Intraluminal thrombus (ILT) in abdominal aortic aneurysms (AAA) has potential implications to aneurysm growth and rupture risk; yet, the mechanisms underlying its development remain poorly understood. Some researchers have proposed that ILT development may be driven by biomechanical platelet activation within the AAA, followed by adhesion in regions of low wall shear stress. Studies have investigated wall shear stress levels within AAA, but platelet activation potential (AP) has not been quantified. In this study, patient-specific computational fluid dynamic (CFD) models were used to analyze stress-induced AP within AAA under rest and exercise flow conditions. The analysis was conducted using Lagrangian particle-based and Eulerian continuum-based approaches, and the results were compared. Results indicated that biomechanical platelet activation is unlikely to play a significant role for the conditions considered. No consistent trend was observed in comparing rest and exercise conditions, but the functional dependence of AP on stress magnitude and exposure time can have a large impact on absolute levels of anticipated platelet AP. The Lagrangian method obtained higher peak AP values, although this difference was limited to a small percentage of particles that falls below reported levels of physiologic background platelet activation.

References

References
1.
Wolf
,
Y. G.
,
Thomas
,
W. S.
,
Brennan
,
F. J.
,
Goff
,
W. G.
,
Sise
,
M. J.
, and
Bernstein
,
E. F.
,
1994
, “
Computed Tomography Scanning Findings Associated With Rapid Expansion of Abdominal Aortic Aneurysms
,”
J. Vasc. Surg.
,
20
(
4
), pp.
529
538
.10.1016/0741-5214(94)90277-1
2.
Stenbaek
,
J.
,
Kalin
,
B.
, and
Swedenborg
,
J.
,
2000
, “
Growth of Thrombus May be a Better Predictor of Rupture Than Diameter in Patients With Abdominal Aortic Aneurysms
,”
Eur. J. Vasc. Endovasc. Surg.
,
20
(
5
), pp.
466
469
.10.1053/ejvs.2000.1217
3.
Raut
,
S. S.
,
Chandra
,
S.
,
Shum
,
J.
, and
Finol
,
E. A.
,
2013
, “
The Role of Geometric and Biomechanical Factors in Abdominal Aortic Aneurysm Rupture Risk Assessment
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1459
1477
.10.1007/s10439-013-0786-6
4.
Wilson
,
J. S.
,
Virag
,
L.
,
Di Achille
,
P.
,
Karsaj
,
I.
, and
Humphrey
,
J. D.
,
2013
, “
Biochemomechanics of Intraluminal Thrombus in Abdominal Aortic Aneurysms
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021011
.10.1115/1.4023437
5.
Asbury
,
C. L.
,
Ruberti
,
J. W.
,
Bluth
,
E. I.
, and
Peattie
,
R. A.
,
1995
, “
Experimental Investigation of Steady Flow in Rigid Models of Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
,
23
(
1
), pp.
29
39
.10.1007/BF02368298
6.
Bluestein
,
D.
,
Dewanjee
,
M. K.
,
Niu
,
L.
, and
Schoephoerster
,
R. T.
,
1996
, “
Steady Flow in an Aneurysm Model: Correlation Between Fluid Dynamics and Blood Platelet Deposition
,”
ASME J. Biomech. Eng.
,
118
(
3
), pp.
280
286
.10.1115/1.2796008
7.
Egelhoff
,
C. J.
,
Budwig
,
R. S.
,
Elger
,
D. F.
,
Khraishi
,
T. A.
, and
Johansen
,
K. H.
,
1999
, “
Model Studies of the Flow in Abdominal Aortic Aneurysms During Resting and Exercise Conditions
,”
J. Biomech.
,
32
(
12
), pp.
1319
1329
.10.1016/S0021-9290(99)00134-7
8.
Salsac
,
A. V.
,
Sparks
,
S. R.
, and
Lasheras
,
J. C.
,
2004
, “
Hemodynamic Changes Occurring During the Progressive Enlargement of Abdominal Aortic Aneurysms
,”
Ann. Vasc. Surg.
,
18
(
1
), pp.
