This paper describes the process in which complex lesion geometries (specified by computer generated perfusion defects) are incorporated in the description of nonlinear finite element (FE) mechanical models used for specifying the motion of the left ventricle (LV) in the 4D extended cardiac torso (XCAT) phantom to simulate gated cardiac image data. An image interrogation process was developed to define the elements in the LV mesh as ischemic or infarcted based upon the values of sampled intensity levels of the perfusion maps. The intensity values were determined for each of the interior integration points of every element of the FE mesh. The average element intensity levels were then determined. The elements with average intensity values below a user-controlled threshold were defined as ischemic or infarcted depending upon the model being defined. For the infarction model cases, the thresholding and interrogation process were repeated in order to define a border zone (BZ) surrounding the infarction. This methodology was evaluated using perfusion maps created by the perfusion cardiac-torso (PCAT) phantom an extension of the 4D XCAT phantom. The PCAT was used to create 3D perfusion maps representing 90% occlusions at four locations (left anterior descending (LAD) segments 6 and 9, left circumflex (LCX) segment 11, right coronary artery (RCA) segment 1) in the coronary tree. The volumes and shapes of the defects defined in the FE mechanical models were compared with perfusion maps produced by the PCAT. The models were incorporated into the XCAT phantom. The ischemia models had reduced stroke volume (SV) by 18–59 ml. and ejection fraction (EF) values by 14–50% points compared to the normal models. The infarction models, had less reductions in SV and EF, 17–54 ml. and 14–45% points, respectively. The volumes of the ischemic/infarcted regions of the models were nearly identical to those volumes obtained from the perfusion images and were highly correlated (R2= 0.99).

References

References
1.
Veress
,
A. I.
,
Segars
,
W. P.
,
Weiss
,
J. A.
,
Tsui
,
B. M.
, and
Gullberg
,
G. T.
,
2006
, “
Normal and Pathological NCAT Image and Phantom Data Based on Physiologically Realistic Left Ventricle Finite-Element Models
,”
IEEE Trans. Med. Imaging
,
25
(12), pp.
1604
1616
.10.1109/TMI.2006.884213
2.
Veress
,
A. I.
,
Segars
,
W. P.
,
Tsui
,
B. M.
, and
Gullberg
,
G. T.
,
2011
, “
Incorporation of a Left Ventricle Finite Element Model Defining Infarction Into the XCAT Imaging Phantom
,”
IEEE Trans. Med. Imaging
,
30
(4), pp.
915
927
.10.1109/TMI.2010.2089801
3.
Holmes
,
J. W.
,
Borg
,
T. K.
, and
Covell
,
J. W.
,
2005
, “
Structure and Mechanics of Healing Myocardial Infarcts
,”
Annu. Rev. Biomed. Eng.
,
7
(1), pp.
223
253
.10.1146/annurev.bioeng.7.060804.100453
4.
Pirzada
,
F. A.
,
Ekong
,
E. A.
,
Vokonas
,
P. S.
,
Apstein
,
C. S.
, and
Hood
,
W. B.
, Jr.
,
1976
, “
Experimental Myocardial Infarction. XIII. Sequential Changes in Left Ventricular Pressure–Length Relationships in the Acute Phase
,”
Circulation
,
53
(6), pp.
970
975
.10.1161/01.CIR.53.6.970
5.
Vokonas
,
P. S.
,
Pirzada
,
F. A.
,
Robbins
,
S. L.
, and
Hood
,
W. B.
, Jr.
,
1978
, “
Experimental Myocardial Infarction. XV. Segmental Mechanical Behavior and Morphology of Ischemic Myocardium During Hypothermia
,”
Am. J. Physiol.
,
235
(6), pp.
H736
H744
.
6.
