The left ventricle (LV) of the heart is composed of a complex organization of cardiac muscle fibers, which contract to generate force and pump blood into the body. It has been shown that both the orientation and contractile strength of these myofibers vary across the ventricular wall. The hypothesis of the current study is that the transmural distributions of myofiber orientation and contractile strength interdependently impact LV pump function. In order to quantify these interactions a finite element (FE) model of the LV was generated, which incorporated transmural variations. The influences of myofiber orientation and contractile strength on the Starling relationship and the end-systolic (ES) apex twist of the LV were assessed. The results suggest that reductions in contractile strength within a specific transmural layer amplified the effects of altered myofiber orientation in the same layer, causing greater changes in stroke volume (SV). Furthermore, when the epicardial myofibers contracted the strongest, the twist of the LV apex was greatest, regardless of myofiber orientation. These results demonstrate the important role of transmural distribution of myocardial contractile strength and its interplay with myofiber orientation. The coupling between these two physiologic parameters could play a critical role in the progression of heart failure.

References

References
1.
Hsu
,
E. W.
,
Muzikant
,
A. L.
,
Matulevicius
,
S. A.
,
Penland
,
R. C.
, and
Henriquez
,
C. S.
,
1998
, “
Magnetic Resonance Myocardial Fiber-Orientation Mapping With Direct Histological Correlation
,”
Am. J. Physiol.
,
274
(
5
), pp.
H1627
H1634
.
2.
LeGrice
,
I. J.
,
Smaill
,
B. H.
,
Chai
,
L. Z.
,
Edgar
,
S. G.
,
Gavin
,
J. B.
, and
Hunter
,
P. J.
,
1995
, “
Laminar Structure of the Heart: Ventricular Myocyte Arrangement and Connective Tissue Architecture in the Dog
,”
Am. J. Physiol.
,
269
(
2
), pp.
H571
H582
.
3.
Streeter
,
D. D.
, Jr.
,
Spotnitz
,
H. M.
,
Patel
,
D. P.
,
Ross
,
J.
, Jr.
, and
Sonnenblick
,
E. H.
,
1969
, “
Fiber Orientation in the Canine Left Ventricle During Diastole and Systole
,”
Circ. Res.
,
24
(
3
), pp.
339
347
.10.1161/01.RES.24.3.339
4.
Beladan
,
C. C.
,
Calin
,
A.
,
Rosca
,
M.
,
Ginghina
,
C.
, and
Popescu
,
B. A.
,
2013
, “
Left Ventricular Twist Dynamics: Principles and Applications
,”
Heart
,
100
(
9
), pp.
731
740
.10.1136/heartjnl-2012-302064
5.
Sengupta
,
P. P.
,
Khandheria
,
B. K.
,
Korinek
,
J.
,
Wang
,
J. W.
,
Jahangir
,
A.
,
Seward
,
J. B.
, and
Belohlavek
,
M.
,
2006
, “
Apex-to-Base Dispersion in Regional Timing of Left Ventricular Shortening and Lengthening
,”
J. Am. Coll. Cardiol.
,
47
(
1
), pp.
163
172
.10.1016/j.jacc.2005.08.073
6.
Vendelin
,
M.
,
Bovendeerd
,
P. H.
,
Engelbrecht
,
J.
, and
Arts
,
T.
,
2002
, “
Optimizing Ventricular Fibers: Uniform Strain or Stress, but Not ATP Consumption, Leads to High Efficiency
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
283
(
3
), pp.
H1072
H1081
.
7.
Eriksson
,
T. S. E.
,
Prassl
,
A. J.
,
Plank
,
G.
, and
Holzapfel
,
G. A.
,
2013
, “
Influence of Myocardial Fiber/Sheet Orientations on Left Ventricular Mechanical Contraction
,”
Math. Mech. Solids
,
18
(
6
), pp.
592
606
.10.1177/1081286513485779
8.
Bovendeerd
,
P. H.
,
Arts
,
T.
,
Huyghe
,
J. M.
,
van Campen
,
D. H.
, and
Reneman
,
R. S.
,
1992
, “
Dependence of Local Left Ventricular Wall Mechanics on Myocardial Fiber Orientation: A Model Study
,”
J. Biomech.
,
25
(
10
), pp.
1129
1140
.10.1016/0021-9290(92)90069-D
9.
Mullins
,
P. D.
, and
Bondarenko
,
V. E.
,
2013
, “
A Mathematical Model of the Mouse Ventricular Myocyte Contraction
,”
PloS One
,
8
(
5
), p.
e63141
.10.1371/journal.pone.0063141
10.
Haynes
,
P.
,
Nava
,
K. E.
,
Lawson
,
B. A.
,
Chung
,
C. S.
,
Mitov
,
M. I.
,
Campbell
,
S. G.
,
Stromberg
,
A. J.
,
Sadayappan
,
S.