14
21
.10.1007/s10016-003-0101-3
9.
Stamatopoulos
,
C.
,
Mathioulakis
,
D. S.
,
Papaharilaou
,
Y.
, and
Katsamouris
,
A.
,
2011
, “
Experimental Unsteady Flow Study in a Patient-Specific Abdominal Aortic Aneurysm Model
,”
Exp. Fluids
,
50
(
6
), pp.
1695
1709
.10.1007/s00348-010-1034-6
10.
Biasetti
,
J.
,
Gasser
,
T. C.
,
Auer
,
M.
,
Hedin
,
U.
, and
Labruto
,
F.
,
2009
, “
Hemodynamics of the Normal Aorta Compared to Fusiform and Saccular Abdominal Aortic Aneurysms With Emphasis on a Potential Thrombus Formation Mechanism
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
380
390
.10.1007/s10439-009-9843-6
11.
Les
,
A. S.
,
Shadden
,
S. C.
,
Figueroa
,
C. A.
,
Park
,
J. M.
,
Tedesco
,
M. M.
,
Herfkens
,
R. J.
,
Dalman
,
R. L.
, and
Taylor
,
C. A.
,
2010
, “
Quantification of Hemodynamics in Abdominal Aortic Aneurysms During Rest and Exercise Using Magnetic Resonance Imaging and Computational Fluid Dynamics
,”
Ann. Biomed. Eng.
,
38
(
4
), pp.
1288
1313
.10.1007/s10439-010-9949-x
12.
Arzani
,
A.
, and
Shadden
,
S. C.
,
2012
, “
Characterization of the Transport Topology in Patient-Specific Abdominal Aortic Aneurysm Models
,”
Phys. Fluids
,
24
(
8
), p.
081901
.10.1063/1.4744984
13.
Arzani
,
A.
,
Les
,
A. S.
,
Dalman
,
R. L.
, and
Shadden
,
S. C.
,
2014
, “
Effect of Exercise on Patient Specific Abdominal Aortic Aneurysm Flow Topology and Mixing
,”
Int. J. Numer. Methods Biomed. Eng.
,
30
(
2
), pp.
280
295
.10.1002/cnm.2601
14.
Biasetti
,
J.
,
Hussain
,
F.
, and
Gasser
,
T. C.
,
2011
, “
Blood Flow and Coherent Vortices in the Normal and Aneurysmatic Aortas: A Fluid Dynamical Approach to Intra-Luminal Thrombus Formation
,”
J. R. Soc. Interface
,
8
(
63
), pp.
1449
1461
.10.1098/rsif.2011.0041
15.
Basciano
,
C.
,
Kleinstreuer
,
C.
,
Hyun
,
S.
, and
Finol
,
E. A.
,
2011
, “
A Relation Between Near-Wall Particle-Hemodynamics and Onset of Thrombus Formation in Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
,
39
(
7
), pp.
2010
2026
.10.1007/s10439-011-0285-6
16.
Arzani
,
A.
,
Suh
,
G.
,
Dalman
,
R. L.
, and
Shadden
,
S. C.
,
2014
, “
A Longitudinal Comparison of Hemodynamics and Intraluminal Thrombus Deposition in Abdominal Aortic Aneurysms
,”
Am. J. Physiol.
,
307
(
12
), pp.
H1786
H1795
.
17.
Brown
,
C. H.
, III
,
Lemuth
,
R. F.
,
Hellums
,
J. D.
,
Leverett
,
L. B.
, and
Alfrey
,
C. P.
,
1975
, “
Response of Human Platelets to Shear Stress
,”
Trans. Am. Soc. Artif. Intern. Organs
,
21
(
1
), pp.
35
39
.
18.
Ramstack
,
J. M.
,
Zuckerman
,
L.
, and
Mockros
,
L. F.
,
1979
, “
Shear-Induced Activation of Platelets
,”
J. Biomech.
,
12
(
2
), pp.
113
125
.10.1016/0021-9290(79)90150-7
19.
Wurzinger
,
L. J.
,
Opitz
,
R.
,
Blasberg
,
P.
