Due to expensive nature of clinical trials, implantable cardiac devices should first be extensively characterized in vitro. Prosthetic heart valves (PHVs), an important class of these devices, have been shown to be associated with thromboembolic complications. Although various in vitro systems have been designed to quantify blood-cell damage and platelet activation caused by nonphysiological hemodynamic shear stresses in these PHVs, very few systems attempt to characterize both blood damage and fluid dynamics aspects of PHVs in the same test system. Various numerical modeling methodologies are also evolving to simulate the structural mechanics, fluid mechanics, and blood damage aspects of these devices. This article presents a completely hemocompatible small-volume test-platform that can be used for thrombogenicity studies and experimental fluid mechanics characterization. Using a programmable piston pump to drive freshly drawn human blood inside a cylindrical column, the presented system can simulate various physiological and pathophysiological conditions in testing PHVs. The system includes a modular device-mounting chamber, and in this presented case, a 23 mm St. Jude Medical (SJM) Regents® mechanical heart valve (MHV) in aortic position was used as the test device. The system was validated for its capability to quantify blood damage by measuring blood damage induced by the tester itself (using freshly drawn whole human blood). Blood damage levels were ascertained through clinically relevant assays on human blood while fluid dynamics were characterized using time-resolved particle image velocimetry (PIV) using a blood-mimicking fluid. Blood damage induced by the tester itself, assessed through Thrombin-anti-Thrombin (TAT), Prothrombin factor 1.2 (PF1.2), and hemolysis (Drabkins assay), was within clinically accepted levels. The hydrodynamic performance of the tester showed consistent, repeatable physiological pressure and flow conditions. In addition, the system contains proximity sensors to accurately capture leaflet motion during the entire cardiac cycle. The PIV results showed skewing of the leakage jet, caused by the asymmetric closing of the two leaflets. All these results are critical to characterizing the blood damage and fluid dynamics characteristics of the SJM Regents® MHV, proving the utility of this tester as a precise system for assessing the hemodynamics and thrombogenicity for various PHVs.

References

References
1.
Wootton
,
D. M.
, and
Ku
,
D. N.
,
1999
, “
Fluid Mechanics of Vascular Systems, Diseases, and Thrombosis
,”
Ann. Rev. Biomed. Eng.
,
1
, pp.
299
329
.10.1146/annurev.bioeng.1.1.299
2.
Ruggeri
,
Z. M.
,
Orje
,
J. N.
,
Habermann
,
R.
,
Federici
,
A. B.
, and
Reininger
,
A. J.
,
2006
, “
Activation-Independent Platelet Adhesion and Aggregation Under Elevated Shear Stress
,”
Blood
,
108
(
6
), pp.
1903
1910
.10.1182/blood-2006-04-011551
3.
Nesbitt
,
W. S.
,
Westein
,
E.
,
Tovar-Lopez
,
F. J.
,
Tolouei
,
E.
,
Mitchell
,
A.
,
Fu
,
J.
,
Carberry
,
J.
,
Fouras
,
A.
, and
Jackson
,
S. P.
,
2009
, “
A Shear Gradient-Dependent Platelet Aggregation Mechanism Drives Thrombus Formation
,”
Nat. Med.
,
15
(
6
), pp.
665
673
.10.1038/nm.1955
4.
Yin
,
W.
,
Alemu
,
Y.
,
Affeld
,
K.
,
Jesty
,
J.
, and
Bluestein
,
D.
,
2004
, “
Flow-Induced Platelet Activation in Bileaflet and Monoleaflet Mechanical Heart Valves
,”
Ann. Biomed. Eng.
,
32
(
8
), pp.
1058
1066
.10.1114/B:ABME.0000036642.21895.3f
5.
Fallon
,
A. M.
,
Shah
,
N.
,
Marzec
,
U. M.
,
Warnock
,
J. N.
,
Yoganathan
,
A. P.
, and
Hanson
,
S. R.
,
2006
, “
Flow and Thrombosis at Orifices Simulating Mechanical Heart Valve Leakage Regions
,”
ASME J. Biomech. Eng.
,
128
(
1
), pp.
30
39
.10.1115/1.2133768
6.
Nanna
,
J. C.
,
Wivholm
,
J. A.
,
Deutsch
,
S.