Gillam
,
L. D.
,
Franklin
,
T. D.
,
Foale
,
R. A.
,
Wiske
,
P. S.
,
Guyer
,
D. E.
, and
Hogan
,
R. D.
, and Weyman, A. E.,
1986
, “
The Natural History of Regional Wall Motion in the Acutely Infarcted Canine Ventricle
,”
J. Am. Coll. Cardiol.
,
7
(6), pp.
1325
1334
.10.1016/S0735-1097(86)80154-1
7.
Fishbein
,
M. C.
,
Maclean
,
D.
, and
Maroko
,
P. R.
,
1978
, “
The Histopathologic Evolution of Myocardial Infarction
,”
Chest
,
73
(6), pp.
843
849
.10.1378/chest.73.6.843
8.
Fung
,
G. S. K.
,
Segars
,
W. P.
,
Lee
,
T.
,
Veress
,
A. I.
,
Gullberg
,
G. T.
, and
Tsui
,
B. M.
,
2010
, “
A New Perfusion Heart Model for Realistic Simulation of Myocardial Perfusion Defects
,”
J. Nucl. Med.
,
51
(
Suppl. 2
), p.
476
.
9.
Fung
,
G. S. K.
,
Segars
,
W. P.
,
Lee
,
T.
,
Higuchi
,
T.
,
Veress
,
A. I.
,
Gullberg
,
G. T.
, and
Tsui
,
B. M. W.
,
2010
, “
Realistic Simulation of Regional Myocardial Perfusion Defects for Cardiac SPECT Studies
,”
Nuclear Science Symposium Conference Record (NSS/MIC)
,
Knoxville, TN
, Oct. 30–Nov. 6, pp.
3061
3064
. 10.1109/NSSMIC.2010.5874362
10.
Fung
,
G. S.
,
Segars
,
W. P.
,
Gullberg
,
G. T.
, and
Tsui
,
B. M.
,
2011
, “
Development of a Model of the Coronary Arterial Tree for the 4D XCAT Phantom
,”
Phys. Med. Biol.
,
56
(17), pp.
5651
5663
.10.1088/0031-9155/56/17/012
11.
Rasband
,
W. S.
,
1997–2014
, IMAGEJ, U. S. National Institutes of Health, Bethesda, MD, see http://imagej.nih.gov/ij/
12.
Kerckhoffs
,
R. C.
,
McCulloch
,
A. D.
,
Omens
,
J. H.
, and
Mulligan
,
L. J.
,
2009
, “
Effects of Biventricular Pacing and Scar Size in a Computational Model of the Failing Heart With Left Bundle Branch Block
,”
Med. Image Anal.
,
13
(2), pp.
362
369
.10.1016/j.media.2008.06.013
13.
Kerckhoffs
,
R. C.
,
Neal
,
M. L.
,
Gu
,
Q.
,
Bassingthwaighte
,
J. B.
,
Omens
,
J. H.
, and
McCulloch
,
A. D.
,
2007
, “
Coupling of a 3D Finite Element Model of Cardiac Ventricular Mechanics to Lumped Systems Models of the Systemic and Pulmonic Circulation
,”
Ann. Biomed. Eng.
,
35
(1), pp.
1
18
.10.1007/s10439-006-9212-7
14.
Yushkevich
,
P. A.
,
Piven
,
J.
,
Hazlett
,
H. C.
,
Smith
,
R. G.
,
Ho
,
S.
,
Gee
,
J. C.
, and Gerig, G.,
2006
, “
User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability
,”
Neuroimage
,
31
(3), pp.
1116
1128
.10.1016/j.neuroimage.2006.01.015
15.
XYZ Scientific Applications, Inc.
,
2012
, TrueGrid, XYZ Scientific Applications, Inc., Livermore, CA.
16.
Weiss
,
J. A.
,
Maker
,
B. N.
, and
Govindjee
,
S.
,
1996
, “
Finite Element Implementation of Incompressible, Transversely Isotropic Hyperelasticity
,”
Comput. Methods Appl. Mech. Eng.
,
135
(1–2), pp.
107
128
.10.1016/0045-7825(96)01035-3
17.