,
Bonnell
,
M. R.
,
Hoopes
,
C. W.
, and
Campbell
,
K. S.
,
2014
, “
Transmural Heterogeneity of Cellular Level Power Output is Reduced in Human Heart Failure
,”
J. Mol. Cell. Cardiol.
,
72
, pp.
1
8
.10.1016/j.yjmcc.2014.02.008
11.
Mitov
,
M. I.
,
Holbrook
,
A. M.
, and
Campbell
,
K. S.
,
2009
, “
Myocardial Short-Range Force Responses Increase With Age in F344 Rats
,”
J. Mol. Cell. Cardiol.
,
46
(
1
), pp.
39
46
.10.1016/j.yjmcc.2008.10.004
12.
Wenk
,
J. F.
,
Sun
,
K.
,
Zhang
,
Z.
,
Soleimani
,
M.
,
Ge
,
L.
,
Saloner
,
D.
,
Wallace
,
A. W.
,
Ratcliffe
,
M. B.
, and
Guccione
,
J. M.
,
2011
, “
Regional Left Ventricular Myocardial Contractility and Stress in a Finite Element Model of Posterobasal Myocardial Infarction
,”
ASME J. Biomech. Eng.
,
133
(
4
), p.
044501
.10.1115/1.4003438
13.
Guccione
,
J. M.
,
McCulloch
,
A. D.
, and
Waldman
,
L. K.
,
1991
, “
Passive Material Properties of Intact Ventricular Myocardium Determined From a Cylindrical Model
,”
ASME J. Biomech. Eng.
,
113
(
1
), pp.
42
55
.10.1115/1.2894084
14.
Jhun
,
C. S.
,
Wenk
,
J. F.
,
Zhang
,
Z.
,
Wall
,
S. T.
,
Sun
,
K.
,
Sabbah
,
H. N.
,
Ratcliffe
,
M. B.
, and
Guccione
,
J. M.
,
2010
, “
Effect of Adjustable Passive Constraint on the Failing Left Ventricle: A Finite-Element Model Study
,”
Ann. Thorac. Surg.
,
89
(
1
), pp.
132
137
.10.1016/j.athoracsur.2009.08.075
15.
Guccione
,
J. M.
,
Waldman
,
L. K.
, and
McCulloch
,
A. D.
,
1993
, “
Mechanics of Active Contraction in Cardiac Muscle: Part II–Cylindrical Models of the Systolic Left Ventricle
,”
ASME J. Biomech. Eng.
,
115
(
1
), pp.
82
90
.10.1115/1.2895474
16.
Lin
,
D. H.
, and
Yin
,
F. C.
,
1998
, “
A Multiaxial Constitutive Law for Mammalian Left Ventricular Myocardium in Steady-State Barium Contracture or Tetanus
,”
ASME J. Biomech. Eng.
,
120
(
4
), pp.
504
517
.10.1115/1.2798021
17.
Walker
,
J. C.
,
Ratcliffe
,
M. B.
,
Zhang
,
P.
,
Wallace
,
A. W.
,
Fata
,
B.
,
Hsu
,
E. W.
,
Saloner
,
D.
, and
Guccione
,
J. M.
,
2005
, “
MRI-Based Finite-Element Analysis of Left Ventricular Aneurysm
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
289
(
2
), pp.
H692
H700
.
18.
Guccione
,
J. M.
,
Moonly
,
S. M.
,
Moustakidis
,
P.
,
Costa
,
K. D.
,
Moulton
,
M. J.
,
Ratcliffe
,
M. B.
, and
Pasque
,
M. K.
,
2001
, “
Mechanism Underlying Mechanical Dysfunction in the Border Zone of Left Ventricular Aneurysm: A Finite Element Model Study
,”
Ann. Thorac. Surg.
,
71
(
2
), pp.
654
662
.10.1016/S0003-4975(00)02338-9
19.
Kerckhoffs
,
R. C.
,
Neal
,
M. L.
,
Gu
,
Q.
,
Bassingthwaighte
,
J. B.
,
Omens
,
J. H.
, and
McCulloch
,
A. D.
,
2007
, “
Coupling of a 3D Finite Element Model of Cardiac Ventricular Mechanics to Lumped Systems Models of the Systemic and Pulmonic Circulation
,”
Ann. Biomed. Eng.
,
35
(
1
), pp.
1
18
.10.1007/s10439-006-9212-7
20.
Watanabe
,
H.
,
Sugiura
,
S.
,
Kafuku
,
H.
, and
Hisada
,
T.
,
2004
, “
Multiphysics Simulation of Left Ventricular Filling Dynamics Using Fluid-Structure Interaction Finite Element Method
,”
Biophys. J.
,
87
(
3
), pp.
2074
2085
.10.1529/biophysj.103.035840
21.
