While previous studies have investigated the effect of shoe–surface interaction on injury risk, few studies have examined the effect of rotational stiffness of the shoe. The hypothesis of the current study was that ankles externally rotated to failure in shoes with low rotational stiffness would allow more talus eversion than those in shoes with a higher rotational stiffness, resulting in less severe injury. Twelve (six pairs) cadaver lower extremities were externally rotated to gross failure while positioned in 20 deg of pre-eversion and 20 deg of predorsiflexion by fixing the distal end of the foot, axially loading the proximal tibia, and internally rotating the tibia. One ankle in each pair was constrained by an American football shoe with a stiff upper, while the other was constrained by an American football shoe with a flexible upper. Experimental bone motions were input into specimen-specific computational models to examine levels of ligament elongation to help understand mechanisms of ankle joint failure. Ankles in flexible shoes allowed 6.7±2.4 deg of talus eversion during rotation, significantly greater than the 1.7±1.0 deg for ankles in stiff shoes (p = 0.01). The significantly greater eversion in flexible shoes was potentially due to a more natural response of the ankle during rotation, possibly affecting the injuries that were produced. All ankles failed by either medial ankle injury or syndesmotic injury, or a combination of both. Complex (more than one ligament or bone) injuries were noted in 4 of 6 ankles in stiff shoes and 1 of 6 ankles in flexible shoes. Ligament elongations from the computational model validated the experimental injury data. The current study suggested flexibility (or rotational stiffness) of the shoe may play an important role in both the severity of ankle injuries for athletes.

References

References
1.
Waterman
,
B. R.
,
Belmont
,
P. J.
, Jr.
,
Cameron
,
K. L.
,
Svoboda
,
S. J.
,
Alitz
,
C. J.
, and
Owens
,
B. D.
,
2011
, “
Risk Factors for Syndesmotic and Medial Ankle Sprain Role of Sex, Sport, and Level of Competition
,”
Am. J. Sports Med.
,
39
(
5
), pp.
992
998
.10.1177/0363546510391462
2.
Williams
,
G. N.
,
Jones
,
M. H.
, and
Amendola
,
A.
,
2007
, “
Syndesmotic Ankle Sprains in Athletes
,”
Am. J. Sports Med.
,
35
(
7
), pp.
1197
1207
.10.1177/0363546507302545
3.
Haraguchi
,
N.
, and
Armiger
,
R. S.
,
2009
, “
A New Interpretation of the Mechanism of Ankle Fracture
,”
J. Bone Jt. Surg., Am. Vol.
,
91A
(
4
), pp.
821
829
.10.2106/JBJS.G.01288
4.
Laugehansen
,
N.
,
1950
, “
Fractures of the Ankle
,”
Arch. Surg.
,
60
(
5
), pp.
957
985
.10.1001/archsurg.1950.01250010980011
5.
Gerber
,
J. P.
,
Williams
,
G. N.
,
Scoville
,
C. R.
,
Arciero
,
R. A.
, and
Taylor
,
D. C.
,
1998
, “
Persistent Disability Associated With Ankle Sprains: A Prospective Examination of an Athletic Population
,”
Foot Ankle Int.
,
19
(
10
), pp.
653
660
.10.1177/107110079801901002
6.
Fallat
,
L.
,
Grimm
,
D. J.
, and
Saracco
,
J. A.
,
1998
, “
Sprained Ankle Syndrome: Prevalence and Analysis of 639 Acute Injuries
,”
J. Foot Ankle Surg.
,
37
(
4
), pp.
280
285
.10.1016/S1067-2516(98)80063-X
7.
Boytim
,
M. J.
,
Fischer
,
D. A.
, and
Neumann
,
L.
,
1991
, “
Syndesmotic Ankle Sprains
,”
Am. J. Sports Med.
,
19
(
3
), pp.
294
298
.10.1177/036354659101900315
8.
Wolfe
,
M. W.
,
Uhl
,
T. L.
,
Mattacola
,
C. G.
, and
McCluskey
,
L. C.
,
2001
, “
Management of Ankle Sprains
,”
Am. Fam. Physician
,
64
(
3
), pp.
93
104
.
9.
Norkus
,
S. A.
, and
Floyd
,
R. T.
,
2001
, “
The Anatomy and Mechanisms of Syndesmotic Ankle Sprains
,”
J. Athletic Train.
,
36
(
1
), pp.
68
73
.
10.
Wei
,
F.
