Magnetophoretic immunoassay is a widely used technique in lab-on-chip systems for detection and isolation of target cells, pathogens, and biomolecules. In this method, target pathogens (antigens) bind to specific antibodies coated on magnetic microbeads (mMBs) which are then separated using an external magnetic field for further analysis. Better capture of mMB is important for improving the sensitivity and performance of magnetophoretic assay. The objective of this study was to develop a numerical model of magnetophoretic separation in electroosmotic flow (EOF) using magnetic field generated by a miniaturized magnet and to evaluate the capture efficiency (CE) of the mMBs. A finite-volume solver was used to compute the trajectory of mMBs under the coupled effects of EOF and external magnetic field. The effect of steady and time varying (switching) electric fields (150–450 V/cm) on the CE was studied under reduced magnetic field strength. During switching, the electric potential at the inlet and outlet of the microchannel was reversed or switched, causing reversal in flow direction. The CE was a function of the momentum of the mMB in EOF and the applied magnetic field strength. By switching the electric field, CE increased from 75% (for steady electric field) to 95% for lower electric fields (150–200 V/cm) and from 35% to 47.5% for higher electric fields (400–450 V/cm). The CE was lower at higher EOF electric fields because the momentum of the mMB overcame the external magnetic force. Switching allowed improved CE due to the reversal and decrease in EOF velocity and increase in mMB residence time under the reduced magnetic field strength. These improvements in CE, particularly at higher electric fields, made sequential switching of EOF an efficient separation technique of mMBs for use in high throughput magnetophoretic immunoassay devices. The reduced size of the magnet, along with the efficient mMB separation technique of switching can lead to the development of portable device for detection of target cells, pathogens, and biomolecules.

References

References
1.
Manz
,
A.
,
Graber
,
N.
, and
Widmer
,
H.
,
1990
, “
Miniaturized Total Chemical Analysis Systems: A Novel Concept for Chemical Sensing
,”
Sens. Actuators, B
,
1
(
1
), pp.
244
248
.10.1016/0925-4005(90)80209-I
2.
Haukanes
,
B. I.
, and
Kvam
,
C.
,
1993
, “
Application of Magnetic Beads in Bioassays
,”
Nat. Biotechnol.
,
11
(
1
), pp.
60
63
.10.1038/nbt0193-60
3.
McCloskey
,
K. E.
,
Chalmers
,
J. J.
, and
Zborowski
,
M.
,
2003
, “
Magnetic Cell Separation: Characterization of Magnetophoretic Mobility
,”
Anal. Chem.
,
75
(
24
), pp.
6868
6874
.10.1021/ac034315j
4.
Zaytseva
,
N. V.
,
Goral
,
V. N.
,
Montagna
,
R. A.
, and
Baeumner
,
A. J.
,
2005
, “
Development of a Microfluidic Biosensor Module for Pathogen Detection
,”
Lab Chip
,
5
(
8
), pp.
805
811
.10.1039/b503856a
5.
Choi
,
J. W.
,
2006
, “
Fabrication of Micromachined Magnetic Particle Separators for Bioseparation in Microfluidic Systems
,”
Methods in Molecular Biology
,
S. D.
Minteer
, ed.,
Springer
,
Totowa, NJ
, pp.
65
81
.
6.
Beyor
,
N.
,
Seo
,
T. S.
,
Liu
,
P.
, and
Mathies
,
R. A.
,
2008
, “
Immunomagnetic Bead-Based Cell Concentration Microdevice for Dilute Pathogen Detection
,”
Biomed. Microdevices
,
10
(
6
), pp.
909
917
.10.1007/s10544-008-9206-3
7.
Do
,
J.
, and
Ahn
,
C. H.
,
2008
, “
A Polymer Lab-on-a-Chip for Magnetic Immunoassay With On-Chip Sampling and Detection Capabilities
,”
Lab Chip
,
8
(
4
), pp.
542
549
.10.1039/b715569g
8.
Issadore
,
D.
,
Shao
,
H.
,
Chung
,
J.
,
Newton
,
A.
,
Pittet
,
M.
,
Weissleder
,
R.
, and
Lee
,
H.
,
2011
, “
Self-Assembled Magnetic Filter for Highly Efficient Immunomagnetic Separation
,”
Lab Chip
,
11
(
1
), pp.
147
151
.10.1039/c0lc00149j
9.
Comandur
,
K. A.
,
Bhagat
,
A. A. S.
,
Dasgupta
,
S.
,
Papautsky
,
I.
, and
Banerjee
,
R. K.
,
2010
, “
Transport and Reaction of Nanoliter Samples in a Microfluidic Reactor Using Electro-Osmotic Flow
,”
J. Micromech. Microeng.
,
20
(
3
), p.
035017
.10.1088/0960-1317/20/3/035017
10.
