Understanding the contribution of the soft-tissues to total joint constraint (TJC) is important for predicting joint kinematics, developing surgical procedures, and increasing accuracy of computational models. Previous studies on the collateral ligaments have focused on quantifying strain and tension properties under discrete loads or kinematic paths; however, there has been little work to quantify collateral ligament contribution over a broad range of applied loads and range of motion (ROM) in passive constraint. To accomplish this, passive envelopes were collected from nine cadaveric knees instrumented with implantable pressure transducers (IPT) in the collateral ligaments. The contributions from medial and lateral collateral ligaments (LCL) were quantified by the relative contribution of each structure at various flexion angles (0–120 deg) and compound external loads (±10 N m valgus, ±8 N m external, and ±40 N anterior). Average medial collateral ligament (MCL) contributions were highest under external and valgus torques from 60 deg to 120 deg flexion. The MCL showed significant contributions to TJC under external torques throughout the flexion range. Average LCL contributions were highest from 0 deg to 60 deg flexion under external and varus torques, as well as internal torques from 60 deg to 110 deg flexion. Similarly, these regions were found to have statistically significant LCL contributions. Anterior and posterior loads generally reduced collateral contribution to TJC; however, posterior loads further reduced MCL contribution, while anterior loads further reduced LCL contribution. These results provide insight to the functional role of the collaterals over a broad range of passive constraint. Developing a map of collateral ligament contribution to TJC may be used to identify the effects of injury or surgical intervention on soft-tissue, and how collateral ligament contributions to constraint correlate with activities of daily living.

References

References
1.
Blankevoort
,
L.
,
Huiskes
,
R.
, and
de Lange
,
A.
,
1988
, “
The Envelope of Passive Knee Joint Motion
,”
J. Biomech.
,
21
(
9
), pp.
705
720
.10.1016/0021-9290(88)90280-1
2.
Sanchez
,
A. R.
, 2nd
,
Sugalski
,
M. T.
, and
LaPrade
,
R. F.
,
2006
, “
Anatomy and Biomechanics of the Lateral Side of the Knee
,”
Sports Med. Arthroscopy Rev.
,
14
(
1
), pp.
2
11
.10.1097/00132585-200603000-00002
3.
Meister
,
B. R.
,
Michael
,
S. P.
,
Moyer
,
R. A.
,
Kelly
,
J. D.
, and
Schneck
,
C. D.
,
2000
, “
Anatomy and Kinematics of the Lateral Collateral Ligament of the Knee
,”
Am. J. Sports Med.
,
28
(
6
), pp.
869
878
.
4.
Grood
,
E. S.
,
Noyes
,
F. R.
,
Butler
,
D. L.
, and
Suntay
,
W. J.
,
1981
, “
Ligamentous and Capsular Restraints Preventing Straight Medial and Lateral Laxity in Intact Human Cadaver Knees
,”
J. Bone Jt. Surg. Am.
,
63
(
8
), pp.
1257
1269
.
5.
Gollehon
,
D. L.
,
Torzilli
,
P. A.
, and
Warren
,
R. F.
,
1987
, “
The Role of the Posterolateral and Cruciate Ligaments in the Stability of the Human Knee. A Biomechanical Study
,”
J. Bone Jt. Surg. Am.
,
69
(
2
), pp.
233
242
.
6.
Wymenga
,
A. B.
,
Kats
,
J. J.
,
Kooloos
,
J.
, and
Hillen
,
B.
,
2006
, “
Surgical Anatomy of the Medial Collateral Ligament and the Posteromedial Capsule of the Knee
,”
Knee Surg. Sports Traumatol. Arthroscopy
,
14
(
3
), pp.
229
234
.10.1007/s00167-005-0682-1
7.
Blankevoort
,
L.
,
Huiskes
,
R.
, and
de Lange
,
A.
,
1991
, “
Recruitment of Knee Joint Ligaments
,”
ASME J. Biomech. Eng.
,
113
(
1
), pp.
94
103
.10.1115/1.2894090
8.
Feeley
,
B. T.
,
Muller
,
M. S.
,
Allen
,
A. A.
,
Granchi
,
C. C.
, and
Pearle
,
A. D.
,
2009
, “
Biomechanical Comparison of Medial Collateral Ligament Reconstructions Using Computer-Assisted Navigation
,”
Am. J. Sports Med.
,
37
(
6
), pp.
1123
1130
.10.1177/0363546508331134
9.