, and
Manning
,
K. B.
,
2011
, “
Flow Field Study Comparing Design Iterations of a 50 cc Left Ventricular Assist Device
,”
ASAIO J.
,
57
(
5
), pp.
349
357
.10.1097/MAT.0b013e318224e20b
7.
Roszelle
,
B. N.
,
Deutsch
,
S.
,
Weiss
,
W. J.
, and
Manning
,
K. B.
,
2011
, “
Flow Visualization of a Pediatric Ventricular Assist Device During Stroke Volume Reductions Related to Weaning
,”
Ann. Biomed. Eng.
,
39
(
7
), pp.
2046
2058
.10.1007/s10439-011-0291-8
8.
Schonberger
,
M.
,
Deutsch
,
S.
, and
Manning
,
K. B.
,
2012
, “
The Influence of Device Position on the Flow Within the Penn State 12 cc Pediatric Ventricular Assist Device
,”
ASAIO J.
,
58
(
5
), pp.
481
493
.10.1097/MAT.0b013e3182639a18
9.
Slepian
,
M. J.
,
Alemu
,
Y.
,
Girdhar
,
G.
,
Soares
,
J. S.
,
Smith
,
R. G.
,
Einav
,
S.
, and
Bluestein
,
D.
,
2013
, “
The Syncardia() Total Artificial Heart: In Vivo, In Vitro, and Computational Modeling Studies
,”
J. Biomech.
,
46
(
2
), pp.
266
275
.10.1016/j.jbiomech.2012.11.032
10.
Thompson
,
L. O.
,
Loebe
,
M.
, and
Noon
,
G. P.
,
2003
, “
What Price Support? Ventricular Assist Device Induced Systemic Response
,”
ASAIO J.
,
49
(
5
), pp.
518
526
.10.1097/01.MAT.0000085672.42122.49
11.
Topper
,
S. R.
,
Navitsky
,
M. A.
,
Medvitz
,
R. B.
,
Paterson
,
E. G.
,
Siedlecki
,
C. A.
,
Slattery
,
M. J.
,
Deutsch
,
S.
,
Rosenberg
,
G.
, and
Manning
,
K. B.
,
2014
, “
The Use of Fluid Mechanics to Predict Regions of Microscopic Thrombus Formation in Pulsatile VADs
,”
Cardiovasc. Eng. Technol.
,
5
(
1
), pp.
54
69
.10.1007/s13239-014-0174-x
12.
Trost
,
J. C.
, and
Hillis
,
L. D.
,
2006
, “
Intra-Aortic Balloon Counterpulsation
,”
Am. J. Cardiol.
,
97
(
9
), pp.
1391
1398
.10.1016/j.amjcard.2005.11.070
13.
Zhang
,
T.
,
Cheng
,
G.
,
Koert
,
A.
,
Zhang
,
J.
,
Gellman
,
B.
,
Yankey
,
G. K.
,
Satpute
,
A.
,
Dasse
,
K. A.
,
Gilbert
,
R. J.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2009
, “
Functional and Biocompatibility Performances of an Integrated Maglev Pump-Oxygenator
,”
Artif. Organs
,
33
(
1
), pp.
36
45
.10.1111/j.1525-1594.2008.00672.x
14.
Busch
,
R.
,
Strohbach
,
A.
,
Rethfeldt
,
S.
,
Walz
,
S.
,
Busch
,
M.
,
Petersen
,
S.
,
Felix
,
S.
, and
Sternberg
,
K.
,
2014
, “
New Stent Surface Materials: The Impact of Polymer-Dependent Interactions of Human Endothelial Cells, Smooth Muscle Cells, and Platelets
,”
Acta Biomater.
,
10
(
2
), pp.
688
700
.10.1016/j.actbio.2013.10.015
15.
Eppihimer
,
M. J.
,
Sushkova
,
N.
,
Grimsby
,
J. L.
,
Efimova
,
N.
,
Kai
,
W.
,
Larson
,
S.
,
Forsyth
,
B.
,
Huibregtse
,
B. A.
,
Dawkins
,
K. D.
,
Wilson
,
G. J.
, and
Granada
,
J. F.
,
2013
, “
Impact of Stent Surface on Thrombogenicity and Vascular Healing: A Comparative Analysis of Metallic and Polymeric Surfaces
,”
Circulation
,
6
(
4
), pp.