Al-Rjoub
,
M. F.
,
Roy
,
A. K.
,
Ganguli
,
S.
, and
Banerjee
,
R. K.
,
2015
, “
Improved Flow Rates in Electro-Osmotic Micropumps for Combinations of Substrates and Different Liquids With and Without Nanoparticles
,”
ASME J. Electron. Packag.
,
137
(
2
), p.
021991
.10.1115/1.4028746
11.
Al-Rjoub
,
M. F.
,
Roy
,
A. K.
,
Ganguli
,
S.
, and
Banerjee
,
R. K.
,
2012
, “
Enhanced Electro-Osmotic Flow Pump for Micro-Scale Heat Exchangers
,”
ASME
Paper No. MNHMT2012-75026.10.1115/MNHMT2012-75026
12.
Furlani
,
E.
,
2006
, “
Analysis of Particle Transport in a Magnetophoretic Microsystem
,”
J. Appl. Phys.
,
99
(
2
), p.
024912
.10.1063/1.2164531
13.
Derec
,
C.
,
Wilhelm
,
C.
,
Servais
,
J.
, and
Bacri
,
J. C.
,
2010
, “
Local Control of Magnetic Objects in Microfluidic Channels
,”
Microfluid. Nanofluid.
,
8
(
1
), pp.
123
130
.10.1007/s10404-009-0486-6
14.
Sinha
,
A.
,
Ganguly
,
R.
,
De
,
A. K.
, and
Puri
,
I. K.
,
2007
, “
Single Magnetic Particle Dynamics in a Microchannel
,”
Phys. Fluids
,
19
(11), p.
117102
.10.1063/1.2780191
15.
Ganguly
,
R.
,
Hahn
,
T.
, and
Hardt
,
S.
,
2010
, “
Magnetophoretic Mixing for In Situ Immunochemical Binding on Magnetic Beads in a Microfluidic Channel
,”
Microfluid. Nanofluid.
,
8
(
6
), pp.
739
753
.10.1007/s10404-009-0504-8
16.
Modak
,
N.
,
Datta
,
A.
, and
Ganguly
,
R.
,
2010
, “
Numerical Analysis of Transport and Binding of a Target Analyte and Functionalized Magnetic Microspheres in a Microfluidic Immunoassay
,”
J. Phys. D: Appl. Phys.
,
43
(
48
), p.
485002
.10.1088/0022-3727/43/48/485002
17.
Khashan
,
S. A.
, and
Furlani
,
E. P.
,
2012
, “
Effects of Particle–Fluid Coupling on Particle Transport and Capture in a Magnetophoretic Microsystem
,”
Microfluid. Nanofluid.
,
12
(
1–4
), pp.
565
580
.10.1007/s10404-011-0898-y
18.
Gassner
,
A. L.
,
Abonnenc
,
M.
,
Chen
,
H. X.
,
Morandini
,
J.
,
Josserand
,
J.
,
Rossier
,
J. S.
,
Busnel
,
J. M.
, and
Girault
,
H. H.
,
2009
, “
Magnetic Forces Produced by Rectangular Permanent Magnets in Static Microsystems
,”
Lab Chip
,
9
(
16
), pp.
2356
2363
.10.1039/b901865d
19.
Munir
,
A.
,
Wang
,
J.
, and
Zhou
,
H.
,
2009
, “
Dynamics of Capturing Process of Multiple Magnetic Nanoparticles in a Flow Through Microfluidic Bioseparation System
,”
IET Nanobiotechnol.
,
3
(
3
), pp.
55
64
.10.1049/iet-nbt.2008.0015
20.
Tondra
,
M.
,
Granger
,
M.
,
Fuerst
,
R.
,
Porter
,
M.
,
Nordman
,
C.
,
Taylor
,
J.
, and
Akou
,
S.
,
2001
, “
Design of Integrated Microfluidic Device for Sorting Magnetic Beads in Biological Assays
,”
IEEE Trans. Magn.
,
37
(
4
), pp.
2621
2623
.10.1109/20.951254
21.
Munir
,
A.
,
Wang
,
J.
,
Li
,
Z.
, and
Zhou
,
H. S.
,
2010
, “
Numerical Analysis of a Magnetic Nanoparticle-Enhanced Microfluidic Surface-Based Bioassay
,”
Microfluid. Nanofluid.
,
8
(
5
), pp.
641
652
.10.1007/s10404-009-0497-3
22.
Babinec
,
P.
,
Krafčík
,
A.
,
Babincová
,
M.
, and
Rosenecker
,
J.
,
2010
, “
Dynamics of Magnetic Particles in Cylindrical Halbach Array: Implications for Magnetic Cell Separation and Drug Targeting
,”
Med. Biol. Eng. Comput.
,
48
(
8
), pp.
