Polymethyl methacrylate (PMMA) and Wood's Metal are fixation media for biomechanical testing; however, the effect of each potting medium on the measured six degree-of-freedom (DOF) mechanical properties of human lumbar intervertebral discs is unknown. The first aim of this study was to compare the measured 6DOF elastic and viscoelastic properties of the disc when embedded in PMMA compared to repotting in Wood's Metal. The second aim was to compare the surface temperature of the disc when potted with PMMA and Wood's Metal. Six human lumbar functional spinal units (FSUs) were first potted in PMMA, and subjected to overnight preload in a saline bath at 37 °C followed by five haversine loading cycles at 0.1 Hz in each of 6DOF loading directions (compression, left/right lateral bending, flexion, extension, left/right axial rotation, anterior/posterior, and lateral shear). Each specimen was then repotted in Wood's Metal and subjected to a 2-h re-equilibrating preload followed by repeating the same 6DOF tests. Outcome measures of stiffness and phase angle were calculated from the final loading cycle in each DOF and were expressed as normalized percentages relative to PMMA (100%). Disc surface temperatures (anterior, left/right lateral) were measured during potting. Paired t-tests (with alpha adjusted for multiple DOF) were conducted to compare the differences in each outcome parameter between PMMA and Wood's Metal. No significant differences in stiffness or phase angle were found between PMMA and Wood's Metal. On average, the largest trending differences were found in the shear DOFs for both stiffness (approximately 35% greater for Wood's Metal compared to PMMA) and phase angle (approximately 15% greater for Wood's Metal). A significant difference in disc temperature was found at the anterior surface after potting with Wood's Metal compared to PMMA, which did not exceed 26 °C. Wood's Metal is linear elastic, stiffer than PMMA and may reduce measurement artifact of potting medium, particularly in the shear directions. Furthermore, it is easier to remove than PMMA, reuseable, and cost effective.

References

References
1.
An
,
Y. H.
, and
Draughn
,
R. A.
,
1999
,
Mechanical Testing of Bone and the Bone–Implant Interface
,
CRC Press
, London, UK.
2.
Belkoff
,
S. M.
, and
Molloy
,
S.
,
2003
, “
Temperature Measurement During Polymerization of Polymethylmethacrylate Cement Used for Vertebroplasty
,”
Spine (Phila Pa 1976)
,
28
(
14
), pp.
1555
1559
.10.1097/01.BRS.0000076829.54235.9F
3.
Zhao
,
H.
,
Ni
,
C. F.
,
Huang
,
J.
,
Zhao
,
S. M.
,
Gu
,
W. W.
,
Jiang
,
H.
,
Chen
,
L.
, and
Tan
,
T. S.
,
2014
, “
Effects of Bone Cement on Intervertebral Disc Degeneration
,”
Exp. Ther. Med.
,
7
(
4
), pp.
963
969
.10.3892/etm.2014.1531
4.
Wang
,
J. C.
,
Kabo
,
J. M.
,
Tsou
,
P. M.
,
Halevi
,
L.
, and
Shamie
,
A. N.
,
2005
, “
The Effect of Uniform Heating on the Biomechanical Properties of the Intervertebral Disc in a Porcine Model
,”
Spine J.
,
5
(
1
), pp.
64
70
.10.1016/j.spinee.2004.10.047
5.
Bennett
,
C. R.
, and
Kelly
,
B. P.
,
2013
, “
Robotic Application of a Dynamic Resultant Force Vector Using Real-Time Load-Control: Simulation of an Ideal Follower Load on Cadaveric L4-L5 Segments
,”
J. Biomech.
,
46
(
12
), pp.
2087
2092
.10.1016/j.jbiomech.2013.05.031
6.
Yeni
,
Y. N.
,
Kim
,
D. G.
,
Dong
,
X. N.
,
Cao
,
T.
,
Baker
,
K. C.
,
Shaffer
,
R. R.
, and
Fyhrie
,
D. P.
,
2006
, “
Evaluation of Filler Materials Used for Uniform Load Distribution at Boundaries During Structural Biomechanical Testing of Whole Vertebrae
,”
ASME J. Biomech. Eng.
