Liver cirrhosis represents the end-stage of different liver disorders, progressively affecting hepatic architecture, hemodynamics, and function. Morphologically, cirrhosis is characterized by diffuse fibrosis, the conversion of normal liver architecture into structurally abnormal regenerative nodules and the formation of an abundant vascular network. To date, the vascular remodeling and altered hemodynamics due to cirrhosis are still poorly understood, even though they seem to play a pivotal role in cirrhogenesis. This study aims to determine the perfusion characteristics of the cirrhotic circulation using a multilevel modeling approach including computational fluid dynamics (CFD) simulations. Vascular corrosion casting and multilevel micro-CT imaging of a single human cirrhotic liver generated detailed datasets of the hepatic circulation, including typical pathological characteristics of cirrhosis such as shunt vessels and dilated sinusoids. Image processing resulted in anatomically correct 3D reconstructions of the microvasculature up to a diameter of about 500 μm. Subsequently, two cubic samples (150 × 150 × 150 μm3) were virtually dissected from vascularized zones in between regenerative nodules and applied for CFD simulations to study the altered cirrhotic microperfusion and permeability. Additionally, a conceptual 3D model of the cirrhotic macrocirculation was developed to reveal the hemodynamic impact of regenerative nodules. Our results illustrate that the cirrhotic microcirculation is characterized by an anisotropic permeability showing the highest value in the direction parallel to the central vein (kd,zz = 1.68 × 10−13 m2 and kd,zz = 7.79 × 10−13 m2 for sample 1 and 2, respectively) and lower values in the circumferential (kd,ϑϑ = 5.78 × 10−14 m2 and kd,ϑϑ = 5.65 × 10−13 m2 for sample 1 and 2, respectively) and radial (kd,rr = 9.87 × 10−14 m2 and kd,rr = 5.13 × 10−13 m2 for sample 1 and 2, respectively) direction. Overall, the observed permeabilities are markedly higher compared to a normal liver, implying a locally decreased intrahepatic vascular resistance (IVR) probably due to local compensation mechanisms (dilated sinusoids and shunt vessels). These counteract the IVR increase caused by the presence of regenerative nodules and dynamic contraction mechanisms (e.g., stellate cells, NO-concentration, etc.). Our conceptual 3D model of the cirrhotic macrocirculation indicates that regenerative nodules severely increase the IVR beyond about 65 vol. % of regenerative nodules. Numerical modeling allows quantifying perfusion characteristics of the cirrhotic macro- and microcirculation, i.e., the effect of regenerative nodules and compensation mechanisms such as dilated sinusoids and shunt vessels. Future research will focus on the development of models to study time-dependent degenerative adaptation of the cirrhotic macro- and microcirculation.

References

References
1.
Pinzani
,
M.
,
Rosselli
,
M.
, and
Zuckermann
,
M.
,
2011
, “
Liver Cirrhosis
,”
Best Pract. Res. Clin. Gastroenterol.
,
25
(
2
), pp.
281
290
.10.1016/j.bpg.2011.02.009
2.
Thabut
,
D.
, and
Shah
,
V.
,
2010
, “
Intrahepatic Angiogenesis and Sinusoidal Remodeling in Chronic Liver Disease: New Targets for the Treatment of Portal Hypertension?
J. Hepatol.
,
53
(
5
), pp.
976
980
.10.1016/j.jhep.2010.07.004
3.
Desmet
,
V. J.
, and
Roskams
,
T.
,
2004
, “
Cirrhosis Reversal: A Duel Between Dogma and Myth
,”
J. Hepatol.
,
40
(
5
), pp.
860
867
.10.1016/j.jhep.2004.03.007
4.
Anthony
,
P. P.
,
Ishak
,
K. G.
,
Nayak
,
N. C.
,
Poulsen
,
H. E.
,
Scheuer
,
P. J.
, and
Sobin
,
L. H.
,
1978
, “
The Morphology of Cirrhosis. Recommendations on Definition, Nomenclature, and Classification by a Working Group Sponsored by the World Health Organization
,”
J. Clin. Pathol.
,
31
(
5
), pp.