,
Post
,
J. M.
,
Braman
,
J. E.
,
Meyer
,
E. G.
,
Powell
,
J. W.
, and
Haut
,
R. C.
,
2012
, “
Eversion During External Rotation of the Human Cadaver Foot Produces High Ankle Sprains
,”
J. Orthop. Res.
,
30
(
9
), pp.
1423
1429
.10.1002/jor.22085
11.
Dattani
,
R.
,
Patnaik
,
S.
,
Kantak
,
A.
,
Srikanth
,
B.
, and
Selvan
,
T. P.
,
2008
, “
Injuries to the Tibiofibular Syndesmosis
,”
J. Bone Jt. Surg.
, Br. Vol.,
90B
(
4
), pp.
405
410
.10.1302/0301-620X.90B4.19750
12.
Peltz
,
C. D.
,
Haladik
,
J. A.
,
Hoffman
,
S. E.
,
McDonald
,
M.
,
Ramo
,
N. L.
,
Divine
,
G.
,
Nurse
,
M.
, and
Bey
,
M. J.
,
2014
, “
Effects of Footwear on Three-Dimensional Tibiotalar and Subtalar Joint Motion During Running
,”
J. Biomech.
,
47
(
11
), pp.
2647
2653
.10.1016/j.jbiomech.2014.05.016
13.
Bonacci
,
J.
,
Saunders
,
P. U.
,
Hicks
,
A.
,
Rantalainen
,
T.
,
Vicenzino
,
B. T.
, and
Spratford
,
W.
,
2013
, “
Running in a Minimalist and Lightweight Shoe is Not the Same as Running Barefoot: A Biomechanical Study
,”
Br. J. Sports Med.
,
47
(
6
), pp.
387
392
.10.1136/bjsports-2012-091837
14.
Williams
,
D. S. B.
, III
,
Green
,
D. H.
, and
Wurzinger
,
B.
,
2012
, “
Changes in Lower Extremity Movement and Power Absorption During Forefoot Striking and Barefoot Running
,”
Int. J. Sports Phys. Ther.
,
7
(
5
), pp.
525
532
.
15.
Meyers
,
M. C.
,
2010
, “
Incidence, Mechanisms, and Severity of Game-Related College Football Injuries on FieldTurf Versus Natural Grass: A 3-Year Prospective Study
,”
Am. J. Sports Med.
,
38
(
4
), pp.
687
697
.10.1177/0363546509352464
16.
Villwock
,
M. R.
,
Meyer
,
E. G.
,
Powell
,
J. W.
,
Fouty
,
A. J.
, and
Haut
,
R. C.
,
2009
, “
Football Playing Surface and Shoe Design Affect Rotational Traction
,”
Am. J. Sports Med.
,
37
(
3
), pp.
518
525
.10.1177/0363546508328108
17.
Kuhlman
,
S.
,
Sabick
,
M.
,
Pfeiffer
,
R.
,
Cooper
,
B.
, and
Forhan
,
J.
,
2010
, “
Effect of Loading Condition on the Traction Coefficient Between Shoes and Artificial Turf Surfaces
,”
Proc. Inst. Mech. Eng., Part P
,
224
(P
2
), pp.
155
165
.10.1243/17543371JSET56
18.
Wei
,
F.
,
Meyer
,
E. G.
,
Braman
,
J. E.
,
Powell
,
J. W.
, and
Haut
,
R. C.
,
2012
, “
Rotational Stiffness of Football Shoes Influences Talus Motion During External Rotation of the Foot
,”
ASME J. Biomech. Eng.
,
134
(
4
), p.
041002
.10.1115/1.4005695
19.
Wei
,
F.
,
Hunley
,
S. C.
,
Powell
,
J. W.
, and
Haut
,
R. C.
,
2011
, “
Development and Validation of a Computational Model to Study the Effect of Foot Constraint on Ankle Injury Due to External Rotation
,”
Ann. Biomed. Eng.
,
39
(
2
), pp.
756
765
.10.1007/s10439-010-0234-9
20.
Lundberg
,
A.
,
Svensson
,
O. K.
,
Bylund
,
C.
,
Goldie
,
I.
, and
Selvik
,
G.
,
1989
, “
Kinematics of the Ankle/Foot Complex—Part 2: Pronation and Supination
,”
Foot Ankle
,
9
(
5
), pp.
248
253
.10.1177/107110078900900508
21.
Button
,
K. D.
,
Wei
,
F.