370
377
.10.1161/CIRCINTERVENTIONS.113.000120
16.
Hansi
,
C.
,
Arab
,
A.
,
Rzany
,
A.
,
Ahrens
,
I.
,
Bode
,
C.
, and
Hehrlein
,
C.
,
2009
, “
Differences of Platelet Adhesion and Thrombus Activation on Amorphous Silicon Carbide, Magnesium Alloy, Stainless Steel, and Cobalt Chromium Stent Surfaces
,”
Catheterization Cardiovasc. Interventions
,
73
(
4
), pp.
488
496
.10.1002/ccd.21834
17.
Kolandaivelu
,
K.
,
Swaminathan
,
R.
,
Gibson
,
W. J.
,
Kolachalama
,
V. B.
,
Nguyen-Ehrenreich
,
K. L.
,
Giddings
,
V. L.
,
Coleman
,
L.
,
Wong
,
G. K.
, and
Edelman
,
E. R.
,
2011
, “
Stent Thrombogenicity Early in High-Risk Interventional Settings is Driven by Stent Design and Deployment and Protected by Polymer-Drug Coatings
,”
Circulation
,
123
(
13
), pp.
1400
1409
.10.1161/CIRCULATIONAHA.110.003210
18.
Walker
,
E. K.
,
Nauman
,
E. A.
,
Allain
,
J. P.
, and
Stanciu
,
L. A.
, “
An In Vitro Model for Preclinical Testing of Thrombogenicity of Resorbable Metallic Stents
,”
J. Biomed. Mater. Res. Part A
(in press).
19.
Walter
,
T.
,
Rey
,
K. S.
,
Wendel
,
H. P.
,
Szabo
,
S.
,
Suselbeck
,
T.
,
Dempfle
,
C. E.
,
Borggrefe
,
M.
,
Swoboda
,
S.
,
Beyer
,
M. E.
, and
Hoffmeister
,
H. M.
,
2010
, “
Thrombogenicity of Sirolimus-Eluting Stents and Bare Metal Stents: Evaluation in the Early Phase After Stent Implantation
,”
In Vivo
,
24
(
5
), pp.
635
639
.
20.
Dembitsky
,
W. P.
,
2006
, “
REMATCH and Beyond: The Cost of Treating Heart Failure Using an Implantable Left Ventricular Assist Device
,”
Semin. Cardiothorac. Vasc. Anesth.
,
10
(
3
), pp.
253
255
.10.1177/1089253206291148
21.
Paul
,
R.
,
Marseille
,
O.
,
Hintze
,
E.
,
Huber
,
L.
,
Schima
,
H.
,
Reul
,
H.
, and
Rau
,
G.
,
1998
, “
In Vitro Thrombogenicity Testing of Artificial Organs
,”
Int. J. Artif. Organs
,
21
(
9
), pp.
548
552
.
22.
Cannegieter
,
S. C.
,
Rosendaal
,
F. R.
, and
Briet
,
E.
,
1994
, “
Thromboembolic and Bleeding Complications in Patients With Mechanical Heart Valve Prostheses
,”
Circulation
,
89
(
2
), pp.
635
641
.10.1161/01.CIR.89.2.635
23.
Murphy
,
D. W.
,
Dasi
,
L. P.
,
Vukasinovic
,
J.
,
Glezer
,
A.
, and
Yoganathan
,
A. P.
,
2010
, “
Reduction of Procoagulant Potential of b-Datum Leakage Jet Flow in Bileaflet Mechanical Heart Valves Via Application of Vortex Generator Arrays
,”
ASME J. Biomech. Eng.
,
132
(
7
), p.
071011
.10.1115/1.4001260
24.
Yoganathan
,
A. P.
,
He
,
Z.
, and
Casey Jones
,
S.
,
2004
, “
Fluid Mechanics of Heart Valves
,”
Ann. Rev. Biomed. Eng.
,
6
(
1
), pp.
331
362
.10.1146/annurev.bioeng.6.040803.140111
25.
Ge
,
L.
,
Leo
,
H. L.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
A. P.
,
2005
, “
Flow in a Mechanical Bileaflet Heart Valve at Laminar and Near-Peak Systole Flow Rates: CFD Simulations and Experiments
,”
ASME J. Biomech. Eng.