395
414
.10.1136/jcp.31.5.395
5.
Minami
,
Y.
, and
Kudo
,
M.
,
2012
, “
HCC Risk Factors
,”
Biotargets of Cancer in Current Clinical Practice
,
Springer
,
New York
, p.
273
.
6.
Ratib
,
S.
,
West
,
J.
,
Crooks
,
C. J.
, and
Fleming
,
K. M.
,
2014
, “
Diagnosis of Liver Cirrhosis in England, a Cohort Study, 1998–2009: A Comparison With Cancer
,”
Am. J. Gastroenterol.
,
109
(
2
), pp.
190
198
.10.1038/ajg.2013.405
7.
Tsochatzis
,
E. A.
,
Bosch
,
J.
, and
Burroughs
,
A. K.
,
2014
, “
Liver Cirrhosis
,”
Lancet
,
383
(
9930
), pp.
1749
1761
.10.1016/S0140-6736(14)60121-5
8.
Pascher
,
A.
,
Nebrig
,
M.
, and
Neuhaus
,
P.
,
2013
, “
Irreversible Liver Failure: Treatment by Transplantation
,”
Dtsch. Arzteblatt Int.
,
110
(
10
), pp.
167
173
.10.3238/arztebl.2013.0167
9.
Debbaut
,
C.
,
Vierendeels
,
J.
,
Casteleyn
,
C.
,
Cornillie
,
P.
,
Van Loo
,
D.
,
Simoens
,
P.
,
Van Hoorebeke
,
L.
,
Monbaliu
,
D.
, and
Segers
,
P.
,
2012
, “
Perfusion Characteristics of the Human Hepatic Microcirculation Based on Three-Dimensional Reconstructions and Computational Fluid Dynamic Analysis
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011003
.10.1115/1.4005545
10.
Marieb
,
E. N.
, and
Hoehn
,
K.
,
2007
,
Human Anatomy and Physiology
,
Pearson Education
,
Upper Saddle River, NJ
.
11.
Abdel-Misih
,
S. R.
, and
Bloomston
,
M.
,
2010
, “
Liver Anatomy
,”
Surg. Clin. North Am.
,
90
(
4
), pp.
643
653
.10.1016/j.suc.2010.04.017
12.
Sherlock
,
S.
, and
Dooley
,
J.
,
2008
,
Diseases of the Liver and Biliary System
,
Wiley
,
Hoboken, NJ
.
13.
Lee
,
U. E.
, and
Friedman
,
S. L.
,
2011
, “
Mechanisms of Hepatic Fibrogenesis
,”
Best Pract. Res. Clin. Gastroenterol.
,
25
(
2
), pp.
195
206
.10.1016/j.bpg.2011.02.005
14.
Huet
,
P. M.
,
Goresky
,
C. A.
,
Villeneuve
,
J. P.
,
Marleau
,
D.
, and
Lough
,
J. O.
,
1982
, “
Assessment of Liver Microcirculation in Human Cirrhosis
,”
J. Clin. Invest.
,
70
(
6
), pp.
1234
1244
.10.1172/JCI110722
15.
Villeneuve
,
J. P.
,
Dagenais
,
M.
,
Huet
,
P. M.
,
Roy
,
A.
,
Lapointe
,
R.
, and
Marleau
,
D.
,
1996
, “
The Hepatic Microcirculation in the Isolated Perfused Human Liver
,”
Hepatology
,
23
(
1
), pp.
24
31
.10.1002/hep.510230104
16.
Vanheule
,
E.
,
Geerts
,
A. M.
,
Van Huysse
,
J.
,
Schelfhout
,
D.
,
Praet
,
M.
,
Van Vlierberghe
,
H.
,
De Vos
,
M.
, and
Colle
,
I.
,
2008
, “
An Intravital Microscopic Study of the Hepatic Microcirculation in Cirrhotic Mice Models: Relationship Between Fibrosis and Angiogenesis
,”
Int. J. Exp. Pathol.