Robinson
,
J. R.
,
Bull
,
A. M.
, and
Amis
,
A. A.
,
2005
, “
Structural Properties of the Medial Collateral Ligament Complex of the Human Knee
,”
J. Biomech.
,
38
(
5
), pp.
1067
1074
.10.1016/j.jbiomech.2004.05.034
10.
Pape
,
D.
,
Duchow
,
J.
,
Rupp
,
S.
,
Seil
,
R.
, and
Kohn
,
D.
,
2006
, “
Partial Release of the Superficial Medial Collateral Ligament for Open-Wedge High Tibial Osteotomy. A Human Cadaver Study Evaluating Medial Joint Opening by Stress Radiography
,”
Knee Surg. Sports Traumatol. Arthroscopy
,
14
(
2
), pp.
141
148
.10.1007/s00167-005-0649-2
11.
Lujan
,
T. J.
,
Dalton
,
M. S.
,
Thompson
,
B. M.
,
Ellis
,
B. J.
, and
Weiss
,
J. A.
,
2007
, “
Effect of ACL Deficiency on MCL Strains and Joint Kinematics
,”
ASME J. Biomech. Eng.
,
129
(
3
), pp.
386
392
.10.1115/1.2720915
12.
Bergknut
,
N.
,
Rutges
,
J. P. H. J.
,
Kranenburg
,
H. J. C.
,
Smolders
,
L. A.
,
Hagman
,
R.
,
Smidt
,
H. J.
,
Lagerstedt
,
A. S. E.
,
Penning
,
L. C.
,
Voorhout
,
G.
,
Hazewinkel
,
H. A. W.
,
Grinwis
,
G. C. M.
,
Creemers
,
L. B.
,
Meij
,
B. P.
, and
Dhert
,
W. J. A.
,
2012
, “
The Dog as an Animal Model for Intervertebral Disc Degeneration?
,”
Spine
,
37
(
5
), pp.
351
358
.10.1097/BRS.0b013e31821e5665
13.
Scholten
,
R. J.
,
Opstelten
,
W.
,
van der Plas
,
C. G.
,
Bijl
,
D.
,
Deville
,
W. L.
, and
Bouter
,
L. M.
,
2003
, “
Accuracy of Physical Diagnostic Tests for Assessing Ruptures of the Anterior Cruciate Ligament: A Meta-Analysis
,”
J. Fam. pract.
,
52
(
9
), pp.
689
694
.
14.
Malanga
,
G. A.
,
Andrus
,
S.
,
Nadler
,
S. F.
, and
McLean
,
J.
,
2003
, “
Physical Examination of the Knee: A Review of the Original Test Description and Scientific Validity of Common Orthopedic Tests
,”
Arch. Phys. Med. Rehabil.
,
84
(
4
), pp.
592
603
.10.1053/apmr.2003.50026
15.
Feeley
,
B. T.
,
Muller
,
M. S.
,
Allen
,
A. A.
,
Granchi
,
C. C.
, and
Pearle
,
A. D.
,
2009
, “
Isometry of Medial Collateral Ligament Reconstruction
,”
Knee Surg. Sports Traumatol. Arthroscopy
,
17
(
9
), pp.
1078
1082
.10.1007/s00167-009-0805-1
16.
Jeffcote
,
B.
,
Nicholls
,
R.
,
Schirm
,
A.
, and
Kuster
,
M. S.
,
2007
, “
The Variation in Medial and Lateral Collateral Ligament Strain and Tibiofemoral Forces Following Changes in the Flexion and Extension Gaps in Total Knee Replacement. A Laboratory Experiment Using Cadaver Knees
,”
J. Bone Jt. Surg. Br. Vol.
,
89
(
11
), pp.
1528
1533
.
17.
Ishii
,
Y.
,
Matsuda
,
Y.
,
Noguchi
,
H.
, and
Kiga
,
H.
,
2005
, “
Effect of Soft Tissue Tension on Measurements of Coronal Laxity in Mobile-Bearing Total Knee Arthroplasty
,”
J. Orthop. Sci.
,
10
(
5
), pp.
496
500
.10.1007/s00776-005-0935-3
18.
Matsuda
,
Y.
,
Ishii
,
Y.
,
Noguchi
,
H.
, and
Ishii
,
R.
,
2005
, “
Varus-Valgus Balance and Range of Movement After Total Knee Arthroplasty
,”
J. Bone Jt. Surg. Br. Vol.
,
87
(
6
), pp.
804
808
.
19.