, and
Schmid-Schonbein
,
H.
,
1985
, “
Platelet and Coagulation Parameters Following Millisecond Exposure to Laminar Shear Stress
,”
Thromb. Haemostasis
,
54
(
2
), pp.
381
386
.
20.
Hellums
,
J. D.
,
Peterson
,
D. M.
,
Stathopoulos
,
N. A.
,
Moake
,
J. L.
, and
Giorgio
,
T. D.
,
1987
, “
Studies on the Mechanisms of Shear-Induced Platelet Activation
,”
Cerebral Ischemia and Hemorheology
,
Springer
, Berlin, Heidelburg, Germany, pp.
80
89
.
21.
Giersiepen
,
M.
,
Wurzinger
,
L. J.
,
Opitz
,
R.
, and
Reul
,
H.
,
1990
, “
Estimation of Shear Stress-Related Blood Damage in Heart Valve Prostheses—In Vitro Comparison of 25 Aortic Valves
,”
Int. J. Artif. Organs
,
13
(
5
), pp.
300
306
.
22.
Bluestein
,
D.
,
Niu
,
L.
,
Schoephoerster
,
R. T.
, and
Dewanjee
,
M. K.
,
1997
, “
Fluid Mechanics of Arterial Stenosis: Relationship to the Development of Mural Thrombus
,”
Ann. Biomed. Eng.
,
25
(
2
), pp.
344
356
.10.1007/BF02648048
23.
Einav
,
S.
, and
Bluestein
,
D.
,
2004
, “
Dynamics of Blood Flow and Platelet Transport in Pathological Vessels
,”
Ann. N. Y. Acad. Sci.
,
1015
(
1
), pp.
351
366
.10.1196/annals.1302.031
24.
Nobili
,
M.
,
Sheriff
,
J.
,
Morbiducci
,
U.
,
Redaelli
,
A.
, and
Bluestein
,
D.
,
2008
, “
Platelet Activation Due to Hemodynamic Shear Stresses: Damage Accumulation Model and Comparison to In Vitro Measurements
,”
ASAIO J.
,
54
(
1
), pp.
64
72
.10.1097/MAT.0b013e31815d6898
25.
Wu
,
J.
,
Paden
,
B. E.
,
Borovetz
,
H. S.
, and
Antaki
,
J. F.
,
2009
, “
Computational Fluid Dynamics Analysis of Blade Tip Clearances on Hemodynamic Performance and Blood Damage in a Centrifugal Ventricular Assist Device
,”
Artif. Organs
,
34
(
5
), pp.
402
411
.10.1111/j.1525-1594.2009.00875.x
26.
Wu
,
J.
,
Yun
,
B. M.
,
Fallon
,
A. M.
,
Hanson
,
S. R.
,
Aidun
,
C. K.
, and
Yoganathan
,
A. P.
,
2010
, “
Numerical Investigation of the Effects of Channel Geometry on Platelet Activation and Blood Damage
,”
Ann. Biomed. Eng.
,
39
(
2
), pp.
897
910
.10.1007/s10439-010-0184-2
27.
Grigioni
,
M.
,
Daniele
,
C.
,
Morbiducci
,
U.
,
D’Avenio
,
G.
,
Di Benedetto
,
G.
, and
Barbaro
,
V.
,
2004
, “
The Power-Law Mathematical Model for Blood Damage Prediction: Analytical Developments and Physical Inconsistencies
,”
Artif. Organs
,
28
(
5
), pp.
467
475
.10.1111/j.1525-1594.2004.00015.x
28.
Grigioni
,
M.
,
Morbiducci
,
U.
,
D’Avenio
,
G.
,
Benedetto
,
G. D.
, and
Gaudio
,
C. D.
,
2005
, “
A Novel Formulation for Blood Trauma Prediction by a Modified Power-Law Mathematical Model
,”
Biomech. Modell. Mechanobiol.
,
4
(
4
), pp.
249
260
.10.1007/s10237-005-0005-y
29.
Soares
,
J. S.
,
Sheriff
,
J.
, and
Bluestein
,
D.