,
127
(
5
), pp.
782
797
.10.1115/1.1993665
26.
Mair
,
H.
,
Sachweh
,
J.
,
Sodian
,
R.
,
Brenner
,
P.
,
Schmoeckel
,
M.
,
Schmitz
,
C.
,
Reichart
,
B.
, and
Daebritz
,
S.
,
2012
, “
Long-Term Self-Management of Anticoagulation Therapy After Mechanical Heart Valve Replacement in Outside Trial Conditions
,”
Interact. Cardiovasc. Thorac. Surg.
,
14
(
3
), pp.
253
257
.10.1093/icvts/ivr088
27.
Al-Atassi
,
T.
,
Lam
,
K.
,
Forgie
,
M.
,
Boodhwani
,
M.
,
Rubens
,
F.
,
Hendry
,
P.
,
Masters
,
R.
,
Goldstein
,
W.
,
Bedard
,
P.
,
Mesana
,
T.
, and
Ruel
,
M.
,
2012
, “
Cerebral Microembolization After Bioprosthetic Aortic Valve Replacement: Comparison of Warfarin Plus Aspirin Versus Aspirin Only
,”
Circulation
,
126
(
11 Suppl 1
), pp.
S239
S244
.10.1161/CIRCULATIONAHA.111.084772
28.
Uekermann
,
J.
,
Suchan
,
B.
,
Daum
,
I.
,
Kseibi
,
S.
,
Perthel
,
M.
, and
Laas
,
J.
,
2005
, “
Neuropsychological Deficits After Mechanical Aortic Valve Replacement
,”
J. Heart Valve Dis.
,
14
(
3
), pp.
338
343
.
29.
Deklunder
,
G.
,
Roussel
,
M.
,
Lecroart
,
J. L.
,
Prat
,
A.
, and
Gautier
,
C.
,
1998
, “
Microemboli in Cerebral Circulation and Alteration of Cognitive Abilities in Patients With Mechanical Prosthetic Heart Valves
,”
Stroke
,
29
(
9
), pp.
1821
1826
.10.1161/01.STR.29.9.1821
30.
Skjelland
,
M.
,
Michelsen
,
A.
,
Brosstad
,
F.
,
Svennevig
,
J. L.
,
Brucher
,
R.
, and
Russell
,
D.
,
2008
, “
Solid Cerebral Microemboli and Cerebrovascular Symptoms in Patients With Prosthetic Heart Valves
,”
Stroke
,
39
(
4
), pp.
1159
1164
.10.1161/STROKEAHA.107.493031
31.
Shankaran
,
H.
,
Alexandridis
,
P.
, and
Neelamegham
,
S.
,
2003
, “
Aspects of Hydrodynamic Shear Regulating Shear-Induced Platelet Activation and Self-Association of Von Willebrand Factor in Suspension
,”
Blood
,
101
(
7
), pp.
2637
2645
.10.1182/blood-2002-05-1550
32.
Ruggeri
,
Z. M.
,
1997
, “
Mechanisms Initiating Platelet Thrombus Formation
,”
Thromb. Haemostasis
,
78
(
1
), pp.
611
616
.
33.
Goto
,
S.
,
Ikeda
,
Y.
,
Saldivar
,
E.
, and
Ruggeri
,
Z. M.
,
1998
, “
Distinct Mechanisms of Platelet Aggregation as a Consequence of Different Shearing Flow Conditions
,”
J. Clin. Invest.
,
101
(
2
), pp.
479
486
.10.1172/JCI973
34.
Ikeda
,
Y.
,
Handa
,
M.
,
Kawano
,
K.
,
Kamata
,
T.
,
Murata
,
M.
,
Araki
,
Y.
,
Anbo
,
H.
,
Kawai
,
Y.
,
Watanabe
,
K.
, and
Itagaki
,
I.
,
1991
, “
The Role of Von Willebrand Factor and Fibrinogen in Platelet Aggregation Under Varying Shear Stress
,”
J. Clin. Invest.
,
87
(
4
), pp.
1234
1240
.10.1172/JCI115124
35.
Savage
,
B.
,
Saldivar
,
E.
, and
Ruggeri
,
Z. M.
,
1996
, “
Initiation of Platelet Adhesion by Arrest Onto Fibrinogen or Translocation on Von Willebrand Factor
,”
Cell
,
84
(
2
), pp.
