As major extracellular matrix components, elastin, and collagen play crucial roles in regulating the mechanical properties of the aortic wall and, thus, the normal cardiovascular function. The mechanical properties of aorta, known to vary with age and multitude of diseases as well as the proximity to the heart, have been attributed to the variations in the content and architecture of wall constituents. This study is focused on the role of layer-specific collagen undulation in the variation of mechanical properties along the porcine descending thoracic aorta. Planar biaxial tensile tests are performed to characterize the hyperelastic anisotropic mechanical behavior of tissues dissected from four locations along the thoracic aorta. Multiphoton microscopy is used to image the associated regional microstructure. Exponential-based and recruitment-based constitutive models are used to account for the observed mechanical behavior while considering the aortic wall as a composite of two layers with independent properties. An elevated stiffness is observed in distal regions compared to proximal regions of thoracic aorta, consistent with sharper and earlier collagen recruitment estimated for medial and adventitial layers in the models. Multiphoton images further support our prediction that higher stiffness in distal regions is associated with less undulation in collagen fibers. Recruitment-based models further reveal that regardless of the location, collagen in the media is recruited from the onset of stretching, whereas adventitial collagen starts to engage with a delay. A parameter sensitivity analysis is performed to discriminate between the models in terms of the confidence in the estimated model parameters.

References

References
1.
Humphrey
,
J. D.
,
2002
,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer
,
New York
.
2.
Kassab
,
G. S.
,
2006
, “
Biomechanics of the Cardiovascular System: The Aorta as an Illustratory Example
,”
J. R. Soc. Interface
,
3
(
11
), pp.
719
740
.10.1098/rsif.2006.0138
3.
Burton
,
A. C.
,
1954
, “
Relation of Structure to Function of the Tissues of the Wall of Blood Vessels
,”
Physiol. Rev.
,
34
(
4
), pp.
619
642
.
4.
Wolinsky
,
H.
, and
Glagov
,
S.
,
1964
, “
Structural Basis for the Static Mechanical Properties of the Aortic Media
,”
Circ. Res.
,
14
(5), pp.
400
413
.10.1161/01.RES.14.5.400
5.
Roach
,
M. R.
, and
Burton
,
A. C.
,
1957
, “
The Reason for the Shape of the Distensibility Curves of Arteries
,”
Can. J. Biochem. Physiol.
,
35
(
8
), pp.
681
690
.10.1139/o57-080
6.
Fung
,
Y. C.
,
Fronek
,
K.
, and
Patitucci
,
P.
,
1979
, “
Pseudoelasticity of Arteries and the Choice of Its Mathematical Expression
,”
Am. Physiol. Soc.
,
237
(5), pp.
H620
H631
.
7.
Tsamis
,
A.
,
Krawiec
,
J. T.
, and
Vorp
,
D. A.
,
2013
, “
Elastin and Collagen Fibre Microstructure of the Human Aorta in Ageing and Disease: A Review
,”
J. R. Soc. Interface
,
10
(
83
), p.
20121004
.10.1098/rsif.2012.1004
8.
García-Herrera
,
C. M.
,
Celentano
,
D. J.
,
Cruchaga
,
M. A.
,
Rojo
,
F. J.
,
Atienza
,
J. M.
,
Guinea
,
G. V.
, and
Goicolea
,
J. M.
,
2012
, “
Mechanical Characterisation of the Human Thoracic Descending Aorta: Experiments and Modelling
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(2), pp.
185
193
.10.1080/10255842.2010.520704
9.
Zou
,
Y.
, and
Zhang
,
Y.
,
2009
, “
An Experimental and Theoretical Study on the Anisotropy of Elastin Network
,”
Ann. Biomed. Eng.
,
37
(
8
), pp.
1572
1583
.10.1007/s10439-009-9724-z
10.
Rouleau
,
L.
,
Tremblay
,
D.
,
Cartier
,
R.
,
Mongrain
,
R.