,
2013
, “
A Novel Mathematical Model of Activation and Sensitization of Platelets Subjected to Dynamic Stress Histories
,”
Biomech. Modell. Mechanobiol.
,
12
(
6
), pp.
1127
1141
.10.1007/s10237-013-0469-0
30.
Sheriff
,
J.
,
Soares
,
J. S.
,
Xenos
,
M.
,
Jesty
,
J.
, and
Bluestein
,
D.
,
2013
, “
Evaluation of Shear-Induced Platelet Activation Models Under Constant and Dynamic Shear Stress Loading Conditions Relevant to Devices
,”
Ann. Biomed. Eng.
,
41
(
6
), pp.
1279
1296
.10.1007/s10439-013-0758-x
31.
Song
,
X.
,
Throckmorton
,
A. L.
,
Wood
,
H. G.
,
Antaki
,
J. F.
, and
Olsen
,
D. B.
,
2003
, “
Computational Fluid Dynamics Prediction of Blood Damage in a Centrifugal Pump
,”
Artif. Organs
,
27
(
10
), pp.
938
941
.10.1046/j.1525-1594.2003.00026.x
32.
Tambasco
,
M.
, and
Steinman
,
D. A.
,
2003
, “
Path-Dependent Hemodynamics of the Stenosed Carotid Bifurcation
,”
Ann. Biomed. Eng.
,
31
(
9
), pp.
1054
1065
.10.1114/1.1603257
33.
Shadden
,
S. C.
, and
Hendabadi
,
S.
,
2012
, “
Potential Fluid Mechanic Pathways of Platelet Activation
,”
Biomech. Modell. Mechanobiol.
,
12
(
3
), pp.
467
474
.10.1007/s10237-012-0417-4
34.
Chan
,
W. K.
,
Wong
,
Y. W.
,
Ding
,
Y.
,
Chua
,
L. P.
, and
Yu
,
S. C. M.
,
2002
, “
Numerical Investigation of the Effect of Blade Geometry on Blood Trauma in a Centrifugal Blood Pump
,”
Artif. Organs
,
26
(
9
), pp.
785
793
.10.1046/j.1525-1594.2002.06954.x
35.
Alemu
,
Y.
, and
Bluestein
,
D.
,
2007
, “
Flow-Induced Platelet Activation and Damage Accumulation in a Mechanical Heart Valve: Numerical Studies
,”
Artif. Organs
,
31
(
9
), pp.
677
688
.10.1111/j.1525-1594.2007.00446.x
36.
Dumont
,
K.
,
Vierendeels
,
J.
,
Kaminsky
,
R.
,
van Nooten
,
G.
,
Verdonck
,
P.
, and
Bluestein
,
D.
,
2007
, “
Comparison of the Hemodynamic and Thrombogenic Performance of Two Bileaflet Mechanical Heart Valves Using a CFD/FSI Model
,”
ASME J. Biomech. Eng.
,
129
(
4
), pp.
558
565
.10.1115/1.2746378
37.
Yun
,
B. M.
,
Wu
,
J.
,
Simon
,
H. A.
,
Arjunon
,
S.
,
Sotiropoulos
,
F.
,
Aidun
,
C. K.
, and
Yoganathan
,
A. P.
,
2012
, “
A Numerical Investigation of Blood Damage in the Hinge Area of Aortic Bileaflet Mechanical Heart Valves During the Leakage Phase
,”
Ann. Biomed. Eng.
,
40
(
7
), pp.
1468
1485
.10.1007/s10439-011-0502-3
38.
Soares
,
J. S.
,
Gao
,
C.
,
Alemu
,
Y.
,
Slepian
,
M.
, and
Bluestein
,
D.
,
2013
, “
Simulation of Platelets Suspension Flowing Through a Stenosis Model Using a Dissipative Particle Dynamics Approach
,”
Ann. Biomed. Eng.
,
41
(
11
), pp.
2318
2333
.10.1007/s10439-013-0829-z
39.
Born
,
G. V. R.
, and
Cross
,
M. J.
,
1963
, “
The Aggregation of Blood Platelets
,”
J. Physiol.
,
168
(
1
), pp.
