The most common cause of death in the developed world is cardiovascular disease. For decades, this has provided a powerful motivation to study the effects of mechanical forces on vascular cells in a controlled setting, since these cells have been implicated in the development of disease. Early efforts in the 1970 s included the first use of a parallel-plate flow system to apply shear stress to endothelial cells (ECs) and the development of uniaxial substrate stretching techniques (Krueger et al., 1971, “An in Vitro Study of Flow Response by Cells,” J. Biomech., 4(1), pp. 31–36 and Meikle et al., 1979, “Rabbit Cranial Sutures in Vitro: A New Experimental Model for Studying the Response of Fibrous Joints to Mechanical Stress,” Calcif. Tissue Int., 28(2), pp. 13–144). Since then, a multitude of in vitro devices have been designed and developed for mechanical stimulation of vascular cells and tissues in an effort to better understand their response to in vivo physiologic mechanical conditions. This article reviews the functional attributes of mechanical bioreactors developed in the 21st century, including their major advantages and disadvantages. Each of these systems has been categorized in terms of their primary loading modality: fluid shear stress (FSS), substrate distention, combined distention and fluid shear, or other applied forces. The goal of this article is to provide researchers with a survey of useful methodologies that can be adapted to studies in this area, and to clarify future possibilities for improved research methods.

References

References
1.
Chien
,
S.
,
2007
, “
Mechanotransduction and Endothelial Cell Homeostasis: The Wisdom of the Cell
,”
Am. J. Physiol Heart Circ. Physiol.
,
292
(
3
), pp.
H1209
H1224
.10.1152/ajpheart.01047.2006
2.
Hoffman
,
B. D.
,
Grashoff
,
C.
, and
Schwartz
,
M. A.
,
2011
, “
Dynamic Molecular Processes Mediate Cellular Mechanotransduction
,”
Nature
,
475
(
7356
), pp.
316
323
.10.1038/nature10316
3.
Stegemann
,
J. P.
,
Hong
,
H.
, and
Nerem
,
R. M.
,
2005
, “
Mechanical, Biochemical, and Extracellular Matrix Effects on Vascular Smooth Muscle Cell Phenotype
,”
J. Appl. Physiol.
,
98
(
6
), pp.
2321
2327
.10.1152/japplphysiol.01114.2004
4.
Haga
,
J. H.
,
Li
,
Y. S.
, and
Chien
,
S.
,
2007
, “
Molecular Basis of the Effects of Mechanical Stretch on Vascular Smooth Muscle Cells
,”
J. Biomech.
,
40
(
5
), pp.
947
960
.10.1016/j.jbiomech.2006.04.011
5.
Li
,
Y. S.
,
Haga
,
J. H.
, and
Chien
,
S.
,
2005
, “
Molecular Basis of the Effects of Shear Stress on Vascular Endothelial Cells
,”
J. Biomech.
,
38
(
10
), pp.
1949
1971
.10.1016/j.jbiomech.2004.09.030
6.
Johnson
,
B. D.
,
Mather
,
K. J.
, and
Wallace
,
J. P.
,
2011
, “
Mechanotransduction of Shear in the Endothelium: Basic Studies and Clinical Implications
,”
Vasc. Med.
,
16
(
5
), pp.
365
377
.10.1177/1358863X11422109
7.
Brown
,
T. D.
,
2000
, “
Techniques for Mechanical Stimulation of Cells In Vitro: A Review
,”
J. Biomech.
,
33
(
1
), pp.
3
14
.10.1016/S0021-9290(99)00177-3
8.
Humphrey
,
J. D.
, and
Delange
,
S. L.
,
2004
,
An Introduction to Biomechanics: Solids and Fluids, Analysis and Design
,
Springer
, New York.
9.
Ruel
,
J.
,
Lemay
,
J.
,
Dumas
,
G.
,
Doillon
,
C.
, and
Charara
,
J.
,
1995
, “
Development of a Parallel Plate Flow Chamber for Studying Cell Behavior Under Pulsatile Flow
,”
ASAIO J.
,
41
(
4
), pp.
876
883
.10.1097/00002480-199541040-00011
10.
Bacabac
,
R. G.
,
Smit
,
T. H.
,
Cowin
,
S. C.
,
Van Loon
,
J. J.
,
Nieuwstadt
,
F.