Heesterbeek
,
P. J.
, and
Wymenga
,
A. B.
,
2010
, “
Correction of Axial and Rotational Alignment After Medial and Lateral Releases During Balanced Gap TKA. A Clinical Study of 54 Patients
,”
Acta Orthop.
,
81
(
3
), pp.
347
353
.10.3109/17453674.2010.483992
20.
Bellemans
,
J.
,
D'Hooghe
,
P.
,
Vandenneucker
,
H.
,
Van Damme
,
G.
, and
Victor
,
J.
,
2006
, “
Soft Tissue Balance in Total Knee Arthroplasty: Does Stress Relaxation Occur Perioperatively?
,”
Clin. Orthop. Relat. Res.
,
452
, pp.
49
52
.10.1097/01.blo.0000238790.29102.95
21.
Delport
,
H.
,
Labey
,
L.
,
De Corte
,
R.
,
Innocenti
,
B.
,
Sloten
,
J. V.
, and
Bellemans
,
J.
,
2013
, “
Collateral Ligament Strains During Knee Joint Laxity Evaluation Before and After TKA
,”
Clin. Biomech.
,
28
(
7
), pp.
777
782
.10.1016/j.clinbiomech.2013.06.006
22.
Fitzpatrick
,
C. K.
,
Baldwin
,
M. A.
,
Clary
,
C. W.
,
Maletsky
,
L. P.
, and
Rullkoetter
,
P. J.
,
2012
, “
Evaluating Knee Replacement Mechanics During ADL With PID-Controlled Dynamic Finite Element Analysis
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
4
), pp.
360
369
.
23.
Baldwin
,
M. A.
,
Clary
,
C.
,
Maletsky
,
L. P.
, and
Rullkoetter
,
P. J.
,
2009
, “
Verification of Predicted Specimen-Specific Natural and Implanted Patellofemoral Kinematics During Simulated Deep Knee Bend
,”
J. Biomech.
,
42
(
14
), pp.
2341
2348
.10.1016/j.jbiomech.2009.06.028
24.
Markolf
,
K. L.
,
Park
,
S.
,
Jackson
,
S. R.
, and
McAllister
,
D. R.
,
2008
, “
Simulated Pivot-Shift Testing With Single and Double-Bundle Anterior Cruciate Ligament Reconstructions
,”
J. Bone Jt. Surg. Am.
,
90
(
8
), pp.
1681
1689
.10.2106/JBJS.G.01272
25.
Lopomo
,
N.
,
Zaffagnini
,
S.
,
Bignozzi
,
S.
,
Visani
,
A.
, and
Marcacci
,
M.
,
2010
, “
Pivot-Shift Test: Analysis and Quantification of Knee Laxity Parameters Using a Navigation System
,”
J. Orthop. Res.
,
28
(
2
), pp.
164
169
.
26.
Sernert
,
N.
,
Kartus
,
J.
,
Kohler
,
K.
,
Ejerhed
,
L.
, and
Karlsson
,
J.
,
2001
, “
Evaluation of the Reproducibility of the KT-1000 Arthrometer
,”
Scand. J. Med. Sci. Sports
,
11
(
2
), pp.
120
125
.10.1034/j.1600-0838.2001.011002120.x
27.
Baldwin
,
M. A.
,
Clary
,
C. W.
,
Fitzpatrick
,
C. K.
,
Deacy
,
J. S.
,
Maletsky
,
L. P.
, and
Rullkoetter
,
P. J.
,
2012
, “
Dynamic Finite Element Knee Simulation for Evaluation of Knee Replacement Mechanics
,”
J. Biomech.
,
45
(
3
), pp.
474
483
.10.1016/j.jbiomech.2011.11.052
28.
Fitzpatrick
,
C. K.
,
Clary
,
C. W.
,
Laz
,
P. J.
, and
Rullkoetter
,
P. J.
,
2012
, “
Relative Contributions of Design, Alignment, and Loading Variability in Knee Replacement Mechanics
,”
J. Orthop. Res.
,
30
(
12
), pp.
2015
2024
.10.1002/jor.22169
29.
Belvedere
,
C.
,
Ensini
,
A.
,
Feliciangeli
,
A.
,
Cenni
,
F.
,
D'Angeli
,
V.
,
Giannini
,
S.
, and
Leardini
,
A.
,
2012
, “
Geometrical Changes of Knee Ligaments and Patellar Tendon During Passive Flexion
,”
J. Biomech.
,
45
(
11
), pp.