178
195
.10.1113/jphysiol.1963.sp007185
40.
Sorensen
,
E. N.
,
Burgreen
,
G. W.
,
Wagner
,
W. R.
, and
Antaki
,
J. F.
,
1999
, “
Computational Simulation of Platelet Deposition and Activation: I. Model Development and Properties
,”
Ann. Biomed. Eng.
,
27
(
4
), pp.
436
448
.10.1114/1.200
41.
Sorensen
,
E. N.
,
Burgreen
,
G. W.
,
Wagner
,
W. R.
, and
Antaki
,
J. F.
,
1999
, “
Computational Simulation of Platelet Deposition and Activation: II. Results for Poiseuille Flow Over Collagen
,”
Ann. Biomed. Eng.
,
27
(
4
), pp.
449
458
.10.1114/1.201
42.
Anand
,
M.
,
Rajagopal
,
K.
, and
Rajagopal
,
K. R.
,
2003
, “
A Model Incorporating Some of the Mechanical and Biochemical Factors Underlying Clot Formation and Dissolution in Flowing Blood
,”
J. Theor. Med.
,
5
(
3–4
), pp.
183
218
.10.1080/10273660412331317415
43.
Leiderman
,
K.
, and
Fogelson
,
A. L.
,
2010
, “
Grow With the Flow: A Spatial–Temporal Model of Platelet Deposition and Blood Coagulation Under Flow
,”
Math. Med. Biol.
,
28
(
1
), pp.
47
84
.
44.
Leiderman
,
K.
, and
Fogelson
,
A. L.
,
2013
, “
The Influence of Hindered Transport on the Development of Platelet Thrombi Under Flow
,”
Bull. Math. Biol.
,
75
(
8
), pp.
1255
1283
.10.1007/s11538-012-9784-3
45.
Dalman
,
R. L.
,
Tedesco
,
M. M.
,
Myers
,
J.
, and
Taylor
,
C. A.
,
2006
, “
AAA Disease: Mechanism, Stratification, and Treatment
,”
Ann. N. Y. Acad. Sci.
,
1085
(
1
), pp.
92
109
.10.1196/annals.1383.008
46.
Dua
,
M. M.
, and
Dalman
,
R. L.
,
2010
, “
Hemodynamic Influences on Abdominal Aortic Aneurysm Disease: Application of Biomechanics to Aneurysm Pathophysiology
,”
Vasc. Pharmacol.
,
53
(
1–2
), pp.
11
21
.10.1016/j.vph.2010.03.004
47.
Suh
,
G.
,
Les
,
A. S.
,
Tenforde
,
A. S.
,
Shadden
,
S. C.
,
Spilker
,
R. L.
,
Yeung
,
J. J.
,
Cheng
,
C. P.
,
Herfkens
,
R. J.
,
Dalman
,
R. L.
, and
Taylor
,
C. A.
,
2011
, “
Hemodynamic Changes Quantified in Abdominal Aortic Aneurysms With Increasing Exercise Intensity Using MR Exercise Imaging and Image-Based Computational Fluid Dynamics
,”
Ann. Biomed. Eng.
,
39
(
8
), pp.
2186
2202
.10.1007/s10439-011-0313-6
48.
Taylor
,
C. A.
,
Hughes
,
T. J.
, and
Zarins
,
C. K.
,
1998
, “
Finite Element Modeling of Blood Flow in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
158
(
1–2
), pp.
155
196
.10.1016/S0045-7825(98)80008-X
49.
Jansen
,
K. E.
,
Whiting
,
C. H.
, and
Hulbert
,
G. M.
,
2000
, “
A Generalized-α Method for Integrating the Filtered Navier–Stokes Equations With a Stabilized Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
3–4
), pp.
305
319
.10.1016/S0045-7825(00)00203-6
50.
Cheng
,
C. P.
,
Herfkens
,
R. J.
, and
Taylor
,
C. A.
,
2003
, “
Abdominal Aortic Hemodynamic Conditions in Healthy Subjects Aged 50–70 at Rest and During Lower Limb Exercise: In Vivo Quantification Using MRI
,”
Atherosclerosis
,
168
(
1
), pp.