289
297
.10.1016/S0092-8674(00)80983-6
36.
Haj-Ali
,
R.
,
Dasi
,
L. P.
,
Kim
,
H. S.
,
Choi
,
J.
,
Leo
,
H. W.
, and
Yoganathan
,
A. P.
,
2008
, “
Structural Simulations of Prosthetic Tri-Leaflet Aortic Heart Valves
,”
J. Biomech.
,
41
(
7
), pp.
1510
1519
.10.1016/j.jbiomech.2008.02.026
37.
Dasi
,
L. P.
,
Simon
,
H. A.
,
Sucosky
,
P.
, and
Yoganathan
,
A. P.
,
2009
, “
Fluid Mechanics of Artificial Heart Valves
,”
Clin. Exp. Pharmacol. Physiol.
,
36
(
2
), pp.
225
237
.10.1111/j.1440-1681.2008.05099.x
38.
Fraser
,
A. G.
,
Daubert
,
J. C.
,
Van de Werf
,
F.
,
Estes
,
N. A.
, 3rd
,
Smith
,
S. C.
, Jr.
,
Krucoff
,
M. W.
,
Vardas
,
P. E.
, and
Komajda
,
M.
, and participants,
2011
, “
Clinical Evaluation of Cardiovascular Devices: Principles, Problems, and Proposals for European Regulatory Reform. Report of a Policy Conference of the European Society of Cardiology
,”
Eur. Heart J.
,
32
(
13
), pp.
1673
1686
.10.1093/eurheartj/ehr171
39.
Bodnar
,
E.
,
1996
, “
The Medtronic Parallel Valve and the Lessons Learned
,”
J. Heart Valve Dis.
,
5
(
6
), pp.
572
573
.
40.
Meuris
,
B.
,
2002
, “
Research on Biological and Mechanical Heart Valves: Experimental Studies in Chronic Animal Models
,”
Verh. K. Acad. Geneeskd. Belg.
,
64
(
4
), pp.
287
302
.
41.
Mason
,
R. G.
, and
Read
,
M. S.
,
1971
, “
Some Species Differences in Fibrinolysis and Blood Coagulation
,”
J. Biomed. Mater. Res.
,
5
(
1
), pp.
121
128
.10.1002/jbm.820050109
42.
Claiborne
,
T. E.
,
Girdhar
,
G.
,
Gallocher-Lowe
,
S.
,
Sheriff
,
J.
,
Kato
,
Y. P.
,
Pinchuk
,
L.
,
Schoephoerster
,
R. T.
,
Jesty
,
J.
, and
Bluestein
,
D.
,
2011
, “
Thrombogenic Potential of Innovia Polymer Valves Versus Carpentier-Edwards Perimount Magna Aortic Bioprosthetic Valves
,”
ASAIO J.
,
57
(
1
), pp.
26
31
.10.1097/MAT.0b013e3181fcbd86
43.
Reul
,
H.
,
van Son
,
J. A.
,
Steinseifer
,
U.
,
Schmitz
,
B.
,
Schmidt
,
A.
,
Schmitz
,
C.
, and
Rau
,
G.
,
1993
, “
In Vitro Comparison of Bileaflet Aortic Heart Valve Prostheses. St. Jude Medical, CarboMedics, Modified Edwards-Duromedics, and Sorin-Bicarbon Valves
,”
J. Thorac. Cardiovasc. Surg.
,
106
(
3
), pp.
412
420
.
44.
Alemu
,
Y.
, and
Bluestein
,
D.
,
2007
, “
Flow-Induced Platelet Activation and Damage Accumulation in a Mechanical Heart Valve: Numerical Studies
,”
Artif. Organs
,
31
(
9
), pp.
677
688
.10.1111/j.1525-1594.2007.00446.x
45.
Martin
,
A. J.
, and
Christy
,
J. R.
,
2004
, “
Evaluation of an In-Vitro Thrombosis Assessment Procedure by Application to the Medtronic Parallel and St. Jude Medical Valves
,”
J. Heart Valve Dis.
,
13
(
4
), pp.
667
675
.
46.
Scharfschwerdt
,
M.
,
Thomschke
,
M.
