Previous studies of the ex vivo lung have suggested significant intersubject variability in lung lobe geometry. A quantitative description of normal lung lobe shape would therefore have value in improving the discrimination between normal population variability in shape and pathology. To quantify normal human lobe shape variability, a principal component analysis (PCA) was performed on high resolution computed tomography (HRCT) imaging of the lung at full inspiration. Volumetric imaging from 22 never-smoking subjects (10 female and 12 male) with normal lung function was included in the analysis. For each subject, an initial finite element mesh geometry was generated from a group of manually selected nodes that were placed at distinct anatomical locations on the lung surface. Each mesh used cubic shape functions to describe the surface curvilinearity, and the mesh was fitted to surface data for each lobe. A PCA was performed on the surface meshes for each lobe. Nine principal components (PCs) were sufficient to capture >90% of the normal variation in each of the five lobes. The analysis shows that lobe size can explain between 20% and 50% of intersubject variability, depending on the lobe considered. Diaphragm shape was the next most significant intersubject difference. When the influence of lung size difference is removed, the angle of the fissures becomes the most significant shape difference, and the variability in relative lobe size becomes important. We also show how a lobe from an independent subject can be projected onto the study population’s PCs, demonstrating potential for abnormalities in lobar geometry to be defined in a quantitative manner.

References

References
1.
Zhang
,
L.
,
Hoffman
,
E. A.
, and
Reinhardt
,
J. M.
,
2006
, “
Atlas-Driven Lung Lobe Segmentation in Volumetric X-Ray CT Images
,”
IEEE Trans. Med. Imaging
,
25
(
1
), pp.
1
16
.
2.
Aziz
,
A.
,
Ashizawa
,
K.
,
Nagaoki
,
K.
, and
Hayashi
,
K.
,
2004
, “
High Resolution CT Anatomy of the Pulmonary Fissures
,”
J. Thorac. Imaging
,
19
(
3
), pp.
186
191
.
3.
Prakash
,
Bhardwaj
,
A. K.
,
Shashirekha
,
M.
,
Suma
,
H. Y.
,
Krishna
,
G. G.
, and
Singh
,
G.
,
2010
, “
Lung Morphology: A Cadaver Study in Indian Population
,”
Ital. J. Anat. Embryol.
,
115
(
3
), pp.
235
240
.
4.
Bhimai
,
D. N.
,
Narasinga
,
R. B.
, and
Sunitha
,
V.
,
2011
, “
Morphological Variations of Lung—A Cadaveric Study in North Coastal Andhra Pradesh
,”
Int. J. Biol. Med. Res.
,
2
(
4
), pp.
1149
1152
.
5.
Hayashi
,
K.
,
Aziz
,
A.
,
Ashizawa
,
K.
,
Hayashi
,
H.
,
Nagaoki
,
K.
, and
Otsuji
,
H.
,
2001
, “
Radiographic Appearances of the Major Fissures
,”
Radiographics
,
21
(
4
), pp.
861
874
.
6.
Hoffman
,
E. A.
,
Clough
,
A. V.
,
Christensen
,
G. E.
,
Lin
,
C. L.
,
Mclennan
,
G.
,
Reinhardt
,
J. M.
,
Simon
,
B. A.
,
Sonka
,
M.
,
Tawhai
,
M. H.
,
Van Beek
,
E. J.
, and
Wang
,
G.
,
2004
, “
The Comprehensive Imaging-Based Analysis of the Lung: A Forum for Team Science
,”
Acad. Radiol.
,
11
(
12
), pp.
1370
1380
.
7.
Li
,
B.
,
Christensen
,
G. E.
,
Hoffman
,
E. A.
,
Mclennan
,
G.
, and
Reinhardt
,
J. M.
,
2012
, “
Establishing a Normative Atlas of the Human Lung: Computing the Average Transformation and Atlas Construction
,”
Acad. Radiol.
,
19
(
11
), pp.
1368
1381
.
8.
Cootes
,
T. F.
,
Taylor
,
C. J.
,
Cooper
,
C. H.
, and
Graham
,
J.
,
1995
, “
Active Shape Models—Their Training and Application
,”
Comput. Vision Image Understanding
,
61
(
1
), pp.
38
59
.
9.
Rajagopal
,
V.
,
Boyes
,
R.
,
Azhar
,
M.
,
Gamage
,
T. P. B.
,
Nielsen
,
P. M. F.
, and
Nash
,
M. P.
,
2011
, “
Towards a Completely Automated Clinical Workflow for Breast Image Analysis Using Patient-Specific Biomechanical Models
,”
Proceedings of MICCAI2011 Workshop on Breast Image Analysis
, pp.
121
128
.
10.
Jolliffe
,
I. T.
,
2002
,
Principal Component Analysis
,
Springer-Verlag
,
New York
.
11.
Saita
,
S.
,
Kubo
,
M.
,
Kawata
,
Y.
,
Niki
,
N.
,
Ohmatsu
,
H.
, and
Moriyama
,
N.
,
2006
, “
An Algorithm for the Extraction of Pulmonary Fissures From Low-Dose Multislice CT Image
,”
Syst. Comput. Jpn.
,
37
(
9
), pp.
63
76
.
12.
Zhou
,
X.
,
Hayashi
,
T.
,
Hara
,
T.
,
Fujita
,
H.
,
Yokoyama
,
R.
,
Kiryu
,
T.
, and
Hoshi
,
H.
,
2004
, “
Automatic Recognition of Lung Lobes and Fissures From Multislice CT Images
,”
Proc. SPIE
,
5370
, pp.
1629
1633
.
13.
Wei
,
Q.
, and
Hu
,
Y.
,
2014
, “
A Hybrid Approach to Segmentation of Diseased Lung Lobes
,”
IEEE J. Biomed. Health Inf.
,
18
(
5
), pp.
1696
1706
.
14.
Shi
,
Y.
,
Qi
,
F.
,
Xue
,
Z.
,
Chen
,
L.
,
Ito
,
K.
,
Matsuo
,
H.
, and
Shen
,
D.
,
2008
, “
Segmenting Lung Fields in Serial Chest Radiographs Using Both Population-Based and Patient-Specific Shape Statistics
,”
IEEE Trans. Med. Imaging
,
27
(
4
), pp.
481
494
.
15.
Li
,
B.
,
Christensen
,
G. E.
,
Hoffman
,
E. A.
,
Mclennan
,
G.
, and
Reinhardt
,
J. M.
,
2003
, “
Establishing a Normative Atlas of the Human Lung: Intersubject Warping and Registration of Volumetric CT Images
,”
Acad. Radiol.
,
10
(
3
), pp.
255
265
.
16.
Fernandez
,
J. W.
,
Mithraratne
,
P.
,
Thrupp
,
S. F.
,
Tawhai
,
M. H.
, and
Hunter
,
P. J.
,
2004
, “
Anatomically Based Geometric Modelling of the Musculo-Skeletal System and Other Organs
,”
Biomech. Model. Mechanobiol.
,
2
(
3
), pp.
139
155
.
17.
Cowie
,
H.
,
Lloyd
,
M. H.
, and
Soutar
,
C. A.
,
1985
, “
Study of Lung Function Data by Principal Components Analysis
,”
Thorax
,
40
(
6
), pp.
438
443
.
You do not currently have access to this content.