323
331
.10.1016/S0021-9150(03)00099-6
51.
Montain
,
S. J.
,
Jilka
,
S. M.
,
Ehsani
,
A. A.
, and
Hagberg
,
J. M.
,
1988
, “
Altered Hemodynamics During Exercise in Older Essential Hypertensive Subjects
,”
Hypertension
,
12
(
5
), pp.
479
484
.10.1161/01.HYP.12.5.479
52.
Shadden
,
S. C.
, and
Arzani
,
A.
,
2015
, “
Lagrangian Postprocessing of Computational Hemodynamics
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
41
58
.10.1007/s10439-014-1070-0
53.
Lonyai
,
A.
,
Dubin
,
A. M.
,
Feinstein
,
J. A.
,
Taylor
,
C. A.
, and
Shadden
,
S. C.
,
2010
, “
New Insights Into Pacemaker Lead-Induced Venous Occlusion: Simulation-Based Investigation of Alterations in Venous Biomechanics
,”
Cardiovasc. Eng.
,
10
(
2
), pp.
84
90
.10.1007/s10558-010-9096-x
54.
Apel
,
J.
,
Paul
,
R.
,
Klaus
,
S.
,
Siess
,
T.
, and
Reul
,
H.
,
2001
, “
Assessment of Hemolysis Related Quantities in a Microaxial Blood Pump by Computational Fluid Dynamics
,”
Artif. Organs
,
25
(
5
), pp.
341
347
.10.1046/j.1525-1594.2001.025005341.x
55.
Esmaily-Moghadam
,
M.
,
Hsia
,
T.
, and
Marsden
,
A. L.
,
2013
, “
A Non-Discrete Method for Computation of Residence Time in Fluid Mechanics Simulations
,”
Phys. Fluids
,
25
(
11
), p.
110802
.10.1063/1.4819142
56.
Behr-Rasmussen
,
C.
,
Grondal
,
N.
,
Bramsen
,
M.
,
Thomsen
,
M.
, and
Lindholt
,
J.
,
2014
, “
Mural Thrombus and the Progression of Abdominal Aortic Aneurysms: A Large Population-Based Prospective Cohort Study
,”
Eur. J. Vasc. Endovasc. Surg.
,
48
(
3
), pp.
301
307
.10.1016/j.ejvs.2014.05.014
57.
Shadden
,
S. C.
, and
Taylor
,
C. A.
,
2008
, “
Characterization of Coherent Structures in the Cardiovascular System
,”
Ann. Biomed. Eng.
,
36
(
7
), pp.
1152
1162
.10.1007/s10439-008-9502-3
58.
Shadden
,
S. C.
,
2011
, “
Lagrangian Coherent Structures
,”
Transport and Mixing in Laminar Flows: From Microfluidics to Oceanic Currents
,
Wiley-VCH
, Weinheim, Germany.
59.
Cohen
,
R. A.
,
Shepherd
,
J. T.
, and
Vanhoutte
,
P. M.
,
1983
, “
Inhibitory Role of the Endothelium to the Response of Isolated Coronary Arteries to Platelets
,”
Science
,
221
(
4607
), pp.
273
274
.10.1126/science.6574604
60.
Steinman
,
D. A.
,
2012
, “
Assumptions in Modelling of Large Artery Hemodynamics
,”
Modeling of Physiological Flows
,
D.
Ambrosi
,
A.
Quarteroni
, and
G.
Rozza
, eds., Vol.
5
,
Springer
,
Milan, Italy
, pp.
1
18
.
61.
Biasetti
,
J.
,
Spazzini
,
P. G.
,
Hedin
,
U.
, and
Gasser
,
T. C.
,
2014
, “
Synergy Between Shear-Induced Migration and Secondary Flows on Red Blood Cells Transport in Arteries: Considerations on Oxygen Transport
,”
J. R. Soc. Interface
,
12
(
104
), p.
20140403
.10.1098/rsif.2014.0403
You do not currently have access to this content.