, and
Sievers
,
H. H.
,
2009
, “
In-Vitro Localization of Initial Flow-Induced Thrombus Formation in Bileaflet Mechanical Heart Valves
,”
ASAIO J.
,
55
(
1
), pp.
19
23
.10.1097/MAT.0b013e318190458f
47.
Kim
,
C. H.
,
Steinseifer
,
U.
, and
Schmitz-Rode
,
T.
,
2009
, “
Thrombogenic Evaluation of Two Mechanical Heart Valve Prostheses Using a New In-Vitro Test System
,”
J. Heart Valve Dis.
,
18
(
2
), pp.
207
213
.
48.
Martin
,
A. J.
, and
Christy
,
J. R.
,
2004
, “
An In-Vitro Technique for Assessment of Thrombogenicity in Mechanical Prosthetic Cardiac Valves: Evaluation With a Range of Valve Types
,”
J. Heart Valve Dis.
,
13
(
3
), pp.
509
520
.
49.
Keggen
,
L. A.
,
Black
,
M. M.
,
Lawford
,
P. V.
,
Hose
,
D. R.
, and
Strachan
,
J. R.
,
1996
, “
The Use of Enzyme Activated Milk for In Vitro Simulation of Prosthetic Valve Thrombosis
,”
J. Heart Valve Dis.
,
5
(
1
), pp.
74
83
.
50.
Bluestein
,
D.
,
Yin
,
W.
,
Affeld
,
K.
, and
Jesty
,
J.
,
2004
, “
Flow-Induced Platelet Activation in Mechanical Heart Valves
,”
J. Heart Valve Dis.
,
13
(
3
), pp.
501
508
.
51.
Lamson
,
T. C.
,
Rosenberg
,
G.
,
Geselowitz
,
D. B.
,
Deutsch
,
S.
,
Stinebring
,
D. R.
,
Frangos
,
J. A.
, and
Tarbell
,
J. M.
,
1993
, “
Relative Blood Damage in the Three Phases of a Prosthetic Heart Valve Flow Cycle
,”
ASAIO J.
,
39
(
3
), pp.
M626
M633
.10.1097/00002480-199339030-00091
52.
Li
,
M.
,
Ku
,
D. N.
, and
Forest
,
C. R.
,
2012
, “
Microfluidic System for Simultaneous Optical Measurement of Platelet Aggregation at Multiple Shear Rates in Whole Blood
,”
Lab Chip
,
12
(
7
), pp.
1355
1362
.10.1039/c2lc21145a
53.
Xenos
,
M.
,
Girdhar
,
G.
,
Alemu
,
Y.
,
Jesty
,
J.
,
Slepian
,
M.
,
Einav
,
S.
, and
Bluestein
,
D.
,
2010
, “
Device Thrombogenicity Emulator (DTE)–Design Optimization Methodology for Cardiovascular Devices: A Study in Two Bileaflet MHV Designs
,”
J. Biomech.
,
43
(
12
), pp.
2400
2409
.10.1016/j.jbiomech.2010.04.020
54.
Linde
,
T.
,
Hamilton
,
K. F.
,
Timms
,
D. L.
,
Schmitz-Rode
,
T.
, and
Steinseifer
,
U.
,
2011
, “
A Low-Volume Tester for the Thrombogenic Potential of Mechanical Heart Valve Prostheses
,”
J. Heart Valve Dis.
,
20
(
5
), pp.
510
517
.
55.
Dasi
,
L. P.
,
Murphy
,
D. W.
,
Glezer
,
A.
, and
Yoganathan
,
A. P.
,
2008
, “
Passive Flow Control of Bileaflet Mechanical Heart Valve Leakage Flow
,”
J. Biomech.
,
41
(
6
), pp.
1166
1173
.10.1016/j.jbiomech.2008.01.024
56.
Fallon
,
A. M.
,
Dasi
,
L. P.
,
Marzec
,
U. M.
,
Hanson
,
S. R.
, and
Yoganathan
,
A. P.
,
2008
, “
Procoagulant Properties of Flow Fields in Stenotic and Expansive Orifices
,”
Ann. Biomed. Eng.
,
36
(
1
), pp.
1
13
.10.1007/s10439-007-9398-3
57.
Akins
,
C. W.
,
1995
, “
Results With Mechanical Cardiac Valvular Prostheses
,”
Ann. Thorac. Surg.