, and
Leask
,
R. L.
,
2012
, “
Regional Variations in Canine Descending Aortic Tissue Mechanical Properties Change With Formalin Fixation
,”
Cardiovasc. Pathol.
,
21
(5), pp.
390
397
.10.1016/j.carpath.2011.12.002
11.
Kim
,
J.
,
Hong
,
J. W.
, and
Baek
,
S.
,
2013
, “
Longitudinal Differences in the Mechanical Properties of the Thoracic Aorta Depend on Circumferential Regions
,”
J. Biomed. Mater. Res. A.
,
101
(5), pp.
1525
1529
.10.1002/jbm.a.34445
12.
Labrosse
,
M. R.
,
Beller
,
C. J.
,
Mesana
,
T.
, and
Veinot
,
J. P.
,
2009
, “
Mechanical Behavior of Human Aortas: Experiments, Material Constants and 3D Finite Element Modeling Including Residual Stress
,”
ASME J. Biomech. Eng.
,
42
(8), pp.
996
1004
.10.1016/j.jbiomech.2009.02.009
13.
Roccabianca
,
S.
,
Figueroa
,
C. A.
,
Tellides
,
G.
, and
Humphrey
,
J. D.
,
2014
, “
Quantification of Regional Differences in Aortic Stiffness in the Aging Human
,”
J. Mech. Behav. Biomed. Mater.
,
29
, pp.
618
634
.10.1016/j.jmbbm.2013.01.026
14.
Harkness
,
M. L.
,
Harkness
,
R. D.
, and
McDonald
,
D. A.
,
1957
, “
The Collagen and Elastin Content of the Arterial Wall in the Dog
,”
Proc. R. Soc. London, Ser. B
,
146
(925), pp.
541
551
.10.1098/rspb.1957.0029
15.
Sokolis
,
D. P.
,
2007
, “
Passive Mechanical Properties and Structure of the Aorta: Segmental Analysis
,”
Acta Physiol.
,
190
(
4
), pp.
277
289
.10.1111/j.1748-1716.2006.01661.x
16.
Halloran
,
B. G.
,
Davis
,
V. A.
,
McManus
,
B. M.
,
Lynch
,
T. G.
, and
Baxter
,
B. T.
,
1995
, “
Localization of Aortic Disease Is Associated With Intrinsic Differences in Aortic Structure
,”
J. Surg. Res.
,
59
(
1
), pp.
17
22
.10.1006/jsre.1995.1126
17.
Cheuk
,
B. L.
, and
Cheng
,
S. W.
,
2005
, “
Expression of Integrin Alpha5beta1 and the Relationship to Collagen and Elastin Content in Human Suprarenal and Infrarenal Aortas
,”
Vasc. Endovasc. Surg.
,
39
(
3
), pp.
245
251
.10.1177/153857440503900305
18.
Wolinsky
,
H.
, and
Glagov
,
S.
,
1969
, “
Comparison of Abdominal and Thoracic Aortic Medial Structure in Mammals
,”
Circ. Res.
,
25
(
6
), pp.
677
686
.10.1161/01.RES.25.6.677
19.
Sokolis
,
D. P.
,
Boudoulas
,
H.
,
Kavantzas
,
N. G.
,
Kostomitsopoulos
,
N.
,
Agapitos
,
E. V.
, and
Karayannacos
,
P. E.
,
2002
, “
A Morphometric Study of the Structural Characteristics of the Aorta in Pigs Using an Image Analysis Method
,”
Anat., Histol., Embryol.
,
31
(
1
), pp.
21
30
.10.1046/j.1439-0264.2002.00356.x
20.
Purslow
,
P. P.
,
1983
, “
Positional Variations in Fracture Toughness, Stiffness and Strength of Descending Thoracic Pig Aorta
,”
ASME J. Biomech. Eng.
,
16
(
11
), pp.
947
953
.10.1016/0021-9290(83)90058-1
21.
Guo
,
X.
, and
Kassab
,
G. S.
,
2003
, “
Variation of Mechanical Properties Along the Length of the Aorta in C57bl/6 Mice
,”
Am. J. Physiol. Heart Circ. Physiol.