,
128
(
1
), pp.
161
165
.10.1115/1.2133770
7.
Pearcy
,
M.
,
Portek
,
I.
, and
Shepherd
,
J.
,
1984
, “
Three-Dimensional X-Ray Analysis of Normal Movement in the Lumbar Spine
,”
Spine
,
9
(
3
), pp.
294
297
.10.1097/00007632-198404000-00013
8.
Ding
,
B.
,
Cazzolato
,
B. S.
,
Stanley
,
R. M.
,
Grainger
,
S.
, and
Costi
,
J. J.
,
2014
, “
Stiffness Analysis and Control of a Stewart Platform-Based Manipulator With Decoupled Sensor-Actuator Locations for Ultra-High Accuracy Positioning Under Large External Loads
,”
ASME J. Dyn. Syst., Meas. Control
,
136
(
6
), p.
061008
.10.1115/1.4027945
9.
ISO
,
2009
,
Geometrical Product Specifications (GPS)—Acceptance and Reverification Tests for Coordinate Measuring Machines (CMM)—Part 2: CMMs Used for Measuring Linear Dimensions
, Geneva, Switzerland.
10.
Pflaster
,
D. S.
,
Krag
,
M. H.
,
Johnson
,
C. C.
,
Haugh
,
L. D.
, and
Pope
,
M. H.
,
1997
, “
Effect of Test Environment on Intervertebral Disc Hydration
,”
Spine
,
22
(
2
), pp.
133
139
.10.1097/00007632-199701150-00003
11.
Race
,
A.
,
Broom
,
N. D.
, and
Robertson
,
P.
,
2000
, “
Effect of Loading Rate and Hydration on the Mechanical Properties of the Disc
,”
Spine
,
25
(
6
), pp.
662
669
.10.1097/00007632-200003150-00003
12.
Costi
,
J. J.
,
Hearn
,
T. C.
, and
Fazzalari
,
N. L.
,
2002
, “
The Effect of Hydration on the Stiffness of Intervertebral Discs in an Ovine Model
,”
Clin. Biomech. (Bristol, Avon)
,
17
(
6
), pp.
446
455
.10.1016/S0268-0033(02)00035-9
13.
Costi
,
J. J.
,
Stokes
,
I. A.
,
Gardner-Morse
,
M. G.
, and
Iatridis
,
J. C.
,
2008
, “
Frequency-Dependent Behavior of the Intervertebral Disc in Response to Each of Six Degree of Freedom Dynamic Loading: Solid Phase and Fluid Phase Contributions
,”
Spine
,
33
(
16
), pp.
1731
1738
.10.1097/BRS.0b013e31817bb116
14.
Wilke
,
H. J.
,
Neef
,
P.
,
Caimi
,
M.
,
Hoogland
,
T.
, and
Claes
,
L. E.
,
1999
, “
New In Vivo Measurements of Pressures in the Intervertebral Disc in Daily Life
,”
Spine
,
24
(
8
), pp.
755
762
.10.1097/00007632-199904150-00005
15.
Edwards
,
W. T.
,
Ordway
,
N. R.
,
Zheng
,
Y.
,
McCullen
,
G.
,
Han
,
Z.
, and
Yuan
,
H. A.
,
2001
, “
Peak Stresses Observed in the Posterior Lateral Anulus
,”
Spine
,
26
(
16
), pp.
1753
1759
.
16.
Lawless
,
I. M.
,
Ding
,
B.
,
Cazzolato
,
B. S.
, and
Costi
,
J. J.
,
2014
, “
Adaptive Velocity-Based Six Degree of Freedom Load Control for Real-Time Unconstrained Biomechanical Testing
,”
J. Biomech.
,
47
(
12
), pp.
3241
3247
.10.1016/j.jbiomech.2014.06.023
17.
Lu
,
W. W.
,
Luk
,
K. D.
,
Holmes
,
A. D.
,
Cheung
,
K. M.
, and
Leong
,
J. C.
,
2005
, “
Pure Shear Properties of Lumbar Spinal Joints and the Effect of Tissue Sectioning on Load Sharing
,”
Spine
,
30
(
8
), pp.