,
89
(
6
), pp.
419
432
.10.1111/j.1365-2613.2008.00608.x
17.
Varin
,
F.
, and
Huet
,
P. M.
,
1985
, “
Hepatic Microcirculation in the Perfused Cirrhotic Rat Liver
,”
J. Clin. Invest.
,
76
(
5
), pp.
1904
1912
.10.1172/JCI112186
18.
Annet
,
L.
,
Materne
,
R.
,
Danse
,
E.
,
Jamart
,
J.
,
Horsmans
,
Y.
, and
Van Beers
,
B. E.
,
2003
, “
Hepatic Flow Parameters Measured With MR Imaging and Doppler US: Correlations With Degree of Cirrhosis and Portal Hypertension
,”
Radiology
,
229
(
2
), pp.
409
414
.10.1148/radiol.2292021128
19.
Fischer
,
M. A.
,
Donati
,
O. F.
,
Reiner
,
C. S.
,
Hunziker
,
R.
,
Nanz
,
D.
, and
Boss
,
A.
,
2012
, “
Feasibility of Semiquantitative Liver Perfusion Assessment by Ferucarbotran Bolus Injection in Double-Contrast Hepatic MRI
,”
J. Magn. Reson. Imaging
,
36
(
1
), pp.
168
176
.10.1002/jmri.23611
20.
Ma
,
G.
,
Bai
,
R.
,
Jiang
,
H.
,
Hao
,
X.
,
Ling
,
Z.
, and
Li
,
K.
,
2013
, “
Assessment of Hemodynamics in a Rat Model of Liver Cirrhosis With Precancerous Lesions Using Multislice Spiral CT Perfusion Imaging
,”
BioMed Res. Int.
,
2013
, p.
813174
.10.1155/2013/813174
21.
Chen
,
M. L.
,
Zeng
,
Q. Y.
,
Huo
,
J. W.
,
Yin
,
X. M.
,
Li
,
B. P.
, and
Liu
,
J. X.
,
2009
, “
Assessment of the Hepatic Microvascular Changes in Liver Cirrhosis by Perfusion Computed Tomography
,”
World J. Gastroenterol.
,
15
(
28
), pp.
3532
3537
.10.3748/wjg.15.3532
22.
Ying
,
M.
,
Leung
,
G.
,
Lau
,
T. Y.
,
Tipoe
,
G. L.
,
Lee
,
E. S.
,
Yuen
,
Q. W.
,
Huang
,
Y. P.
, and
Zheng
,
Y. P.
,
2012
, “
Evaluation of Liver Fibrosis by Investigation of Hepatic Parenchymal Perfusion Using Contrast-Enhanced Ultrasound: An Animal Study
,”
J. Clin. Ultrasound
,
40
(
8
), pp.
462
470
.10.1002/jcu.21969
23.
Ridolfi
,
F.
,
Abbattista
,
T.
,
Busilacchi
,
P.
, and
Brunelli
,
E.
,
2012
, “
Contrast-Enhanced Ultrasound Evaluation of Hepatic Microvascular Changes in Liver Diseases
,”
World J. Gastroenterol.
,
18
(
37
), pp.
5225
5230
.10.3748/wjg.v18.i37.5225
24.
Ho
,
C. M.
,
Lin
,
R. K.
,
Tsai
,
S. F.
,
Hu
,
R. H.
,
Liang
,
P. C.
,
Sheu
,
T. W.
, and
Lee
,
P. H.
,
2010
, “
Simulation of Portal Hemodynamic Changes in a Donor After Right Hepatectomy
,”
ASME J. Biomech. Eng.
,
132
(
4
), p.
041002
.10.1115/1.4000957
25.
Ho
,
C. M.
,
Tsai
,
S. F.
,
Lin
,
R. K.
,
Liang
,
P. C.
,
Sheu
,
T. W.
,
Hu
,
R. H.
, and
Lee
,
P. H.
,
2007
, “
Computer Simulation of Hemodynamic Changes After Right Lobectomy in a Liver With Intrahepatic Portal Vein Aneurysm
,”
J. Formosan Med. Assoc.
,
106
(
8
), pp.
