Cryopreservation of articular cartilage is often used in storage of experimental samples and osteochondral grafts, but the depth-dependence and concentration of glycosaminoglycan (GAG) are significantly altered when cryogenically stored without a cryoprotectant, which will reduce cartilage stiffness and affect osteochondral graft function and long-term viability. This study investigates our ability to detect changes due to cryopreservation in the depth-dependent elastic modulus of osteochondral samples. Using a direct-visualization method requiring minimal histological alterations, unconfined stepwise stress relaxation tests were performed on four fresh (never frozen) and three cryopreserved (−20 °C) canine humeral head osteochondral slices 125 ± 5 μm thick. Applied force was measured and tissue images were taken at the end of each relaxation phase using a 4× objective. Intratissue displacements were calculated by tracking chondrocytes through consecutive images for various intratissue depths. The depth-dependent elastic modulus was compared between fresh and cryopreserved tissue for same-depth ranges using analysis of variance (ANOVA) with Tukey post-test with a 95% confidence interval. Cryopreservation was found to significantly alter the force–displacement profile and reduce the depth-dependent modulus of articular cartilage. Excessive collagen fiber folding occurred at 40–60% relative depth, producing a “black line” in cryopreserved tissue. Force–displacement curves exhibited elongated toe-region in cryopreserved tissue while fresh tissue had nonmeasurable toe-region. Statistical analysis showed significant reduction in the elastic modulus and GAG concentration throughout the tissue between same-depth ranges. This method of cryopreservation significantly reduces the depth-dependent modulus of canine humeral osteochondral samples.

References

References
1.
Maroudas
,
A.
,
1975
, “
Biophysical Chemistry of Cartilaginous Tissues With Special Reference to Solute and Fluid Transport
,”
Biorheology
,
12
(
3–4
), pp.
233
248
.
2.
Venn
,
M.
, and
Maroudas
,
A.
,
1977
, “
Chemical Composition and Swelling of Normal and Osteoarthrotic Femoral Head Cartilage. I. Chemical Composition
,”
Ann. Rheum. Dis.
,
36
(
2
), pp.
121
129
.10.1136/ard.36.2.121
3.
Xia
,
Y.
,
Zheng
,
S.
, and
Bidthanapally
,
A.
,
2008
, “
Depth-Dependent Profiles of Glycosaminoglycans in Articular Cartilage by MicroMRI and Histochemistry
,”
J. Magn. Reson. Imaging
,
28
(
1
), pp.
151
157
.10.1002/jmri.21392
4.
Zheng
,
S.
,
Xia
,
Y.
,
Bidthanapally
,
A.
,
Badar
,
F.
,
Ilsar
,
I.
, and
Duvoisin
,
N.
,
2009
, “
Damages to the Extracellular Matrix in Articular Cartilage due to Cryopreservation by Microscopic Magnetic Resonance Imaging and Biochemistry
,”
Magn. Reson. Imaging
,
27
(
5
), pp.
648
655
.10.1016/j.mri.2008.10.003
5.
Chen
,
S. S.
,
Falcovitz
,
Y. H.
,
Schneiderman
,
R.
,
Maroudas
,
A.
, and
Sah
,
R. L.
,
2001
, “
Depth-Dependent Compressive Properties of Normal Aged Human Femoral Head Articular Cartilage: Relationship to Fixed Charge Density
,”
Osteoarthritis Cartilage
,
9
(
6
), pp.
561
569
.10.1053/joca.2001.0424
6.
Klein
,
T. J.
,
Chaudhry
,
M.
,
Bae
,
W. C.
, and
Sah
,
R. L.
,
2007
, “
Depth-Dependent Biomechanical and Biochemical Properties of Fetal, Newborn, and Tissue-Engineered Articular Cartilage
,”
J. Biomech.
,
40
(
1
), pp.
182
190
.10.1016/j.jbiomech.2005.11.002
7.
Laasanen
,
M. S.
,
Toyras
,
J.
,
Korhonen
,
R. K.
,
Rieppo
,
J.
,
Saarakkala
,
S.
,
Nieminen
,
M. T.
,
Hirvonen
,
J.
, and
Jurvelin
,
J. S.
,
2003
, “
Biomechanical Properties of Knee Articular Cartilage
,”
Biorheology
,
40
(
1–3
), pp.
133
140
.
8.
Szarko
,
M.
, and
Xia
,
Y.
,
2012
, “
Direct Visualisation of the Depth-Dependent Mechanical Properties of Full-Thickness Articular Cartilage
,”
Open J. Orthop.
,
2
, pp.
34
39
.10.4236/ojo.2012.22007
9.
Donnan
,
F.
,
1924
, “
The Theory of Membrane Equilibria
,”
Chem. Rev.
,
1
(
1
), pp.
72
90
.10.1021/cr60001a003
10.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
, V
. C.
,
1991
, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
113
(
3
), pp.
245
258
.10.1115/1.2894880
11.
Maroudas
,
A.