Guccione
,
J. M.
, and
McCulloch
,
A. D.
,
1993
, “
Mechanics of Active Contraction in Cardiac Muscle: Part I—Constitutive Relations for Fiber Stress That Describe Deactivation
,”
ASME J. Biomech. Eng.
,
115
(
1
), pp.
72
81
.10.1115/1.2895474
18.
Guccione
,
J. M.
, and
McCulloch
,
A. D.
,
1993
, “
Mechanics of Active Contraction in Cardiac Muscle: Part II—Constitutive Relations for Fiber Stress That Describe Deactivation
,”
ASME J. Biomech. Eng.
,
115
(
1
), pp.
82
90
.10.1115/1.2895474
19.
Bathe
,
K.-J.
,
1982
,
Finite Element Procedures in Engineering Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
20.
Jackson
,
B. M.
,
Gorman
,
J. H.
, III
,
Salgo
,
I. S.
,
Moainie
,
S. L.
,
Plappert
,
T.
,
St John-Sutton
,
M.
,
Edmunds
,
L. H. Jr.
, and
Gorman
,
R. C.
,
2003
, “
Border Zone Geometry Increases Wall Stress After Myocardial Infarction: Contrast Echocardiographic Assessment
,”
Am. J. Physiol. Heart. Circ. Physiol.
,
284
(2), pp.
H475
H479
.
21.
Lima
,
J. A.
,
Becker
,
L. C.
,
Melin
,
J. A.
,
Lima
,
S.
,
Kallman
,
C. A.
,
Weisfeldt
,
M. L.
, and Weiss, J. L.,
1985
, “
Impaired Thickening of Nonischemic Myocardium During Acute Regional Ischemia in the Dog
,”
Circulation
,
71
(5), pp.
1048
1059
.10.1161/01.CIR.71.5.1048
22.
Epstein
,
F. H.
,
Yang
,
Z.
,
Gilson
,
W. D.
,
Berr
,
S. S.
,
Kramer
,
C. M.
, and
French
,
B. A.
,
2002
, “
MR Tagging Early After Myocardial Infarction in Mice Demonstrates Contractile Dysfunction in Adjacent and Remote Regions
,”
Magn. Reson. Med.
,
48
(2), pp.
399
403
.10.1002/mrm.10210
23.
Garot
,
J.
,
Lima
,
J. A.
,
Gerber
,
B. L.
,
Sampath
,
S.
,
Wu
,
K. C.
,
Bluemke
,
D. A.
, Prince, J. L., and Osman, N. F.,
2004
, “
Spatially Resolved Imaging of Myocardial Function With Strain-Encoded MR: Comparison With Delayed Contrast-Enhanced MR Imaging After Myocardial Infarction
,”
Radiology
,
233
(2), pp.
596
602
.10.1148/radiol.2332031676
24.
Gilson
,
W. D.
,
Yang
,
Z.
,
French
,
B. A.
, and
Epstein
,
F. H.
,
2005
, “
Measurement of Myocardial Mechanics in Mice Before and After Infarction Using Multislice Displacement-Encoded MRI With 3D Motion Encoding
,”
Am. J. Physiol. Heart Circ. Physiol.
,
288
(3), pp.
H1491
H1497
.10.1152/ajpheart.00632.2004
25.
Kramer
,
W.
,
Wizemann
,
V.
,
Thormann
,
J.
,
Bechthold
,
A.
,
Schutterle
,
G.
, and
Lasch
,
H. G.
,
1985
, “
Mechanisms of Altered Myocardial Contractility During Hemodialysis: Importance of Changes in the Ionized Calcium to Plasma Potassium Ratio
,”
Klin. Wochenschr.
,
63
(6), pp.
272
278
.10.1007/BF01731474
26.
Gallagher
,
K. P.
,
Gerren
,
R. A.
,
Choy
,
M.