617
623
.10.1016/S0929-6646(08)60018-2
26.
Ho
,
H.
,
Sorrell
,
K.
,
Bartlett
,
A.
, and
Hunter
,
P.
,
2012
, “
Blood Flow Simulation for the Liver After a Virtual Right Lobe Hepatectomy
,”
Medical Image Computing and Computer-Assisted Intervention: MICCAI. International Conference on Medical Image Computing and Computer-Assisted Intervention
, Nice, France, Oct. 1–Oct. 5,
15
(
Pt 3
), pp.
525
532
.10.1007/978-3-642-33454-2_65
27.
Kennedy
,
A. S.
,
Kleinstreuer
,
C.
,
Basciano
,
C. A.
, and
Dezarn
,
W. A.
,
2010
, “
Computer Modeling of Yttrium-90-Microsphere Transport in the Hepatic Arterial Tree to Improve Clinical Outcomes
,”
Int. J. Radiat. Oncol. Biol. Phys.
,
76
(
2
), pp.
631
637
.10.1016/j.ijrobp.2009.06.069
28.
Debbaut
,
C.
,
Monbaliu
,
D.
,
Casteleyn
,
C.
,
Cornillie
,
P.
,
Van Loo
,
D.
,
Masschaele
,
B.
,
Pirenne
,
J.
,
Simoens
,
P.
,
Van Hoorebeke
,
L.
, and
Segers
,
P.
,
2011
, “
From Vascular Corrosion Cast to Electrical Analog Model for the Study of Human Liver Hemodynamics and Perfusion
,”
IEEE Trans. Biomed. Eng.
,
58
(
1
), pp.
25
35
.10.1109/TBME.2010.2065229
29.
Ho
,
H.
,
Sorrell
,
K.
,
Bartlett
,
A.
, and
Hunter
,
P.
,
2013
, “
Modeling the Hepatic Arterial Buffer Response in the Liver
,”
Med. Eng. Phys.
,
35
(
8
), pp.
1053
1058
.10.1016/j.medengphy.2012.10.008
30.
Debbaut
,
C.
,
De Wilde
,
D.
,
Casteleyn
,
C.
,
Cornillie
,
P.
,
Van Loo
,
D.
,
Van Hoorebeke
,
L.
,
Monbaliu
,
D.
,
Fan
,
Y. D.
, and
Segers
,
P.
,
2012
, “
Modeling the Impact of Partial Hepatectomy on the Hepatic Hemodynamics Using a Rat Model
,”
IEEE Trans. Biomed. Eng.
,
59
(
12
), pp.
3293
3303
.10.1109/TBME.2012.2199108
31.
Bonfiglio
,
A.
,
Leungchavaphongse
,
K.
,
Repetto
,
R.
, and
Siggers
,
J. H.
,
2010
, “
Mathematical Modeling of the Circulation in the Liver Lobule
,”
ASME J. Biomech. Eng.
,
132
(
11
), p.
111011
.10.1115/1.4002563
32.
Siggers
,
J. H.
,
Leungchavaphongse
,
K.
,
Ho
,
C. H.
, and
Repetto
,
R.
,
2013
, “
Mathematical Model of Blood and Interstitial Flow and Lymph Production in the Liver
,”
Biomech. Model. Mechanobiol.
,
13
(
2
), pp.
363
378
.10.1007/s10237-013-0516-x
33.
Ricken
,
T.
,
Dahmen
,
U.
, and
Dirsch
,
O.
,
2010
, “
A Biphasic Model for Sinusoidal Liver Perfusion Remodeling After Outflow Obstruction
,”
Biomech. Model. Mechanobiol.
,
9
(
4
), pp.
435
450
.10.1007/s10237-009-0186-x
34.
Rani
,
H. P.
,
Sheu
,
T. W.
,
Chang
,
T. M.
, and
Liang
,
P. C.
,
2006
, “
Numerical Investigation of Non-Newtonian Microcirculatory Blood Flow in Hepatic Lobule
,”
J. Biomech.
,
39
(
3
), pp.