,
Heethaar
,
R.
, and
Klein-Nulend
,
J.
,
2005
, “
Dynamic Shear Stress in Parallel-Plate Flow Chambers
,”
J. Biomech.
,
38
(
1
), pp.
159
167
.10.1016/j.jbiomech.2004.03.020
11.
Krueger
,
J. W.
,
Young
,
D. F.
, and
Cholvin
,
N. R.
,
1971
, “
An In Vitro Study of Flow Response by Cells
,”
J. Biomech.
,
4
(
1
), pp.
31
36
.10.1016/0021-9290(71)90013-3
12.
Mengistu
,
M.
,
Brotzman
,
H.
,
Ghadiali
,
S.
, and
Lowe-Krentz
,
L.
,
2011
, “
Fluid Shear Stress-Induced Jnk Activity Leads to Actin Remodeling for Cell Alignment
,”
J. Cell Physiol.
,
226
(
1
), pp.
110
121
.10.1002/jcp.22311
13.
Levesque
,
M. J.
, and
Nerem
,
R. M.
,
1985
, “
The Elongation and Orientation of Cultured Endothelial Cells in Response to Shear Stress
,”
ASME J. Biomech. Eng.
,
107
(
4
), pp.
341
347
.10.1115/1.3138567
14.
Papadaki
,
M.
, and
Mclntire
,
L. V.
,
1999
, “
Quantitative Measurement of Shear-Stress Effects on Endothelial Cells
,”
Tissue Engineering Methods and Protocols
,
Humana Press, Totowa, NJ
.
15.
Sakariassen
,
K. S.
,
Aarts
,
P. A.
,
De Groot
,
P. G.
,
Houdijk
,
W. P.
, and
Sixma
,
J. J.
,
1983
, “
A Perfusion Chamber Developed to Investigate Platelet Interaction in Flowing Blood With Human Vessel Wall Cells, Their Extracellular Matrix, and Purified Components
,”
J. Lab. Clin. Med.
,
102
(
4
), pp.
522
535
.
16.
Frangos
,
J. A.
,
Mcintire
,
L. V.
, and
Eskin
,
S. G.
,
1988
, “
Shear Stress Induced Stimulation of Mammalian Cell Metabolism
,”
Biotechnol. Bioeng.
,
32
(
8
), pp.
1053
1060
.10.1002/bit.260320812
17.
Chappell
,
D. C.
,
Varner
,
S. E.
,
Nerem
,
R. M.
,
Medford
,
R. M.
, and
Alexander
,
R. W.
,
1998
, “
Oscillatory Shear Stress Stimulates Adhesion Molecule Expression in Cultured Human Endothelium
,”
Circ. Res.
,
82
(
5
), pp.
532
539
.10.1161/01.RES.82.5.532
18.
Dekker
,
R. J.
,
Van Soest
,
S.
,
Fontijn
,
R. D.
,
Salamanca
,
S.
,
De Groot
,
P. G.
,
Vanbavel
,
E.
,
Pannekoek
,
H.
, and
Horrevoets
,
A. J.
,
2002
, “
Prolonged Fluid Shear Stress Induces a Distinct Set of Endothelial Cell Genes, Most Specifically Lung Kruppel-Like Factor (Klf2)
,”
Blood
,
100
(
5
), pp.
1689
1698
.10.1182/blood-2002-01-0046
19.
Liu
,
Y.
,
Chen
,
B. P.-C.
,
Lu
,
M.
,
Zhu
,
Y.
,
Stemerman
,
M. B.
,
Chien
,
S.
, and
Shyy
,
J. Y.-J.
,
2002
, “
Shear Stress Activation of Srebp1 in Endothelial Cells is Mediated by Integrins
,”
Arterioscler. Thromb. Vasc. Biol.
,
22
(
1
), pp.
76
81
.10.1161/hq0102.101822
20.
Hale
,
J.
,
McDonald
,
D.
, and
Womersley
,
J.
,
1955
, “
Velocity Profiles of Oscillating Arterial Flow, With Some Calculations of Viscous Drag and the Reynolds Number
,”
J. Physiol.
,
128
(
3
), pp.
629
640
.
21.
Hsiai
,
T. K.
,
Cho
,
S. K.
,
Wong
,
P. K.
,
Ing
,
M.