,
285
(
6
), pp.
H2614
H2622
.10.1152/ajpheart.00567.2003
22.
Haskett
,
D.
,
Johnson
,
G.
,
Zhou
,
A.
,
Utzinger
,
U.
, and
Vande Geest
,
J.
,
2010
, “
Microstructural and Biomechanical Alterations of the Human Aorta as a Function of Age and Location
,”
Biomech. Model Mechanobiol.
,
9
(
6
), pp.
725
736
.10.1007/s10237-010-0209-7
23.
Rachev
,
A.
,
Greenwald
,
S.
, and
Shazly
,
T.
,
2013
, “
Are Geometrical and Structural Variations Along the Length of the Aorta Governed by a Principle of “Optimal Mechanical Operation?
,”
ASME J. Biomech. Eng.
,
135
(
8
), p.
081006
.10.1115/1.4024664
24.
Martin
,
C.
,
Pham
,
T.
, and
Sun
,
W.
,
2011
, “
Significant Differences in the Material Properties Between Aged Human and Porcine Aortic Tissues
,”
Eur. J. Cardiothorac. Surg.
,
40
(
1
), pp.
28
34
.10.1016/j.ejcts.2010.08.056
25.
Lillie
,
M. A.
,
Armstrong
,
T. E.
,
Gérard
,
S. G.
,
Shadwick
,
R. E.
, and
Gosline
,
J. M.
,
2012
, “
Contribution of Elastin and Collagen to the Inflation Response of the Pig Thoracic Aorta: Assessing Elastin's Role in Mechanical Homeostasis
,”
ASME J. Biomech. Eng.
,
45
(
12
), pp.
2133
2141
.10.1016/j.jbiomech.2012.05.034
26.
Lindeman
,
J. H. N.
,
Ashcroft
,
B. A.
,
Beenakker
,
J. W. M.
,
Es
,
M. V.
,
Koekkoek
,
N. B. R.
,
Prins
,
F. A.
,
Tielemans
,
J. F.
,
Abdul-Hussien
,
H.
,
Bank
,
R. A.
, and
Oosterkamp
,
T. H.
,
2010
, “
Distinct Defects in Collagen Microarchitecture Underlie Vessel-Wall Failure in Advanced Abdominal Aneurysms and Aneurysms in Marfan Syndrome
,”
Proc. Natl. Acad. Sci. U. S. A.
,
107
(
2
), pp.
862
865
.10.1073/pnas.0910312107
27.
Chow
,
M. J.
,
Turcotte
,
R.
,
Lin
,
C. P.
, and
Zhang
,
Y.
,
2014
, “
Arterial Extracellular Matrix: A Mechanobiological Study of the Contributions and Interactions of Elastin and Collagen
,”
Biophys. J.
,
106
(
12
), pp.
2684
2692
.10.1016/j.bpj.2014.05.014
28.
Chow
,
M. J.
,
Mondonedo
,
J. R.
,
Johnson
,
V. M.
, and
Zhang
,
Y.
,
2013
, “
Progressive Structural and Biomechanical Changes in Elastin Degraded Aorta
,”
Biomech. Model. Mechanobiol.
,
12
(
2
), pp.
361
372
.10.1007/s10237-012-0404-9
29.
Sacks
,
M. S.
,
1999
, “
A Method for Planar Biaxial Mechanical Testing That Includes In-Plane Shear
,”
ASME J. Biomech. Eng.
,
121
(
5
), pp.
551
555
.10.1115/1.2835086
30.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity
,
61
(
3
), pp.
1
48
.10.1023/A:1010835316564
31.
Humphrey
,
J. D.
,
2003
, “
Continuum Biomechanics of Soft Biological Tissues
,”
Proc. R. Soc. London, Ser. A
,
459
(2029), pp.
3
46
.10.1098/rspa.2002.1060
32.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
,
2010
, “
Constitutive Modelling of Arteries
,”
Proc. R. Soc. London, Ser. A
,
466
(2118), pp.