,
Meyer
,
E. G.
, and
Haut
,
R. C.
,
2013
, “
Specimen-Specific Computational Models of Ankle Sprains Produced in a Laboratory Setting
,”
ASME J. Biomech. Eng.
,
135
(
4
), p.
041001
.10.1115/1.4023521
22.
Lin
,
C. F.
,
Gross
,
M. T.
, and
Weinhold
,
P.
,
2006
, “
Ankle Syndesmosis Injuries: Anatomy, Biomechanics, Mechanism of Injury, and Clinical Guidelines for Diagnosis and Intervention
,”
J. Orthop. Sports Phys. Ther.
,
36
(
6
), pp.
372
384
.10.2519/jospt.2006.2195
23.
Wu
,
G.
,
Siegler
,
S.
,
Allard
,
P.
,
Kirtley
,
C.
,
Leardini
,
A.
,
Rosenbaum
,
D.
,
Whittle
,
M.
,
D’Lima
,
D. D.
,
Cristofolini
,
L.
,
Witte
,
H.
,
Schmid
,
O.
, and
Stokes
,
H.
,
2002
, “
ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion—Part 1: Ankle, Hip, and Spine
,”
J. Biomech.
,
35
(
4
), pp.
543
548
.10.1016/S0021-9290(01)00222-6
24.
Liacouras
,
P. C.
, and
Waynel
,
J. S.
,
2007
, “
Computational Modeling to Predict Mechanical Function of Joints: Application to the Lower Leg With Simulation of Two Cadaver Studies
,”
ASME J. Biomech. Eng.
,
129
(
6
), pp.
811
817
.10.1115/1.2800763
25.
Lundberg
,
A.
,
Svensson
,
O. K.
,
Bylund
,
C.
, and
Selvik
,
G.
,
1989
, “
Kinematics of the Foot/Ankle Complex—Part 3: Influence of Leg Rotation
,”
Foot Ankle
,
9
(
6
), pp.
304
309
.10.1177/107110078900900609
26.
Vanlangelaan
,
E. J.
,
1983
, “
A Kinematical Analysis of the Tarsal Joints
,”
Acta Orthop. Scand.
,
54
(
s204
), pp.
135
222
.10.1080/15438627.2011.582823
27.
Harper
,
M. C.
,
1992
, “
Ankle Fracture Classification Systems: A Case for Integration of the Lauge-Hansen and AO-Danis-Weber Schemes
,”
Foot Ankle
,
13
(
7
), pp.
404
407
.10.1177/107110079201300708
28.
Kwon
,
J. Y.
,
Chacko
,
A. T.
,
Kadzielski
,
J. J.
,
Appleton
,
P. T.
, and
Rodriguez
,
E. K.
,
2010
, “
A Novel Methodology for the Study of Injury Mechanism: Ankle Fracture Analysis Using Injury Videos Posted on YouTube.com
,”
J. Orthop. Trauma
,
24
(
8
), pp.
477
482
.10.1097/BOT.0b013e3181c99264
29.
Wei
,
F.
,
Braman
,
J. E.
,
Weaver
,
B. T.
, and
Haut
,
R. C.
,
2011
, “
Determination of Dynamic Ankle Ligament Strains From a Computational Model Driven by Motion Analysis Based Kinematic Data
,”
J. Biomech.
,
44
(
15
), pp.
2636
2641
.10.1016/j.jbiomech.2011.08.010
30.
Dubin
,
J. C.
,
Comeau
,
D.
,
McClelland
,
R. I.
,
Dubin
,
R. A.
, and
Ferrel
,
E.
,
2011
, “
Lateral and Syndesmotic Ankle Sprain Injuries: A Narrative Literature Review
,”
J. Chiropractic Med.
,
10
(
3
), pp.
204
219
.10.1016/j.jcm.2011.02.001
31.
Delahunt
,
E.
,
Monaghan
,
K.
, and
Caulfield
,
B.
,
2006
, “
Altered Neuromuscular Control and Ankle Joint Kinematics During Walking in Subjects With Functional Instability of the Ankle Joint
,”
Am. J. Sports Med.
,
34
(
12
), pp.
1970
1976
.10.1177/0363546506290989
32.
Hennig
,
E. M.
,
2011
, “
The Influence of Soccer Shoe Design on Player Performance and Injuries
,”
Res. Sports Med.
,
19
(
3
), pp.
186
201
.
You do not currently have access to this content.