551
563
.10.1016/j.jbiomech.2004.11.029
35.
Van Steenkiste
,
C.
,
Trachet
,
B.
,
Casteleyn
,
C.
,
van Loo
,
D.
,
Van Hoorebeke
,
L.
,
Segers
,
P.
,
Geerts
,
A.
,
Van Vlierberghe
,
H.
, and
Colle
,
I.
,
2010
, “
Vascular Corrosion Casting: Analyzing Wall Shear Stress in the Portal Vein and Vascular Abnormalities in Portal Hypertensive and Cirrhotic Rodents
,”
Lab. Invest.
,
90
(
11
), pp.
1558
1572
.10.1038/labinvest.2010.138
36.
Debbaut
,
C.
,
Vierendeels
,
J.
,
Siggers
,
J. H.
,
Repetto
,
R.
,
Monbaliu
,
D.
, and
Segers
,
P.
,
2014
, “
A 3D Porous Media Liver Lobule Model: The Importance of Vascular Septa and Anisotropic Permeability for Homogeneous Perfusion
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
12
), pp.
1295
1310
.10.1080/10255842.2012.744399
37.
Masschaele
,
B.
,
Cnudde
,
V.
,
Dierick
,
M.
,
Jacobs
,
P.
,
Van Hoorebeke
,
L.
, and
Vlassenbroeck
,
J.
,
2007
, “
UGCT: New X-Ray Radiography and Tomography Facility
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
,
580
(
1
), pp.
266
269
.10.1016/j.nima.2007.05.099
38.
Debbaut
,
C.
,
Segers
,
P.
,
Cornillie
,
P.
,
Casteleyn
,
C.
,
Dierick
,
M.
,
Laleman
,
W.
, and
Monbaliu
,
D.
,
2014
, “
Analyzing the Human Liver Vascular Architecture by Combining Vascular Corrosion Casting and Micro-CT Scanning: A Feasibility Study
,”
J. Anat.
,
224
(
4
), pp.
509
517
.10.1111/joa.12156
39.
van der Plaats
,
A.
,
t Hart
,
N. A.
,
Verkerke
,
G. J.
,
Leuvenink
,
H. G.
,
Verdonck
,
P.
,
Ploeg
,
R. J.
, and
Rakhorst
,
G.
,
2004
, “
Numerical Simulation of the Hepatic Circulation
,”
Int. J. Artif. Organs
,
27
(
3
), pp.
222
230
.
40.
See the “Supplemental Data” tab for this paper on the ASME Digital Collection.
41.
Debbaut
,
C.
,
Monbaliu
,
D.
, and
Segers
,
P.
,
2013
, “
Hydraulic Input Impedances as a Tool to Capture Liver Graft Perfusion Properties
,”
Proceedings of the 12th Belgian National Day on Biomedical Engineering
, Brussels.
42.
Goldsmith
,
H. L.
,
Cokelet
,
G. R.
, and
Gaehtgens
,
P.
,
1989
, “
Robin Fahraeus: Evolution of His Concepts in Cardiovascular Physiology
,”
Am. J. Physiol.
,
257
(
3 Pt 2
), pp.
H1005
1015
.
43.
Debbaut
,
C.
,
2013
,
Multi-Level Modelling of Hepatic Perfusion in Support of Liver Transplantation Strategies
,
Ghent University
, Gent, Belgium.
44.
Laleman
,
W.
,
Vander Elst
,
I.
,
Zeegers
,
M.
,
Servaes
,
R.
,
Libbrecht
,
L.
,
Roskams
,
T.
,
Fevery
,
J.
, and
Nevens
,
F.
,
2006
, “
A Stable Model of Cirrhotic Portal Hypertension in the Rat: Thioacetamide Revisited
,”
Eur. J. Clin. Invest.
,
36
(
4
), pp.
242
249
.10.1111/j.1365-2362.2006.01620.x
You do not currently have access to this content.