1886
1892
.10.1016/j.jbiomech.2012.05.029
30.
Robinson
,
J. R.
,
Bull
,
A. M.
,
Thomas
,
R. R.
, and
Amis
,
A. A.
,
2006
, “
The Role of the Medial Collateral Ligament and Posteromedial Capsule in Controlling Knee Laxity
,”
Am. J. Sports Med.
,
34
(
11
), pp.
1815
1823
.10.1177/0363546506289433
31.
Blankevoort
,
L.
, and
Huiskes
,
R.
,
1996
, “
A Mechanism for Rotation Restraints in the Knee Joint
,”
J. Orthop. Res.
,
14
(
4
), pp.
676
679
.10.1002/jor.1100140425
32.
Gardiner
,
J. C.
, and
Weiss
,
J. A.
,
2003
, “
Subject-Specific Finite Element Analysis of the Human Medial Collateral Ligament During Valgus Knee Loading
,”
J. Orthop. Res.
,
21
(
6
), pp.
1098
1106
.10.1016/S0736-0266(03)00113-X
33.
Sakane
,
M.
,
Livesay
,
G. A.
,
Fox
,
R. J.
,
Rudy
,
T. W.
,
Runco
,
T. J.
, and
Woo
,
S. L.
,
1999
, “
Relative Contribution of the ACL, MCL, and Bony Contact to the Anterior Stability of the Knee
,”
Knee Surg. Sports Traumatol. Arthroscopy
,
7
(
2
), pp.
93
97
.10.1007/s001670050128
34.
LaPrade
,
R. F.
,
Tso
,
A.
, and
Wentorf
,
F. A.
,
2004
, “
Force Measurements on the Fibular Collateral Ligament, Popliteofibular Ligament, and Popliteus Tendon to Applied Loads
,”
Am. J. Sports Med.
,
32
(
7
), pp.
1695
1701
.10.1177/0363546503262694
35.
De Carlo
,
M.
, and
Armstrong
,
B.
,
2010
, “
Rehabilitation of the Knee Following Sports Injury
,”
Clin. Sports Med.
,
29
(
1
), pp.
81
106
.10.1016/j.csm.2009.09.004
36.
Soavi
,
R.
,
Girolami
,
M.
,
Loreti
,
I.
,
Bragonzoni
,
L.
,
Monti
,
C.
,
Visani
,
A.
, and
Marcacci
,
M.
,
2000
, “
The Mobility of the Proximal Tibio-Fibular Joint. A Roentgen Stereophotogrammetric Analysis on Six Cadaver Specimens
,”
Foot Ankle Int.
,
21
(
4
), pp.
336
342
.
37.
Ogden
,
J. A.
,
1974
, “
The Anatomy and Function of the Proximal Tibiofibular Joint
,”
Clin. Orthop. Relat. Res.
,
101
, pp.
186
191
. Available at: http://journals.lww.com/corr/Citation/1974/06000/The_Anatomy_and_Function_of_the_Proximal.28.aspx
38.
Liu
,
F.
,
Yue
,
B.
,
Gadikota
,
H. R.
,
Kozanek
,
M.
,
Liu
,
W.
,
Gill
,
T. J.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2010
, “
Morphology of the Medial Collateral Ligament of the Knee
,”
J. Orthop. Surg. Res.
,
5
, p.
69
.10.1186/1749-799X-5-69
39.
Bonifasi-Lista
,
C.
,
Lake
,
S. P.
,
Small
,
M. S.
, and
Weiss
,
J. A.
,
2005
, “
Viscoelastic Properties of the Human Medial Collateral Ligament Under Longitudinal, Transverse and Shear Loading
,”
J. Orthop. Res.
,
23
(
1
), pp.
67
76
.10.1016/j.orthres.2004.06.002
40.
Lynch
,
H. A.
,
Johannessen
,
W.
,
Wu
,
J. P.
,
Jawa
,
A.
, and
Elliott
,
D. M.
,
2003
, “
Effect of Fiber Orientation and Strain Rate on the Nonlinear Uniaxial Tensile Material Properties of Tendon
,”
ASME J. Biomech. Eng.
,
125
(
5
), pp.
726
731
.10.1115/1.1614819
41.
Swedberg
,
A. M.
,
Reese
,
S. P.
,
Maas
,
S. A.
,
Ellis
,
B. J.
, and
Weiss
,
J. A.
,
2014
, “
Continuum Description of the Poisson's Ratio of Ligament and Tendon Under Finite Deformation
,”
J. Biomech.
,
47
(
12
), pp.