,
Stirling
,
M. C.
, and
Dysko
,
R. C.
,
1987
, “
Subendocardial Segment Length Shortening at Lateral Margins of Ischemic Myocardium in Dogs
,”
Am. J. Physiol.
,
253
(4), pp.
H826
H837
.
27.
Gallagher
,
K. P.
,
Gerren
,
R. A.
,
Stirling
,
M. C.
,
Choy
,
M.
,
Dysko
,
R. C.
,
McManimon
,
S. P.
, and Dunham, W. R.,
1986
, “
The Distribution of Functional Impairment Across the Lateral Border of Acutely Ischemic Myocardium
,”
Circ. Res.
,
58
(4), pp.
570
583
.10.1161/01.RES.58.4.570
28.
Mazhari
,
R.
,
Omens
,
J. H.
,
Covell
,
J. W.
, and
McCulloch
,
A. D.
,
2000
, “
Structural Basis of Regional Dysfunction in Acutely Ischemic Myocardium
,”
Cardiovasc. Res.
,
47
(2), pp.
284
293
.10.1016/S0008-6363(00)00089-4
29.
Sakai
,
K.
,
Watanabe
,
K.
, and
Millard
,
R. W.
,
1985
, “
Defining the Mechanical Border Zone: A Study in the Pig Heart
,”
Am. J. Physiol.
,
249
(1), pp.
H88
H94
.
30.
Van Leuven
,
S. L.
,
Waldman
,
L. K.
,
McCulloch
,
A. D.
, and
Covell
,
J. W.
,
1994
, “
Gradients of Epicardial Strain Across the Perfusion Boundary During Acute Myocardial Ischemia
,”
Am. J. Physiol.
,
267
(6), pp.
H2348
H2362
.
31.
Weiss
,
J.
,
Maker
,
B.
, and
Govindjee
,
S.
,
1996
, “
Finite Element Implementation of Incompressible Transversely Isotropic Hyperelasticity
,”
Comput. Methods Appl. Mech. Eng.
,
135
(1–2), pp.
107
128
.10.1016/0045-7825(96)01035-3
32.
Walker
,
J. C.
,
Guccione
,
J. M.
,
Jiang
,
Y.
,
Zhang
,
P.
,
Wallace
,
A. W.
,
Hsu
,
E. W.
, and Ratcliffe, M. B.,
2005
, “
Helical Myofiber Orientation After Myocardial Infarction and Left Ventricular Surgical Restoration in Sheep
,”
J. Thorac. Cardiovasc. Surg.
,
129
(2), pp.
382
390
.10.1016/j.jtcvs.2004.06.006
33.
Chen
,
J.
,
Song
,
S. K.
,
Liu
,
W.
,
McLean
,
M.
,
Allen
,
J. S.
,
Tan
,
J.
,
Wickline
,
S. A.
, and
Yu
,
X.
,
2003
, “
Remodeling of Cardiac Fiber Structure After Infarction in Rats Quantified With Diffusion Tensor MRI
,”
Am. J. Physiol. Heart Circ. Physiol.
,
285
(3), pp.
H946
H954
.
34.
Dang
,
A. B.
,
Guccione
,
J. M.
,
Mishell
,
J. M.
,
Zhang
,
P.
,
Wallace
,
A. W.
,
Gorman
,
R. C.
, and
Ratcliffe
,
M. B.
,
2005
, “
Akinetic Myocardial Infarcts Must Contain Contracting Myocytes: Finite-Element Model Study
,”
Am. J. Physiol. Heart Circ. Physiol.
,
288
(4), pp.
H1844
H1850
.10.1152/ajpheart.00961.2003
35.
Dang
,
A. B.
,
Guccione
,
J. M.
,
Zhang
,
P.
,
Wallace
,
A. W.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
III
, and Ratcliffe, M. B.,
2005
, “
Effect of Ventricular Size and Patch Stiffness in Surgical Anterior Ventricular Restoration: A Finite Element Model Study
,”
Ann. Thorac. Surg.