1551
1597
.10.1098/rspa.2010.0058
33.
Alastrué
,
V.
,
Sáez
,
P.
,
Martínez
,
M. A.
, and
Doblaré
,
M.
,
2010
, “
On the Use of the Bingham Statistical Distribution in Microsphere-Based Constitutive Models for Arterial Tissue
,”
Mech. Res. Commun.
,
37
(
8
), pp.
700
706
.10.1016/j.mechrescom.2010.10.001
34.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc. Interface
,
3
(6), pp.
15
35
.10.1098/rsif.2005.0073
35.
Schriefl
,
A. J.
,
Zeindlinger
,
G.
,
Pierce
,
D. M.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
,
2012
, “
Determination of the Layer-Specific Distributed Collagen Fibre Orientations in Human Thoracic and Abdominal Aortas and Common Iliac Arteries
,”
J. R. Soc. Interface
,
9
(71), pp.
1275
1286
.10.1098/rsif.2011.0727
36.
Sommer
,
G.
,
Regitnig
,
P.
,
Költringer
,
L.
, and
Holzapfel
,
G. A.
,
2010
, “
Biaxial Mechanical Properties of Intact and Layer-Dissected Human Carotid Arteries at Physiological and Supraphysiological Loadings
,”
Am. J. Physiol. Heart Circ. Physiol.
,
298
(3), pp.
H898
H912
.10.1152/ajpheart.00378.2009
37.
von Maltzahn
,
W. W.
,
Besdo
,
D.
, and
Wiemer
,
W.
,
1981
, “
Elastic Properties of Arteries: A Nonlinear Two-Layer Cylindrical Model
,”
ASME J. Biomech. Eng.
,
14
(
6
), pp.
389
397
.10.1016/0021-9290(81)90056-7
38.
Sokolis
,
D. P.
,
Kritharis
,
E. P.
, and
Iliopoulos
,
D. C.
,
2012
, “
Effect of Layer Heterogeneity on the Biomechanical Properties of Ascending Thoracic Aortic Aneurysms
,”
Med. Biol. Eng. Comput.
,
50
(
12
), pp.
1227
1237
.10.1007/s11517-012-0949-x
39.
Holzapfel
,
G. A.
,
2000
,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
New York
.
40.
Badel
,
P.
,
Avril
,
S.
,
Lessner
,
S.
, and
Sutton
,
M.
,
2012
, “
Mechanical Identification of Layer-Specific Properties of Mouse Carotid Arteries Using 3D-DIC and a Hyperelastic Anisotropic Constitutive Model
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
1
), pp.
37
48
.10.1080/10255842.2011.586945
41.
Lanir
,
Y.
,
1979
, “
A Structural Theory for the Homogeneous Biaxial Stress–Strain Relationships in Flat Collagenous Tissues
,”
ASME J. Biomech. Eng.
,
12
(
6
), pp.
423
436
.10.1016/0021-9290(79)90027-7
42.
Wuyts
,
F. L.
,
Vanhuyse
, V
. J.
,
Langewouters
,
G. J.
,
Decraemer
,
W. F.
,
Raman
,
E. R.
, and
Buyle
,
S.
,
1995
, “
Elastic Properties of Human Aortas in Relation to Age and Atherosclerosis: A Structural Model
,”
Phys. Med. Biol.
,
40
(
10
), pp.
1577
1597
.10.1088/0031-9155/40/10/002
43.
Zulliger
,
M. A.
,
Frideza
,
P.
,
Hayashi
,
K.
, and
Stergiopulos
,
N.
,
2004
, “
A Strain Energy Function for Arteries Accounting for Wall Composition and Structure
,”
ASME J. Biomech. Eng.
,
37
(
7
), pp.
989
1000
.10.1016/j.jbiomech.2003.11.026
44.
Cacho
,
F.
,
Elbischger
,
P. J.
,
Rodríguez
,
J. F.
,
Doblaré
,
M.