E204
209
.10.1097/01.brs.0000158871.14960.30
18.
Pearcy
,
M. J.
, and
Tibrewal
,
S. B.
,
1984
, “
Axial Rotation and Lateral Bending in the Normal Lumbar Spine Measured by Three-Dimensional Radiography
,”
Spine
,
9
(
6
), pp.
582
587
.10.1097/00007632-198409000-00008
19.
Stokes
,
I. A.
, and
Frymoyer
,
J. W.
,
1987
, “
Segmental Motion and Instability
,”
Spine
,
12
(
7
), pp.
688
691
.10.1097/00007632-198709000-00009
20.
White
,
A. A.
, and
Panjabi
,
M.
,
1990
,
Clinical Biomechanics of the Spine
,
J. B. Lippincott Co.
,
Philadelphia, PA
.
21.
Larsen
,
R. J.
, and
Marx
,
M. L.
,
1986
,
An Introduction to Mathematical Statistics and Its Applications
,
Prentice-Hall
,
New Jersey
.
22.
Faul
,
F.
,
Erdfelder
,
E.
,
Lang
,
A.-G.
, and
Buchner
,
A.
,
2007
, “
G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences
,”
Behav. Res. Methods, Instrum. Comput.
,
39
(
2
), pp.
175
191
.10.3758/BF03193146
23.
Zirbel
,
S. A.
,
Stolworthy
,
D. K.
,
Howell
,
L. L.
, and
Bowden
,
A. E.
,
2013
, “
Intervertebral Disc Degeneration Alters Lumbar Spine Segmental Stiffness in all Modes of Loading Under a Compressive Follower Load
,”
Spine J.
,
13
(
9
), pp.
1134
1147
.10.1016/j.spinee.2013.02.010
24.
Mimura
,
M.
,
Panjabi
,
M. M.
,
Oxland
,
T. R.
,
Crisco
,
J. J.
,
Yamamoto
,
I.
, and
Vasavada
,
A.
,
1994
, “
Disc Degeneration Affects the Multidirectional Flexibility of the Lumbar Spine
,”
Spine
,
19
(
12
), pp.
1371
1380
.10.1097/00007632-199406000-00011
25.
Fujiwara
,
A.
,
Lim
,
T. H.
,
An
,
H. S.
,
Tanaka
,
N.
,
Jeon
,
C. H.
,
Andersson
,
G. B.
, and
Haughton
,
V. M.
,
2000
, “
The Effect of Disc Degeneration and Facet Joint Osteoarthritis on the Segmental Flexibility of the Lumbar Spine
,”
Spine
,
25
(
23
), pp.
3036
3044
.10.1097/00007632-200012010-00011
26.
Thompson
,
R. E.
,
Pearcy
,
M. J.
,
Downing
,
K. J.
,
Manthey
,
B. A.
,
Parkinson
,
I. H.
, and
Fazzalari
,
N. L.
,
2000
, “
Disc Lesions and the Mechanics of the Intervertebral Joint Complex
,”
Spine
,
25
(
23
), pp.
3026
3035
.10.1097/00007632-200012010-00010
27.
Fazzalari
,
N. L.
,
Costi
,
J. J.
,
Hearn
,
T. C.
,
Fraser
,
R. D.
,
Vernon-Roberts
,
B.
,
Hutchinson
,
J.
,
Manthey
,
B. A.
,
Parkinson
,
I. H.
, and
Sinclair
,
C.
,
2001
, “
Mechanical and Pathologic Consequences of Induced Concentric Anular Tears in an Ovine Model
,”
Spine
,
26
(
23
), pp.
2575
2581
.10.1097/00007632-200112010-00010
28.
Korecki
,
C. L.
,
Costi
,
J. J.
, and
Iatridis
,
J. C.
,
2008
, “
Needle Puncture Injury Affects Intervertebral Disc Mechanics and Biology in an Organ Culture Model
,”
Spine
,
33
(
3
), pp.
235
241
.10.1097/BRS.0b013e3181624504
You do not currently have access to this content.