Glycosaminoglycans (GAGs) are increasingly thought to play important roles in arterial mechanics and mechanobiology. We recently suggested that these highly negatively charged molecules, well known for their important contributions to cartilage mechanics, can pressurize intralamellar units in elastic arteries via a localized swelling process and thereby impact both smooth muscle mechanosensing and structural integrity. In this paper, we report osmotic loading experiments on murine common carotid arteries that revealed different degrees and extents of transmural swelling. Overall geometry changed significantly with exposure to hypo-osmotic solutions, as expected, yet mean pressure-outer diameter behaviors remained largely the same. Histological analyses revealed further that the swelling was not always distributed uniformly despite being confined primarily to the media. This unexpected finding guided a theoretical study of effects of different distributions of swelling on the wall stress. Results suggested that intramural swelling can introduce highly localized changes in the wall mechanics that could induce differential mechanobiological responses across the wall. There is, therefore, a need to focus on local, not global, mechanics when examining issues such as swelling-induced mechanosensing.

References

References
1.
Burton
,
A. C.
,
1954
, “
Relation of Structure to Function of the Tissues of the Wall of Blood Vessels
,”
Physiol. Rev.
,
34
(
4
), pp.
619
642
.
2.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
,
61
(
1–3
), pp.
1
48
.10.1023/A:1010835316564
3.
Stergiopulos
,
N.
,
Vulliémoz
,
S.
,
Rachev
,
A.
,
Meister
,
J.-J.
, and
Greenwald
,
S. E.
,
2001
, “
Assessing the Homogeneity of the Elastic Properties and Composition of the Pig Aortic Media
,”
J. Vasc. Res.
,
38
(
3
), pp.
237
246
.10.1159/000051052
4.
Baek
,
S.
,
Gleason
,
R. L.
,
Rajagopal
,
K. R.
, and
Humphrey
,
J. D.
,
2007
, “
Theory of Small on Large: Potential Utility in Computations of Fluid Solid Interactions in Arteries
,”
Comput. Method Appl. Mech. Eng.
,
196
(
31–32
), pp.
3070
3078
.10.1016/j.cma.2006.06.018
5.
Reynertson
,
R. H.
,
Parmley
,
R. T.
,
Roden
,
L.
, and
Oparil
,
S.
,
1986
, “
Proteoglycans and Hypertension: I. A Biochemical and Ultrastructural Study of Aorta Glycosaminoglycans in Spontaneously Hypertensive Rats
,”
Coll. Relat. Res.
,
6
(
1
), pp.
77
101
.10.1016/S0174-173X(86)80033-4
6.
Yang
,
S. N. Y.
,
Burch
,
M. L.
,
Tannock
,
L. R.
,
Evanko
,
S.
,
Osman
,
N.
, and
Little
,
P. J.
,
2010
, “
Transforming Growth Factor-Beta Regulation of Proteoglycan Synthesis in Vascular Smooth Muscle: Contribution to Lipid Binding and Accelerated Atherosclerosis in Diabetes
,”
J. Diabetes
,
2
(
4
), pp.
233
242
.10.1111/j.1753-0407.2010.00089.x
7.
Azeloglu
,
E. U.
,
Albro
,
M. B.
,
Thimmappa
, V
. A.
,
Ateshian
,
G. A.
, and
Costa
,
K. D.
,
2008
, “
Heterogeneous Transmural Proteoglycan Distribution Provides a Mechanism for Regulating Residual Stress in the Aorta
,”
Am. J. Physiol.
,
294
(
3
), pp.
H1197
H1205
.10.1152/ajpheart.01027.2007
8.
Humphrey
,
J. D.
,
2013
, “
Possible Mechanical Roles of Glycosaminoglycans in Thoracic Aortic Dissection and Associations With Dysregulated Transforming Growth Factor-β
,”
J. Vasc. Res.
,
50
(
1
), pp.
1
10
.10.1159/000342436
9.
Roccabianca
,
S.
,
Ateshian
,
G. A.
, and
Humphrey
,
J. D.
,
2014
, “
Biomechanical Roles of Medial Pooling of Glycosaminoglycans in Thoracic Aortic Dissection
,”
Biomech. Modell. Mechanobiol.
,
13
(
1
), pp.
13
25
.10.1007/s10237-013-0482-3
10.
Ferruzzi
,
J.
,
Bersi
,
M. R.
, and
Humphrey
,
J. D.
,
2013
, “
Biomechanical Phenotyping of Central Arteries in Health and Disease: Advantages of and Methods for Murine Models
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1311
1330
.10.1007/s10439-013-0799-1
11.
Ferruzzi
,
J.
,
Collins
,
M. J.
,
Yeh
,
A. T.
, and
Humphrey
,
J. D.
,
2011
, “
Mechanical Assessment of Elastin Integrity in Fibrillin-1-Deficient Carotid Arteries: Implications for Marfan Syndrome
,”
Cardiovasc. Res.
,
92
(
2
), pp.
287
295
.10.1093/cvr/cvr195
12.
Gleason
,
R. L.
,
Gray
,
S. P.
,
Wilson
,
E.
, and
Humphrey
,
J. D.
,
2004
, “
A Multiaxial Computer-Controlled Organ Culture and Biomechanical Device for Mouse Carotid Arteries
,”
ASME J. Biomech. Eng.
,
126
(
6
), pp.
787
795
.10.1115/1.1824130
13.
Roccabianca
,
S.
,
Bellini
,
C.
, and
Humphrey
,
J. D.
,
2014
, “
Computational Modeling Suggests Good, Bad, and Ugly Roles of Glycosaminoglycans in Arterial Wall Mechanics and Mechanobiology
,”
J. R. Soc. Interface
,
11
(
97
).10.1098/rsif.2014.0397
14.
Bellini
,
C.
,
Ferruzzi
,
J.
,
Roccabianca
,
S.
,
Di Martino
,
E. S.
, and
Humphrey
,
J. D.
,
2014
, “
A Microstructurally Motivated Model of Arterial Wall Mechanics With Mechanobiological Implications
,”
Ann. Biomed. Eng.
,
42
(
3
), pp.
488
502
.10.1007/s10439-013-0928-x
15.
Guo
,
X.
,
Lanir
,
Y.
, and
Kassab
,
G. S.
,
2007
, “
Effect of Osmolarity on the Zero-Stress State and Mechanical Properties of Aorta
,”
Am. J. Physiol. Heart Circ. Physiol.
,
293
(
4
), pp.
H2328
H2334
.10.1152/ajpheart.00402.2007
16.
Gerrity
,
R. G.
, and
Cliff
,
W. J.
,
1975
, “
The Aortic Tunica Media of the Developing Rat. I. Quantitative Stereologic and Biochemical Analysis
,”
Lab Invest.
,
32
(
5
), pp.
585
600
.
17.
Wight
,
N. T.
,
2008
, “
Arterial Remodeling in Vascular Disease: A Key Role for Hyaluronan and Versican
,”
Front. Biosci.
,
13
, pp.
4933
4937
.10.2741/3052
18.
Lanir
,
Y.
,
2012
, “
Osmotic Swelling and Residual Stress in Cardiovascular Tissues
,”
J. Biomech.
,
45
(
5
), pp.
780
789
.10.1016/j.jbiomech.2011.11.018
You do not currently have access to this content.