, and
Holzapfel
,
G. A.
,
2007
, “
A Constitutive Model for Fibrous Tissues Considering Collagen Fiber Crimp
,”
Int. J. Nonlinear Mech.
,
42
, pp.
391
402
.10.1016/j.ijnonlinmec.2007.02.002
45.
Sacks
,
M. S.
,
2003
, “
Incorporation of Experimentally-Derived Fiber Orientation Into a Structural Constitutive Model for Planar Collagenous Tissues
,”
ASME J. Biomech. Eng.
,
125
(
2
), pp.
280
287
.10.1115/1.1544508
46.
Sacks
,
M. S.
, and
Sun
,
W.
,
2003
, “
Multiaxial Mechanical Behavior of Biological Materials
,”
Annu. Rev. Biomed. Eng.
,
5
(1), pp.
251
284
.10.1146/annurev.bioeng.5.011303.120714
47.
Hill
,
M. R.
,
Duan
,
X.
,
Gibson
,
G. A.
,
Watkins
,
S.
, and
Robertson
,
A. M.
,
2012
, “
A Theoretical and Non-Destructive Experimental Approach for Direct Inclusion of Measured Collagen Orientation and Recruitment Into Mechanical Models of the Artery Wall
,”
ASME J. Biomech. Eng.
,
45
(5), pp.
762
771
.10.1016/j.jbiomech.2011.11.016
48.
Rezakhaniha
,
R.
,
Fonck
,
E.
,
Genoud
,
C.
, and
Stergiopulos
,
N.
,
2011
, “
Role of Elastin Anisotropy in Structural Strain Energy Functions of Arterial Tissue
,”
Biomech. Model. Mechanobiol.
,
10
(
4
), pp.
599
611
.10.1007/s10237-010-0259-x
49.
Zeinali-Davarani
,
S.
,
Chow
,
M. J.
,
Turcotte
,
R.
, and
Zhang
,
Y.
,
2013
, “
Characterization of Biaxial Mechanical Behavior of Porcine Aorta Under Gradual Elastin Degradation
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1528
1538
.10.1007/s10439-012-0733-y
50.
Zulliger
,
M. A.
, and
Stergiopulos
,
N.
,
2007
, “
Structural Strain Energy Function Applied to the Ageing of the Human Aorta
,”
ASME J. Biomech. Eng.
,
40
(
14
), pp.
3061
3069
.10.1016/j.jbiomech.2007.03.011
51.
Agianniotis
,
A.
,
Rezakhaniha
,
R.
, and
Stergiopulos
,
N.
,
2011
, “
A Structural Constitutive Model Considering Angular Dispersion and Waviness of Collagen Fibres of Rabbit Facial Veins
,”
Biomed. Eng.
,
10
, p.
18
.10.1186/1475-925X-10-18
52.
Buck
,
R. C.
,
1987
, “
Collagen Fibril Diameter in the Common Carotid Artery of the Rat
,”
Connect. Tissue Res.
,
16
(
2
), pp.
121
129
.10.3109/03008208709002000
53.
Merrilees
,
M. J.
,
Tiang
,
K. M.
, and
Scott
,
L.
,
1987
, “
Changes in Collagen Fibril Diameters Across Artery Walls Including a Correlation With Glycosaminoglycan Content
,”
Connect. Tissue Res.
,
16
(
3
), pp.
237
257
.10.3109/03008208709006979
54.
Dingemans
,
K. P.
,
Teeling
,
P.
,
Lagendijk
,
J. H.
, and
Becker
,
A. E.
,
2000
, “
Extracellular Matrix of the Human Aortic Media: An Ultrastructural Histochemical and Immunohistochemical Study of the Adult Aortic Media
,”
Anat. Rec.
,
258
(
1
), pp.
1
14
.10.1002/(SICI)1097-0185(20000101)258:1<1::AID-AR1>3.0.CO;2-7
55.
Eriksen
,
H. A.
,
Pajala
,
A.
,
Leppilahti
,
J.
, and
Risteli
,
J.