,
60
(
6
), pp.
1836
1844
.10.1016/0003-4975(95)00766-0
58.
Sheriff
,
J.
,
Soares
,
J. S.
,
Xenos
,
M.
,
Jesty
,
J.
,
Slepian
,
M. J.
, and
Bluestein
,
D.
,
2013
, “
Evaluation of Shear-Induced Platelet Activation Models Under Constant and Dynamic Shear Stress Loading Conditions Relevant to Devices
,”
Ann. Biomed. Eng.
,
41
(
6
), pp.
1279
1296
.10.1007/s10439-013-0758-x
59.
Simon
,
H. A.
,
Ge
,
L.
,
Borazjani
,
I.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
A. P.
,
2010
, “
Simulation of the Three-Dimensional Hinge Flow Fields of a Bileaflet Mechanical Heart Valve Under Aortic Conditions
,”
Ann. Biomed. Eng.
,
38
(
3
), pp.
841
853
.10.1007/s10439-009-9857-0
60.
Kaufmann
,
T. A.
,
Linde
,
T.
,
Cuenca-Navalon
,
E.
,
Schmitz
,
C.
,
Hormes
,
M.
,
Schmitz-Rode
,
T.
, and
Steinseifer
,
U.
,
2011
, “
Transient, Three-Dimensional Flow Field Simulation Through a Mechanical, Trileaflet Heart Valve Prosthesis
,”
ASAIO J.
,
57
(
4
), pp.
278
282
.10.1097/MAT.0b013e318222849c
61.
Ghanbari
,
H.
,
Viatge
,
H.
,
Kidane
,
A. G.
,
Burriesci
,
G.
,
Tavakoli
,
M.
, and
Seifalian
,
A. M.
,
2009
, “
Polymeric Heart Valves: New Materials, Emerging Hopes
,”
Trends Biotechnol.
,
27
(
6
), pp.
359
367
.10.1016/j.tibtech.2009.03.002
62.
Claiborne
,
T. E.
,
Sheriff
,
J.
,
Kuetting
,
M.
,
Steinseifer
,
U.
,
Slepian
,
M. J.
, and
Bluestein
,
D.
,
2013
, “
In Vitro Evaluation of a Novel Hemodynamically Optimized Trileaflet Polymeric Prosthetic Heart Valve
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021021
.10.1115/1.4023235
63.
Fallon
,
A. M.
,
Marzec
,
U. M.
,
Hanson
,
S. R.
, and
Yoganathan
,
A. P.
,
2007
, “
Thrombin Formation In Vitro in Response to Shear-Induced Activation of Platelets
,”
Thromb. Res.
,
121
(
3
), pp.
397
406
.10.1016/j.thromres.2007.04.006
64.
Pierrakos
,
O.
,
Vlachos
,
P. P.
, and
Telionis
,
D. P.
,
2004
, “
Time-Resolved DPIV Analysis of Vortex Dynamics in a Left Ventricular Model Through Bileaflet Mechanical and Porcine Heart Valve Prostheses
,”
ASME J. Biomech. Eng.
,
126
(
6
), pp.
714
726
.10.1115/1.1824124
65.
Yin
,
W.
,
Gallocher
,
S.
,
Pinchuk
,
L.
,
Schoephoerster
,
R. T.
,
Jesty
,
J.
, and
Bluestein
,
D.
,
2005
, “
Flow-Induced Platelet Activation in a St. Jude Mechanical Heart Valve, a Trileaflet Polymeric Heart Valve, and a St. Jude Tissue Valve
,”
Artif. Organs
,
29
(
10
), pp.
826
831
.10.1111/j.1525-1594.2005.29109.x
66.
Yun
,
B. M.
,
Wu
,
J.
,
Simon
,
H. A.
,
Arjunon
,
S.
,
Sotiropoulos
,
F.
,
Aidun
,
C. K.
, and
Yoganathan
,
A. P.
,
2012
, “
A Numerical Investigation of Blood Damage in the Hinge Area of Aortic Bileaflet Mechanical Heart Valves During the Leakage Phase
,”
Ann. Biomed. Eng.
,
40
(
7
), pp.
1468
1485
.10.1007/s10439-011-0502-3
67.
Jun
,
B. H.
,
Saikrishnan
,
N.