,
79
(1), pp.
185
193
.10.1016/j.athoracsur.2004.06.007
36.
Guccione
,
J. M.
,
Moonly
,
S. M.
,
Wallace
,
A. W.
, and
Ratcliffe
,
M. B.
,
2001
, “
Residual Stress Produced by Ventricular Volume Reduction Surgery Has Little Effect on Ventricular Function and Mechanics: A Finite Element Model Study
,”
J. Thorac. Cardiovasc. Surg.
,
122
(3), pp.
592
599
.10.1067/mtc.2001.114939
37.
Delaunay
,
B. N.
,
1934
, “
Sur la Sphère Vide
, Vol. 7, Izvestia Akademia Nauk SSSR, VII Seria, Otdelenie Matematicheskii i Estestvennyka Nauk, pp.
793
800
.
38.
Moller
,
J. E.
,
Pellikka
,
P. A.
,
Hillis
,
G. S.
, and
Oh
,
J. K.
,
2006
, “
Prognostic Importance of Diastolic Function and Filling Pressure in Patients With Acute Myocardial Infarction
,”
Circulation
,
114
(5), pp.
438
444
.10.1161/CIRCULATIONAHA.105.601005
39.
Moller
,
J. E.
,
Brendorp
,
B.
,
Ottesen
,
M.
,
Kober
,
L.
,
Egstrup
,
K.
,
Poulsen
,
S. H.
, and Christian, T-P.,
2003
, “
Congestive Heart Failure With Preserved Left Ventricular Systolic Function After Acute Myocardial Infarction: Clinical and Prognostic Implications
,”
Eur. J. Heart. Fail.
,
5
(6), pp.
811
819
.10.1016/S1388-9842(03)00159-4
40.
Rechavia
,
E.
,
de Silva
,
R.
,
Nihoyannopoulos
,
P.
,
Lammertsma
,
A. A.
,
Jones
,
T.
, and
Maseri
,
A.
,
1995
, “
Hyperdynamic Performance of Remote Myocardium in Acute Infarction. Correlation Between Regional Contractile Function and Myocardial Perfusion
,”
Eur. Heart J.
,
16
(12), pp.
1845
1850
.
41.
Beyersdorf
,
F.
,
Okamoto
,
F.
,
Buckberg
,
G. D.
,
Sjostrand
,
F.
,
Allen
,
B. S.
,
Acar
,
C.
,
Young
,
H. H.
, and
Bugyi
,
H. I.
,
1989
, “
Studies on Prolonged Acute Regional Ischemia. II. Implications of Progression From Dyskinesia to Akinesia in the Ischemic Segment
,”
J. Thorac. Cardiovasc. Surg.
,
98
(2), pp.
224
233
.
42.
Kerckhoffs
,
R. C.
,
Campbell
,
S. G.
,
Flaim
,
S. N.
,
Howard
,
E. J.
,
Sierra-Aguado
,
J.
,
Mulligan
,
L. J.
, and
McCulloch
,
A. D.
,
2009
, “
Multi-Scale Modeling of Excitation–Contraction Coupling in the Normal and Failing Heart
,”
Conf. Proc. IEEE Eng. Med. Biol. Soc.
,
2009
, pp.
4281
4282
.
43.
Kerckhoffs
,
R. C.
,
Lumens
,
J.
,
Vernooy
,
K.
,
Omens
,
J. H.
,
Mulligan
,
L. J.
,
Delhaas
,
T.
,
Arts
,
T.
,
McCulloch
,
A. D.
, and
Prinzen
,
F. W.
,
2008
, “
Cardiac Resynchronization: Insight From Experimental and Computational Models
,”
Prog. Biophys. Mol. Biol.
,
97
(2–3), pp.
543
561
.10.1016/j.pbiomolbio.2008.02.024
44.