,
2002
, “
Increased Content of Type III Collagen at the Rupture Site of Human Achilles Tendon
,”
J. Orthop. Res.
,
20
(
6
), pp.
1352
1357
.10.1016/S0736-0266(02)00064-5
56.
Wagner
,
H. P.
, and
Humphrey
,
J. D.
,
2011
, “
Differential Passive and Active Biaxial Mechanical Behaviors of Muscular and Elastic Arteries: Basilar Versus Common Carotid
,”
ASME J. Biomech. Eng.
,
133
(
5
), p.
051009
.10.1115/1.4003873
57.
Ellwein
,
L. M.
,
Tran
,
H. T.
,
Zapata
,
C.
,
Novak
,
V.
, and
Olufsen
,
M. S.
,
2008
, “
Sensitivity Analysis and Model Assessment: Mathematical Models for Arterial Blood Flow and Blood Pressure
,”
Cardiovasc. Eng.
,
8
(
2
), pp.
94
108
.10.1007/s10558-007-9047-3
58.
Beck
,
J. V.
, and
Arnold
,
K. J.
,
1977
,
Parameter Estimation in Engineering and Science
,
Wiley
,
New York
.
59.
Zoumi
,
A.
,
Lu
,
X.
,
Kassab
,
G. S.
, and
Tromberg
,
B. J.
,
2004
, “
Imaging Coronary Artery Microstructure Using Second-Harmonic and Two-Photon Fluorescence Microscopy
,”
Biophys. J.
,
87
(
4
), pp.
2778
2786
.10.1529/biophysj.104.042887
60.
Veilleux
,
I.
,
Spencer
,
J. A.
,
Biss
,
D. P.
, and
Lin
,
C. P.
,
2008
, “
In Vivo Cell Tracking With Video Rate Multimodality Laser Scanning Microscopy
,”
IEEE J. Sel. Top. Quantum Electron.
,
14
(1), pp.
10
18
.10.1109/JSTQE.2007.912751
61.
Meijering
,
E.
,
Jacob
,
M.
,
Sarria
,
J. C.
,
Steiner
,
P.
,
Hirling
,
H.
, and
Unser
,
M.
,
2004
, “
Design and Validation of a Tool for Neurite Tracing and Analysis in Fluorescence Microscopy Images
,”
Cytometry, Part A
,
58
(
2
), pp.
167
176
.10.1002/cyto.a.20022
62.
Meijering
,
E.
,
2010
, “
Neuron Tracing in Perspective
,”
Cytometry, Part A
,
77
(7), pp.
693
704
.10.1002/cyto.a.20895
63.
Schriefl
,
A. J.
,
Collins
,
M. J.
,
Pierce
,
D. M.
,
Holzapfel
,
G. A.
,
Niklason
,
L. E.
, and
Humphrey
,
J. D.
,
2012
, “
Remodeling of Intramural Thrombus and Collagen in an Ang-II Infusion ApoE/Model of Dissecting Aortic Aneurysms
,”
Thromb. Res.
,
130
(3), pp.
e139
e146
.10.1016/j.thromres.2012.04.009
64.
Fata
,
B.
,
Carruthers
,
C. A.
,
Gibson
,
G.
,
Watkins
,
S. C.
,
Gottlieb
,
D.
,
Mayer
,
J. E.
, and
Sacks
,
M. S.
,
2013
, “
Regional Structural and Biomechanical Alterations of the Ovine Main Pulmonary Artery During Postnatal Growth
,”
ASME J. Biomech. Eng.
,
135
(
3–4
),
p
. 021022. 10.1115/1.4023389
65.
Rezakhaniha
,
R.
,
Agianniotis
,
A.
,
Schrauwen
,
J. T. C.
,
Griffa
,
A.
,
Sage
,
D.
,
Bouten
,
C. V. C.
,
van de Vosse
,
F. N.
,
Unser
,
M.
, and
Stergiopulos
,
N.