, and
Yoganathan
,
A. P.
,
2014
, “
Micro Particle Image Velocimetry Measurements of Steady Diastolic Leakage Flow in the Hinge of a St. Jude Medical Regent Mechanical Heart Valve
,”
Ann. Biomed. Eng.
,
42
(
3
), pp.
526
540
.10.1007/s10439-013-0919-y
68.
Bluestein
,
D.
,
Rambod
,
E.
, and
Gharib
,
M.
,
2000
, “
Vortex Shedding as a Mechanism for Free Emboli Formation in Mechanical Heart Valves
,”
ASME J. Biomech. Eng.
,
122
(
2
), pp.
125
134
.10.1115/1.429634
69.
Avrahami
,
I.
,
Rosenfeld
,
M.
,
Einav
,
S.
,
Eichler
,
M.
, and
Reul
,
H.
,
2000
, “
Can Vortices in the Flow Across Mechanical Heart Valves Contribute to Cavitation?
,”
Med. Biol. Eng. Comput.
,
38
(
1
), pp.
93
97
.10.1007/BF02344695
70.
Ge
,
L.
,
Dasi
,
L. P.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
A. P.
,
2008
, “
Characterization of Hemodynamic Forces Induced by Mechanical Heart Valves: Reynolds Vs. Viscous Stresses
,”
Ann. Biomed. Eng.
,
36
(
2
), pp.
276
297
.10.1007/s10439-007-9411-x
71.
Manning
,
K. B.
,
Kini
,
V.
,
Fontaine
,
A. A.
,
Deutsch
,
S.
, and
Tarbell
,
J. M.
,
2003
, “
Regurgitant Flow Field Characteristics of the St. Jude Bileaflet Mechanical Heart Valve Under Physiologic Pulsatile Flow Using Particle Image Velocimetry
,”
Artif. Organs
,
27
(
9
), pp.
840
846
.10.1046/j.1525-1594.2003.07194.x
72.
Nesbitt
,
W. S.
,
Giuliano
,
S.
,
Kulkarni
,
S.
,
Dopheide
,
S. M.
,
Harper
,
I. S.
, and
Jackson
,
S. P.
,
2003
, “
Intercellular Calcium Communication Regulates Platelet Aggregation and Thrombus Growth
,”
J. Cell Biol.
,
160
(
7
), pp.
1151
1161
.10.1083/jcb.200207119
73.
Thor
,
A.
,
Rasmusson
,
L.
,
Wennerberg
,
A.
,
Thomsen
,
P.
,
Hirsch
,
J. M.
,
Nilsson
,
B.
, and
Hong
,
J.
,
2007
, “
The Role of Whole Blood in Thrombin Generation in Contact With Various Titanium Surfaces
,”
Biomaterials
,
28
(
6
), pp.
966
974
.10.1016/j.biomaterials.2006.10.020
74.
Travis
,
B. R.
,
Marzec
,
U. M.
,
Ellis
,
J. T.
,
Davoodi
,
P.
,
Momin
,
T.
,
Hanson
,
S. R.
,
Harker
,
L. A.
, and
Yoganathan
,
A. P.
,
2001
, “
The Sensitivity of Indicators of Thrombosis Initiation to a Bileaflet Prosthesis Leakage Stimulus
,”
J. Heart Valve Dis.
,
10
(
2
), pp.
228
238
.
75.
Zhang
,
J. N.
,
Wood
,
J.
,
Bergeron
,
A. L.
,
McBride
,
L.
,
Ball
,
C.
,
Yu
,
Q.
,
Pusiteri
,
A. E.
,
Holcomb
,
J. B.
, and
Dong
,
J. F.
,
2004
, “
Effects of Low Temperature on Shear-Induced Platelet Aggregation and Activation
,”
J. Trauma
,
57
(
2
), pp.
216
223
.10.1097/01.TA.0000093366.98819.FE
76.
Wolberg
,
A. S.
,
Meng
,
Z. H.
,
Monroe
,
D. M.
, 3rd
, and
Hoffman
,
M.
,
2004
, “
A Systematic Evaluation of the Effect of Temperature on Coagulation Enzyme Activity and Platelet Function
,”
J. Trauma
,
56
(
6
), pp.
1221
1228
.10.1097/01.TA.0000064328.97941.FC
You do not currently have access to this content.