,
1968
, “
Physicochemical Properties of Cartilage in the Light of Ion Exchange Theory
,”
Biophys. J.
,
8
(
5
), pp.
575
595
.10.1016/S0006-3495(68)86509-9
12.
Jomha
,
N. M.
,
Lavoie
,
G.
,
Muldrew
,
K.
,
Schachar
,
N. S.
, and
McGann
,
L. E.
,
2002
, “
Cryopreservation of Intact Human Articular Cartilage
,”
J. Orthop. Res.
,
20
(
6
), pp.
1253
1255
.10.1016/S0736-0266(02)00061-X
13.
Laouar
,
L.
,
Fishbein
,
K.
,
McGann
,
L. E.
,
Horton
,
W. E.
,
Spencer
,
R. G.
, and
Jomha
,
N. M.
,
2007
, “
Cryopreservation of Porcine Articular Cartilage: MRI and Biochemical Results After Different Freezing Protocols
,”
Cryobiology
,
54
(
1
), pp.
36
43
.10.1016/j.cryobiol.2006.10.193
14.
Muldrew
,
K.
,
Novak
,
K.
,
Hurtig
,
M.
,
Schachar
,
N.
, and
McGann
,
L.
,
1993
, “
Cryopreservation of Articular Cartilage Using In Vitro and In Vivo Assays
,”
Trans. Orthop. Res. Soc.
,
18
, p.
275
.
15.
Muldrew
,
K.
,
Novak
,
K.
,
Yang
,
H.
,
Zernicke
,
R.
,
Schachar
,
N. S.
, and
McGann
,
L. E.
,
2000
, “
Cryobiology of Articular Cartilage: Ice Morphology and Recovery of Chondrocytes
,”
Cryobiology
,
40
(
2
), pp.
102
109
.10.1006/cryo.2000.2236
16.
Guilak
,
F.
,
Sah
,
R.
, and
Setton
,
L.
,
1997
, “
Physical Regulation of Cartilage Metabolism
,”
Basic Orthopaedic Biomechanics
,
V.
Mow
, and
W.
Hayes
, eds.,
Lippincott-Raven
,
Philadelphia
, pp.
179
207
.
17.
Wang
,
N.
,
Kahn
,
D.
,
Badar
,
F.
, and
Xia
,
Y.
,
2014
, “
Molecular Origin of a Loading-Induced Black Layer in the Deep Region of Articular Cartilage at the Magic Angle
,”
J. Magn. Reson. Imaging
(in press).10.1002/jmri.24658/abstract
18.
Alhadlaq
,
H. A.
, and
Xia
,
Y.
,
2004
, “
The Structural Adaptations in Compressed Articular Cartilage by Microscopic MRI (microMRI) T(2) Anisotropy
,”
Osteoarthritis Cartilage
,
12
(
11
), pp.
887
894
.10.1016/j.joca.2004.07.006
19.
Alhadlaq
,
H. A.
, and
Xia
,
Y.
,
2005
, “
Modifications of Orientational Dependence of Microscopic Magnetic Resonance Imaging T2 Anisotropy in Compressed Articular Cartilage
,”
J. Magn. Reson. Imaging
,
22
(
5
), pp.
665
673
.10.1002/jmri.20418
20.
Guilak
,
F.
,
Jones
,
W. R.
,
Ting-Beall
,
H. P.
, and
Lee
,
G. M.
,
1999
, “
The Deformation Behavior and Mechanical Properties of Chondrocytes in Articular Cartilage
,”
Osteoarthritis Cartilage
,
7
(
1
), pp.
59
70
.10.1053/joca.1998.0162
21.
Frenkel
,
S. R.
,
Kubiak
,
E. N.
, and
Truncale
,
K. G.
,
2006
, “
The Repair Response to Osteochondral Implant Types in a Rabbit Model
,”
Cell Tissue Banking
,
7
(
1
), pp.
29
37
.10.1007/s10561-005-0068-0
22.
Brittberg
,
M.
,
Lindahl
,
A.
,
Nilsson
,
A.
,
Ohlsson
,
C.
,
Isaksson
,
O.
, and
Peterson
,
L.
,
1994
, “
Treatment of Deep Cartilage Defects in the Knee With Autologous Chondrocyte Transplantation
,”
N. Engl. J. Med.
,
331
(
14
), pp.
889
895
.10.1056/NEJM199410063311401
23.
Gole
,
M. D.
,
Poulsen
,
D.
,
Marzo
,
J. M.
,
Ko
,
S. H.
, and
Ziv
,
I.
,
2004
, “
Chondrocyte Viability in Press-Fit Cryopreserved Osteochondral Allografts
,”
J. Orthop. Res.
,
22
(
4
), pp.
781
787
.10.1016/j.orthres.2003.11.006
24.
Shieh
,
A. C.
, and
Athanasiou
,
K. A.
,
2003
, “
Principles of Cell Mechanics for Cartilage Tissue Engineering
,”
Ann. Biomed. Eng.
,
31
(
1
), pp.
1
11
.10.1114/1.1535415
You do not currently have access to this content.