,
2012
, “
Experimental Investigation of Collagen Waviness and Orientation in the Arterial Adventitia Using Confocal Laser Scanning Microscopy
,”
Biomech. Model. Mechanobiol.
,
11
(3–4), pp.
461
473
.10.1007/s10237-011-0325-z
66.
Wang
,
R.
,
Brewster
,
L. P.
, and
Gleason
,
R. L.
,
2013
, “
In-Situ Characterization of the Uncrimping Process of Arterial Collagen Fibers Using Two-Photon Confocal Microscopy and Digital Image Correlation
,”
ASME J. Biomech. Eng.
,
46
(15), pp.
2726
2729
.10.1016/j.jbiomech.2013.08.001
67.
Tanaka
,
T. T.
, and
Fung
,
Y. C.
,
1974
, “
Elastic and Inelastic Properties of the Canine Aorta and Their Variation Along the Aortic Tree
,”
ASME J. Biomech. Eng.
,
7
(
4
), pp.
357
370
.10.1016/0021-9290(74)90031-1
68.
Fonck
,
E.
,
Prod'hom
,
G.
,
Roy
,
S.
,
Augsburger
,
L.
,
Rufenacht
,
D. A.
, and
Stergiopulos
,
N.
,
2007
, “
Effect of Elastin Degradation on Carotid Wall Mechanics as Assessed by a Constituent-Based Biomechanical Model
,”
Am. J. Physiol. Heart. Circ. Physiol.
,
292
(6), pp.
H2754
H2763
.10.1152/ajpheart.01108.2006
69.
Ferruzzi
,
J.
,
Collins
,
M. J.
,
Yeh
,
A. T.
, and
Humphrey
,
J. D.
,
2011
, “
Mechanical Assessment of Elastin Integrity in Fibrillin-1-Deficient Carotid Arteries: Implications for Marfan Syndrome
,”
Cardiovasc. Res.
,
92
(
2
), pp.
287
295
.10.1093/cvr/cvr195
70.
Yu
,
Q.
,
Zhou
,
J.
, and
Fung
,
Y. C.
,
1993
, “
Neutral Axis Location in Bending and Young's Modulus of Different Layers of Arterial Wall
,”
Am. J. Physiol.
,
265
(1), pp.
H52
H60
.
71.
O'Connell
,
M. K.
,
Murthy
,
S.
,
Phan
,
S.
,
Xu
,
C.
,
Buchanan
,
J.
,
Spilker
,
R.
,
Dalman
,
R., L.
,
Zarins
,
C. K.
,
Denk
,
W.
, and
Taylor
,
C. A.
,
2008
, “
The Three-Dimensional Micro- and Nanostructure of the Aortic Medial Lamellar Unit Measured Using 3D Confocal and Electron Microscopy Imaging
,”
Matrix Biol.
,
27
(3), pp.
171
181
.10.1016/j.matbio.2007.10.008
72.
Holzapfel
,
G. A.
,
Sommer
,
G.
,
Gasser
,
T. C.
, and
Regitnig
,
P.
,
2005
, “
Determination of Layer-Specific Mechanical Properties of Human Coronary Arteries With Nonatherosclerotic Intimal Thickening and Related Constitutive Modeling
,”
Am. J. Physiol. Heart Circ. Physiol.
,
289
(5), pp.
H2048
H2058
.10.1152/ajpheart.00934.2004
73.
Aoki
,
T.
,
Ohashi
,
T.
,
Matsumoto
,
T.
, and
Sato
,
M.
,
1997
, “
The Pipette Aspiration Applied to the Local Stiffness Measurement of Soft Tissues
,”
Ann. Biomed. Eng.
,
25
(
3
), pp.
581
587
.10.1007/BF02684197
74.
Valentín
,
A.
, and
Humphrey
,
J. D.
,
2009
, “
Parameter Sensitivity Study of a Constrained Mixture Model of Arterial Growth and Remodeling
,”
ASME J. Biomech. Eng.
,
131
(
10
), p.
101006
.10.1115/1.3192144
75.
Ogden
,
R. W.
,
Saccomandi
,
G.