3201
3209
.10.1016/j.jbiomech.2014.05.011
42.
Hewitt
,
J.
,
Guilak
,
F.
,
Glisson
,
R.
, and
Vail
,
T. P.
,
2001
, “
Regional Material Properties of the Human Hip Joint Capsule Ligaments
,”
J. Orthop. Res.
,
19
(
3
), pp.
359
364
.10.1016/S0736-0266(00)00035-8
43.
Woo
,
S. L. Y.
, and
Debski
,
R. E.
,
1999
, “
Biomechanics of Knee Ligaments
,”
Am. J. Sports Med.
,
27
(
4
), pp.
533
543
.
44.
Glos
,
D. L.
,
Butler
,
D. L.
,
Grood
,
E. S.
, and
Levy
,
M. S.
,
1993
, “
In Vivo Evaluation of an Implantable Force Transducer (IFT) in a Patellar Tendon Model
,”
ASME J. Biomech. Eng.
,
115
(
4A
), pp.
335
343
.10.1115/1.2895495
45.
Holden
,
J. P.
,
Grood
,
E. S.
,
Korvick
,
D. L.
,
Cummings
,
J. F.
,
Butler
,
D. L.
, and
Bylski-Austrow
,
D. I.
,
1994
, “
In Vivo Forces in the Anterior Cruciate Ligament: Direct Measurements During Walking and Trotting in a Quadruped
,”
J. Biomech.
,
27
(
5
), pp.
517
526
.10.1016/0021-9290(94)90063-9
46.
Fleming
,
B. C.
, and
Beynnon
,
B. D.
,
2004
, “
In Vivo Measurement of Ligament/Tendon Strains and Forces: A Review
,”
Ann. Biomed. Eng.
,
32
(
3
), pp.
318
328
.10.1023/B:ABME.0000017542.75080.86
47.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.10.1115/1.3138397
48.
Cyr
,
A. J.
, and
Maletsky
,
L. P.
,
2014
, “
Technical Note: A Multi-Dimensional Description of Knee Laxity Using Radial Basis Functions
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
15
), pp.
1
6
.
49.
Cyr
,
A. J.
, and
Maletsky
,
L. P.
,
2014
, “
Unified Quantification of Variation in Passive Knee Joint Constraint
,”
Proc. Inst. Mech. Eng. Part H
,
228
(
5
), pp.
494
500
.10.1177/0954411914530274
50.
Chandrashekar
,
N.
,
Mansouri
,
H.
,
Slauterbeck
,
J.
, and
Hashemi
,
J.
,
2006
, “
Sex-Based Differences in the Tensile Properties of the Human Anterior Cruciate Ligament
,”
J. Biomech.
,
39
(
16
), pp.
2943
2950
.10.1016/j.jbiomech.2005.10.031
51.
Taylor
,
K. A.
,
Terry
,
M. E.
,
Utturkar
,
G. M.
,
Spritzer
,
C. E.
,
Queen
,
R. M.
,
Irribarra
,
L. A.
,
Garrett
,
W. E.
, and
DeFrate
,
L. E.
,
2011
, “
Measurement of In Vivo Anterior Cruciate Ligament Strain During Dynamic Jump Landing
,”
J. Biomech.
,
44
(
3
), pp.
365
371
.10.1016/j.jbiomech.2010.10.028
52.
Ahmed
,
A. M.
,
Burke
,
D. L.
,
Duncan
,
N. A.
, and
Chan
,
K. H.
,
1992
, “
Ligament Tension Pattern in the Flexed Knee in Combined Passive Anterior Translation and Axial Rotation
,”
J. Orthop. Res.
,
10
(
6
), pp.
854
867
.10.1002/jor.1100100615
53.
Grood
,
E. S.
,
Stowers
,
S. F.
, and
Noyes
,
F. R.
,
1988
, “
Limits of Movement in the Human Knee. Effect of Sectioning the Posterior Cruciate Ligament and Posterolateral Structures
,”
J. Bone Jt. Surg. Am.
,
70
(
1
), pp.
88
97
.
54.
Dennis
,
D. A.
,
Komistek
,
R. D.
,
Kim
,
R. H.
, and
Sharma
,
A.
,
2010
, “
Gap Balancing Versus Measured Resection Technique for Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
468
(
1
), pp.
102
107
.10.1007/s11999-009-1112-3
You do not currently have access to this content.