745
753
.10.1007/s11517-010-0636-8
23.
Baier
,
T.
,
Mohanty
,
S.
,
Drese
,
K. S.
,
Rampf
,
F.
,
Kim
,
J.
, and
Schönfeld
,
F.
,
2009
, “
Modelling Immunomagnetic Cell Capture in CFD
,”
Microfluid. Nanofluid.
,
7
(
2
), pp.
205
216
.10.1007/s10404-008-0376-3
24.
Modak
,
N.
,
Datta
,
A.
, and
Ganguly
,
R.
,
2009
, “
Cell Separation in a Microfluidic Channel Using Magnetic Microspheres
,”
Microfluid. Nanofluid.
,
6
(
5
), pp.
647
660
.10.1007/s10404-008-0343-z
25.
Wu
,
X.
,
Wu
,
H.
, and
Hu
,
Y.
,
2011
, “
Enhancement of Separation Efficiency on Continuous Magnetophoresis by Utilizing L/T-Shaped Microchannels
,”
Microfluid. Nanofluid.
,
11
(
1
), pp.
11
24
.10.1007/s10404-011-0768-7
26.
Modak
,
N.
,
Kejriwal
,
D.
,
Nandy
,
K.
,
Datta
,
A.
, and
Ganguly
,
R.
,
2010
, “
Experimental and Numerical Characterization of Magnetophoretic Separation for MEMS-Based Biosensor Applications
,”
Biomed. Microdevices
,
12
(
1
), pp.
23
34
.10.1007/s10544-009-9354-0
27.
Bronzeau
,
S.
, and
Pamme
,
N.
,
2008
, “
Simultaneous Bioassays in a Microfluidic Channel on Plugs of Different Magnetic Particles
,”
Anal. Chim. Acta
,
609
(
1
), pp.
105
112
.10.1016/j.aca.2007.11.035
28.
Teste
,
B.
,
Malloggi
,
F.
,
Gassner
,
A. L.
,
Georgelin
,
T.
,
Siaugue
,
J. M.
,
Varenne
,
A.
,
Girault
,
H.
, and
Descroix
,
S.
,
2011
, “
Magnetic Core Shell Nanoparticles Trapping in a Microdevice Generating High Magnetic Gradient
,”
Lab Chip
,
11
(
5
), pp.
833
840
.10.1039/c0lc00510j
29.
Wang
,
Y.
,
Zhe
,
J.
,
Chung
,
B. T.
, and
Dutta
,
P.
,
2008
, “
A Rapid Magnetic Particle Driven Micromixer
,”
Microfluid. Nanofluid.
,
4
(
5
), pp.
375
389
.10.1007/s10404-007-0188-x
30.
Ganguly
,
R.
, and
Puri
,
I. K.
,
2010
, “
Microfluidic Transport in Magnetic MEMS and bioMEMS
,”
Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
,
2
(
4
), pp.
382
399
.10.1002/wnan.92
31.
Gijs
,
M. A.
,
2004
, “
Magnetic Bead Handling On-Chip: New Opportunities for Analytical Applications
,”
Microfluid. Nanofluid.
,
1
(
1
), pp.
22
40
.10.1007/s10404-004-0010-y
32.
Guo
,
S.
,
Deng
,
Y.
,
Zhao
,
L.
,
Chan
,
H.
, and
Zhao
,
X.
,
2008
, “
Effect of Patterned Micro-Magnets on Superparamagnetic Beads in Microchannels
,”
J. Phys. D: Appl. Phys.
,
41
(
10
), p.
105008
.10.1088/0022-3727/41/10/105008
33.
Pamme
,
N.
,
2006
, “
Magnetism and Microfluidics
,”
Lab Chip
,
6
(
1
), pp.
24
38
.10.1039/b513005k
34.
Fair
,
R.
,
2007
, “
Digital Microfluidics: Is a True Lab-on-a-Chip Possible?
,”
Microfluid. Nanofluid.
,
3
(
3
), pp.
245
281
.10.1007/s10404-007-0161-8
35.
Lin
,
C.-C.
,
Wang
,
J.-H.
,
Wu
,
H.-W.
, and
Lee
,
G.-B.
,
2010
, “
Microfluidic Immunoassays
,”
J. Lab Autom.
,
15
(
3
), pp.
253
274
.10.1016/j.jala.2010.01.013
36.
Gao
,
Y.
,
Hu
,
G.
,
Lin
,
F. Y.
,
Sherman
,
P. M.
, and
Li
,
D.
,
2005
, “
An Electrokinetically-Controlled Immunoassay for Simultaneous Detection of Multiple Microbial Antigens
,”
Biomed. Microdevices
,
7
(
4
), pp.
301
312
.10.1007/s10544-005-6072-0
37.
Srinivasan
,
V.