, and
Sgura
,
I.
,
2004
, “
Fitting Hyperelastic Models to Experimental Data
,”
Comput. Mech.
,
34
(
6
), pp.
484
502
.10.1007/s00466-004-0593-y
76.
Zeinali-Davarani
,
S.
,
Choi
,
J.
, and
Baek
,
S.
,
2009
, “
On Parameter Estimation for Biaxial Mechanical Behavior of Arteries
,”
ASME J. Biomech. Eng.
,
42
(
4
), pp.
524
530
.10.1016/j.jbiomech.2008.11.022
77.
Han
,
H. C.
, and
Fung
,
Y. C.
,
1991
, “
Species Dependence of the Zero-Stress State of Aorta: Pig Versus Rat
,”
ASME J. Biomech. Eng.
,
113
(
4
), pp.
446
451
.10.1115/1.2895425
78.
Wan
,
W.
,
Dixon
,
J. B.
, and
Gleason
,
R. L.
Jr.
,
2012
, “
Constitutive Modeling of Mouse Carotid Arteries Using Experimentally Measured Microstructural Parameters
,”
Biophys. J.
,
102
(
12
), pp.
2916
2925
.10.1016/j.bpj.2012.04.035
79.
Gasser
,
T. C.
,
Gallinetti
,
S.
,
Xing
,
X.
,
Forsell
,
C.
,
Swedenborg
,
J.
, and
Roy
,
J.
,
2012
, “
Spatial Orientation of Collagen Fibers in the Abdominal Aortic Aneurysm's Wall and Its Relation to Wall Mechanics
,”
Acta Biomater.
,
8
(
8
), pp.
3091
3103
.10.1016/j.actbio.2012.04.044
80.
Lokshin
,
O.
, and
Lanir
,
Y.
,
2009
, “
Micro and Macro Rheology of Planar Tissues
,”
Biomaterials
,
30
(
17
), pp.
3118
3127
.10.1016/j.biomaterials.2009.02.039
81.
Gleason
,
R. L.
,
Taber
,
L. A.
, and
Humphrey
,
J. D.
,
2004
, “
A 2D Model of Flow-Induced Alterations in the Geometry, Structure, and Properties of Carotid Arteries
,”
ASME J. Biomech. Eng.
,
126
(
3
), pp.
371
381
.10.1115/1.1824130
82.
Valentín
,
A.
,
Cardamone
,
L.
,
Baek
,
S.
, and
Humphrey
,
J. D.
,
2009
, “
Complementary Vasoactivity and Matrix Remodelling in Arterial Adaptations to Altered Flow and Pressure
,”
J. R. Soc. Interface
,
6
(
32
), pp.
293
306
.10.1098/rsif.2008.0254
83.
Hansen
,
L.
,
Wan
,
W.
, and
Gleason
,
R. L.
,
2009
, “
Microstructurally Motivated Constitutive Modeling of Mouse Arteries Cultured Under Altered Axial Stretch
,”
ASME J. Biomech. Eng.
,
131
(
10
), p.
101015
.10.1115/1.3207013
84.
Bellini
,
C.
,
Ferruzzi
,
J.
,
Roccabianca
,
S.
,
Di Martino
,
E. S.
, and
Humphrey
,
J. D.
,
2014
, “
A Microstructurally Motivated Model of Arterial Wall Mechanics With Mechanobiological Implications
,”
Ann. Biomed. Eng.
,
42
(
3
), pp.
488
502
.10.1007/s10439-013-0928-x
85.
Zeinali-Davarani
,
S.
,
Raguin
,
L. G.
,
Vorp
,
D. A.
, and
Baek
,
S.
,
2011
, “
Identification of In Vivo Material and Geometric Parameters of a Human Aorta: Toward Patient Specific Modeling of Abdominal Aortic Aneurysm
,”
Biomech. Model Mechanobiol.
,
10
(
5
), pp.
689
699
.10.1007/s10237-010-0266-y
You do not currently have access to this content.