Lee
,
J. T.
,
Ideker
,
R. E.
, and
Reimer
,
K. A.
,
1981
, “
Myocardial Infarct Size and Location in Relation to the Coronary Vascular Bed at Risk in Man
,”
Circulation
,
64
(3), pp.
526
534
.10.1161/01.CIR.64.3.526
45.
Diwan
,
A.
, and
Dorn
,
G. W.
II
,
2007
, “
Decompensation of Cardiac Hypertrophy: Cellular Mechanisms and Novel Therapeutic Targets
,”
Physiology (Bethesda)
,
22
(1), pp.
56
64
.10.1152/physiol.00033.2006
46.
Frey
,
N.
, and
Olson
,
E. N.
,
2003
, “
Cardiac Hypertrophy: The Good, the Bad, and the Ugly
,”
Annu. Rev. Physiol.
,
65
(1), pp.
45
79
.10.1146/annurev.physiol.65.092101.142243
47.
Frey
,
N.
,
Katus
,
H. A.
,
Olson
,
E. N.
, and
Hill
,
J. A.
,
2004
, “
Hypertrophy of the Heart: A New Therapeutic Target?
,”
Circulation
,
109
(13), pp.
1580
1589
.10.1161/01.CIR.0000120390.68287.BB
48.
Farzaneh-Fara
,
A.
, and
Kwong
,
R. Y.
,
2011
, “
Detecting Acute Coronary Syndromes by Magnetic Resonance Imaging
,”
Met. Imaging
,
50
, pp.
15
19
.
49.
Saraste
,
A.
,
Nekolla
,
S.
, and
Schwaiger
,
M.
,
2008
, “
Contrast-Enhanced Magnetic Resonance Imaging in the Assessment of Myocardial Infarction and Viability
,”
J. Nucl. Cardiol.
,
15
(1), pp.
105
117
.10.1007/BF02976902
50.
Takase
,
B.
,
Kihara
,
T.
,
Noya
,
K.
,
Abe
,
Y.
,
Nagata
,
M.
,
Ohsuzu
,
F.
, and Ishihara, M.,
2006
, “
Usefulness of Cardiac Magnetic Resonance Imaging for Detecting Acute Myocardial Infarction in Patients With No Significant Electrocardiogram Changes
,”
Heart Vessels
,
21
(2), pp.
131
134
.10.1007/s00380-005-0864-2
51.
Kwong
,
R. Y.
,
Schussheim
,
A. E.
,
Rekhraj
,
S.
,
Aletras
,
A. H.
,
Geller
,
N.
,
Davis
,
J.
,
Christian
,
T. F.
,
Balaban
,
R. S.
, and
Arai
,
A. E.
,
2003
, “
Detecting Acute Coronary Syndrome in the Emergency Department With Cardiac Magnetic Resonance Imaging
,”
Circulation
,
107
(4), pp.
531
537
.10.1161/01.CIR.0000047527.11221.29
52.
Veress
,
A. I.
,
Raymond
,
G. M.
,
Gullberg
,
G. T.
, and
Bassingthwaighte
,
J. B.
,
2009
, “
Coupled Modeling of the Left Ventricle and the Systemic Circulatory System
,”
SIAM NEWS
,
42
(5).
53.
Veress
,
A. I.
,
Raymond
,
G. M.
,
Gullberg
,
G. T.
, and
Bassingthwaighte
,
J. B. B.
,
2013
, “
Left Ventricular Finite Element Model bounded by a Systemic Circulation Model
,”
ASME J. Biomech. Eng.
,
135
(
5
), p.
054502
.10.1115/1.4023697
54.
Jaffe
,
R.
,
Charron
,
T.
,
Puley
,
G.
,
Dick
,
A.
, and
Strauss
,
B. H.
,
2008
, “
Microvascular Obstruction and the No-Reflow Phenomenon After Percutaneous Coronary Intervention
,”
Circulation
,
117
(24), pp.
3152
3156
.10.1161/CIRCULATIONAHA.107.742312
You do not currently have access to this content.