,
Pamula
,
V. K.
, and
Fair
,
R. B.
,
2004
, “
An Integrated Digital Microfluidic Lab-on-a-Chip for Clinical Diagnostics on Human Physiological Fluids
,”
Lab Chip
,
4
(
4
), pp.
310
315
.10.1039/b403341h
38.
Bousse
,
L.
,
Cohen
,
C.
,
Nikiforov
,
T.
,
Chow
,
A.
,
Kopf-Sill
,
A. R.
,
Dubrow
,
R.
, and
Parce
,
J. W.
,
2000
, “
Electrokinetically Controlled Microfluidic Analysis Systems
,”
Annu. Rev. Biophys. Biomol. Struct.
,
29
(
1
), pp.
155
181
.10.1146/annurev.biophys.29.1.155
39.
Weigl
,
B. H.
,
Bardell
,
R. L.
, and
Cabrera
,
C. R.
,
2003
, “
Lab-on-a-Chip for Drug Development
,”
Adv. Drug Delivery Rev.
,
55
(
3
), pp.
349
377
.10.1016/S0169-409X(02)00223-5
40.
Croat
,
J. J.
,
Herbst
,
J. F.
,
Lee
,
R. W.
, and
Pinkerton
,
F. E.
,
1984
, “
Pr-Fe and Nd-Fe-Based Materials: A New Class of High-Performance Permanent Magnets
,”
J. Appl. Phys.
,
55
(
6
), pp.
2078
2082
.10.1063/1.333571
41.
Krishnamoorthy
,
S.
,
Feng
,
J.
,
Henry
,
A.
,
Locascio
,
L.
,
Hickman
,
J.
, and
Sundaram
,
S.
,
2006
, “
Simulation and Experimental Characterization of Electroosmotic Flow in Surface Modified Channels
,”
Microfluid. Nanofluid.
,
2
(
4
), pp.
345
355
.10.1007/s10404-006-0077-8
42.
ESI-CFD
,
2010
,
CFD-ACE+ Modules Manual V2010
, ESI Corporation,
Huntsville
,
AL
.
43.
Al-Rjoub
,
M. F.
,
Roy
,
A. K.
,
Ganguli
,
S.
, and
Banerjee
,
R. K.
,
2011
, “
Assessment of an Active-Cooling Micro-Channel Heat Sink Device, Using Electro-Osmotic Flow
,”
Int. J. Heat Mass Transfer
,
54
(
21
), pp.
4560
4569
.10.1016/j.ijheatmasstransfer.2011.06.022
44.
Sze
,
A.
,
Erickson
,
D.
,
Ren
,
L.
, and
Li
,
D.
,
2003
, “
Zeta-Potential Measurement Using the Smoluchowski Equation and the Slope of the Current–Time Relationship in Electroosmotic Flow
,”
J. Colloid Interface Sci.
,
261
(
2
), pp.
402
410
.10.1016/S0021-9797(03)00142-5
45.
Almutairi
,
Z. A.
,
Glawdel
,
T.
,
Ren
,
C. L.
, and
Johnson
,
D. A.
,
2009
, “
A Y-Channel Design for Improving Zeta Potential and Surface Conductivity Measurements Using the Current Monitoring Method
,”
Microfluid. Nanofluid.
,
6
(
2
), pp.
241
251
.10.1007/s10404-008-0320-6
46.
Werner
,
C.
,
Körber
,
H.
,
Zimmermann
,
R.
,
Dukhin
,
S.
, and
Jacobasch
,
H. J.
,
1998
, “
Extended Electrokinetic Characterization of Flat Solid Surfaces
,”
J. Colloid Interface Sci.
,
208
(
1
), pp.
329
346
.10.1006/jcis.1998.5787
47.
Meeker
,
D.
,
2011
, Finite Element Method Magnetics (FEMM) Modules Manual, V1.2, Waltham, MA.
48.
Sandhu
,
A.
,
Handa
,
H.
, and
Abe
,
M.
,
2010
, “
Synthesis and Applications of Magnetic Nanoparticles for Biorecognition and Point of Care Medical Diagnostics
,”
Nanotechnology
,
21
(
44
), p.
442001
.10.1088/0957-4484/21/44/442001
49.
Nandy
,
K.
,
Chaudhuri
,
S.
,
Ganguly
,
R.
, and
Puri
,
I. K.
,
2008
, “
Analytical Model for the Magnetophoretic Capture of Magnetic Microspheres in Microfluidic Devices
,”
J. Magn. Magn. Mater.
,
320
(
7
), pp.
1398
1405
.10.1016/j.jmmm.2007.11.024
50.
Smistrup
,
K.
,
2007
, “
Magnetic Separation in Microfluidic Systems
,” Ph.D. thesis,
Technical University of Denmark
,
Kongens Lyngby
.
You do not currently have access to this content.