA CFD & FSI, ADINA R&D
,
Watertown, MA
.
31.
Holzapfel
,
G.
,
Gasser
,
T.
, and
Ogden
,
R.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
,
61
(
1–3
), pp.
1
48
.10.1023/A:1010835316564
32.
Bathe
,
K. J.
,
2012
,
ADINA Theory and Modeling Guide
Volume
I
:
ADINA Solids & Structures, ADINA R&D
,
Watertown, MA
.
33.
Han
,
H. C.
,
Ku
,
D. N.
, and
Vito
,
R. P.
,
2003
, “
Arterial Wall Adaptation Under Elevated Longitudinal Stretch in Organ Culture
,”
Ann. Biomed. Eng.
,
31
(
4
), pp.
403
411
.10.1114/1.1561291
34.
Yao
,
Q.
,
Hayman
,
D. M.
,
Dai
,
Q.
,
Lindsey
,
M. L.
, and
Han
,
H. C.
,
2009
, “
Alterations of Pulse Pressure Stimulate Arterial Wall Matrix Remodeling
,”
ASME J. Biomech. Eng.
,
131
(
10
), p.
101011
.10.1115/1.3202785
35.
Demiray
,
H.
,
1988
, “
Pulse Velocities in Initially Stressed Arteries
,”
J. Biomech.
,
21
(
1
), pp.
55
58
.10.1016/0021-9290(88)90191-1
36.
Hirata
,
K.
,
Yaginuma
,
T.
,
O'Rourke
,
M. F.
, and
Kawakami
,
M.
,
2006
, “
Age-Related Changes in Carotid Artery Flow and Pressure Pulses: Possible Implications for Cerebral Microvascular Disease
,”
Stroke
,
37
(
10
), pp.
2552
2556
.10.1161/01.STR.0000242289.20381.f4
37.
Xiao
,
Y.
,
Hayman
,
D.
,
Khalafvand
,
S. S.
,
Lindsey
,
M. L.
, and
Han
,
H. C.
,
2014
, “
Artery Buckling Stimulates Cell Proliferation and NF-kappaB Signaling
,”
Am. J. Physiol. Heart Circ. Physiol.
,
307
(
4
), pp.
H542
H551
.10.1152/ajpheart.00079.2014
38.
Nakaura
,
T.
,
Nagayoshi
,
Y.
,
Awai
,
K.
,
Utsunomiya
,
D.
,
Kawano
,
H.
,
Ogawa
,
H.
, and
Yamashita
,
Y.
,
2014
, “
Myocardial Bridging is Associated With Coronary Atherosclerosis in the Segment Proximal to the Site of Bridging
,”
J. Cardiol.
,
63
(
2
), pp.
134
139
.10.1016/j.jjcc.2013.07.005
39.
Pursnani
,
S.
,
Diener-West
,
M.
, and
Sharrett
,
A. R.
,
2014
, “
The Effect of Aging on the Association Between Coronary Heart Disease Risk Factors and Carotid Intima Media Thickness: An Analysis of the Atherosclerosis Risk in Communities (ARIC) Cohort
,”
Atherosclerosis
,
233
(
2
), pp.
441
446
.10.1016/j.atherosclerosis.2013.12.046
40.
Huo
,
Y.
,
Wischgoll
,
T.
, and
Kassab
,
G. S.
,
2007
, “
Flow Patterns in Three-Dimensional Porcine Epicardial Coronary Arterial Tree
,”
Am. J. Physiol. Heart Circ. Physiol.
,
293
(
5
), pp.
H2959
H2970
.10.1152/ajpheart.00586.2007
You do not currently have access to this content.