Healy
,
L. J.
,
Jiang
,
Y.
, and
Hsu
,
E. W.
,
2011
, “
Quantitative Comparison of Myocardial Fiber Structure Between Mice, Rabbit, and Sheep Using Diffusion Tensor Cardiovascular Magnetic Resonance
,”
J. Cardiovasc. Magn. Reson.
,
13
(
1
), p.
74
.10.1186/1532-429X-13-74
22.
Mekkaoui
,
C.
,
Huang
,
S.
,
Chen
,
H. H.
,
Dai
,
G.
,
Reese
,
T. G.
,
Kostis
,
W. J.
,
Thiagalingam
,
A.
,
Maurovich-Horvat
,
P.
,
Ruskin
,
J. N.
,
Hoffmann
,
U.
,
Jackowski
,
M. P.
, and
Sosnovik
,
D. E.
,
2012
, “
Fiber Architecture in Remodeled Myocardium Revealed With a Quantitative Diffusion CMR Tractography Framework and Histological Validation
,”
J. Cardiovasc. Magn. Reson.
,
14
(
1
), p.
70
.10.1186/1532-429X-14-70
23.
Wang
,
Y.
,
Zhang
,
K.
,
Wasala
,
N. B.
,
Yao
,
X.
,
Duan
,
D.
, and
Yao
,
G.
,
2014
, “
Histology Validation of Mapping Depth-Resolved Cardiac Fiber Orientation in Fresh Mouse Heart Using Optical Polarization Tractography
,”
Biomed. Opt. Express
,
5
(
8
), pp.
2843
2855
.10.1364/BOE.5.002843
24.
Scollan
,
D. F.
,
Holmes
,
A.
,
Winslow
,
R.
, and
Forder
,
J.
,
1998
, “
Histological Validation of Myocardial Microstructure Obtained From Diffusion Tensor Magnetic Resonance Imaging
,”
Am. J. Physiol.
,
275
(
6
), pp.
H2308
H2318
.
25.
Wenk
,
J. F.
,
Klepach
,
D.
,
Lee
,
L. C.
,
Zhang
,
Z.
,
Ge
,
L.
,
Tseng
,
E. E.
,
Martin
,
A.
,
Kozerke
,
S.
,
Gorman
,
J. H.
, III
,
Gorman
,
R. C.
, and
Guccione
,
J. M.
,
2012
, “
First Evidence of Depressed Contractility in the Border Zone of a Human Myocardial Infarction
,”
Ann. Thorac. Surg.
,
93
(
4
), pp.
1188
1193
.10.1016/j.athoracsur.2011.12.066
26.
Nielsen
,
P. M.
,
Le Grice
,
I. J.
,
Smaill
,
B. H.
, and
Hunter
,
P. J.
,
1991
, “
Mathematical Model of Geometry and Fibrous Structure of the Heart
,”
Am. J. Physiol.
,
260
(
4
), pp.
H1365
H1378
.
27.
Streeter
,
D.
,
1979
, “
Gross Morphology and Fiber Geometry of the Heart
,”
Handbook of Physiology
,
American Physiology Society
,
Bethesda, MD
, pp.
61
112
.
28.
Russel
,
I. K.
,
Gotte
,
M. J.
,
Bronzwaer
,
J. G.
,
Knaapen
,
P.
,
Paulus
,
W. J.
, and
van Rossum
,
A. C.
,
2009
, “
Left Ventricular Torsion: An Expanding Role in the Analysis of Myocardial Dysfunction
,”
JACC: Cardiovasc. Imaging
,
2
(
5
), pp.
648
655
.10.1016/j.jcmg.2009.03.001
29.
Ingels
,
N. B.
,
Hansen
,
D. E.
,
Daughters
,
G. T.
,
Stinson
,
E. B.
,
Alderman
,
E. L.
, and
Miller
,
D. C.
,
1989
, “
Relation Between Longitudinal, Circumferential, and Oblique Shortening and Torsional Deformation in the Left-Ventricle of the Transplanted Human-Heart
,”
Circ. Res.
,
64
(
5
), pp.
915
927
.10.1161/01.RES.64.5.915
30.
Goffinet
,
C.
,
Chenot
,
F.
,
Robert
,
A.
,
Pouleur
,
A. C.
,
de Waroux
,
J. B. L.
,
Vancrayenest
,
D.
,
Gerard
,
O.
,
Pasquet
,
A.
,
Gerber
,
B. L.
, and
Vanoverschelde
,
J. L.
,
2009
, “
Assessment of Subendocardial vs. Subepicardial Left Ventricular Rotation and Twist Using Two-Dimensional Speckle Tracking Echocardiography: Comparison With Tagged Cardiac Magnetic Resonance
,”
Eur. Heart J.
,
30
(
5
), pp.
608
617
.10.1093/eurheartj/ehn511
You do not currently have access to this content.