,
Salazar
,
A.
,
Sevanian
,
A.
,
Navab
,
M.
,
Demer
,
L. L.
, and
Ho
,
C.-M.
,
2003
, “
Monocyte Recruitment to Endothelial Cells in Response to Oscillatory Shear Stress
,”
FASEB J.
,
17
(
12
), pp.
1648
1657
.10.1096/fj.02-1064com
22.
Frangos
,
J. A.
,
Eskin
,
S. G.
,
Mcintire
,
L. V.
, and
Ives
,
C.
,
1985
, “
Flow Effects on Prostacyclin Production by Cultured Human Endothelial Cells
,”
Science
,
227
(
4693
), pp.
1477
1479
.10.1126/science.3883488
23.
Hsieh
,
H. Y.
,
Camci-Unal
,
G.
,
Huang
,
T. W.
,
Liao
,
R.
,
Chen
,
T. J.
,
Paul
,
A.
,
Tseng
,
F. G.
, and
Khademhosseini
,
A.
,
2014
, “
Gradient Static-Strain Stimulation in a Microfluidic Chip for 3D Cellular Alignment
,”
Lab. Chip
,
14
(
3
), pp.
482
493
.10.1039/c3lc50884f
24.
Yalcin
,
H. C.
,
Perry
,
S. F.
, and
Ghadiali
,
S. N.
,
2007
, “
Influence of Airway Diameter and Cell Confluence on Epithelial Cell Injury in an In Vitro Model of Airway Reopening
,”
J. Appl. Physiol.
,
103
(
5
), pp.
1796
1807
.10.1152/japplphysiol.00164.2007
25.
Kosaki
,
K.
,
Ando
,
J.
,
Korenaga
,
R.
,
Kurokawa
,
T.
, and
Kamiya
,
A.
,
1998
, “
Fluid Shear Stress Increases the Production of Granulocyte-Macrophage Colony-Stimulating Factor by Endothelial Cells via Mrna Stabilization
,”
Circ. Res.
,
82
(
7
), pp.
794
802
.10.1161/01.RES.82.7.794
26.
Osborn
,
E. A.
,
Rabodzey
,
A.
,
Dewey
,
C. F.
, Jr.
, and
Hartwig
,
J. H.
,
2006
, “
Endothelial Actin Cytoskeleton Remodeling During Mechanostimulation With Fluid Shear Stress
,”
Am. J. Physiol. Cell Physiol.
,
290
(
2
), pp.
C444
C452
.10.1152/ajpcell.00218.2005
27.
Go
,
Y. M.
,
Park
,
H. Y.
,
Maland
,
M. C.
, and
Jo
,
H. J.
,
1999
, “
In Vitro System to Study Role of Blood Flow on Nitric Oxide Production and Cell Signaling in Endothelial Cells
,”
Nitric Oxide, Pt C
,
301
, pp.
513
522
.
28.
Rennier
,
K.
, and
Ji
,
J. Y.
,
2013
, “
Effect of Shear Stress and Substrate on Endothelial Dapk Expression, Caspase Activity, and Apoptosis
,”
BMC Res. Notes
,
6
(
1
), p.
10
.10.1186/1756-0500-6-10
29.
Usami
,
S.
,
Chen
,
H.-H.
,
Zhao
,
Y.
,
Chien
,
S.
, and
Skalak
,
R.
,
1993
, “
Design and Construction of a Linear Shear Stress Flow Chamber
,”
Ann. Biomed. Eng.
,
21
(
1
), pp.
77
83
.10.1007/BF02368167
30.
Sakamoto
,
N.
,
Saito
,
N.
,
Han
,
X.
,
Ohashi
,
T.
, and
Sato
,
M.
,
2010
, “
Effect of Spatial Gradient in Fluid Shear Stress on Morphological Changes in Endothelial Cells in Response to Flow
,”
Biochem. Biophys. Res. Commun.
,
395
(
2
), pp.
264
269
.10.1016/j.bbrc.2010.04.002
31.
Chiu
,
J.-J.
,
Chen
,
L.-J.
,
Lee
,
P.-L.
,
Lee
,
C.-I.
,
Lo
,
L.-W.
,
Usami
,
S.
, and
Chien
,
S.
,
2003
, “
Shear Stress Inhibits Adhesion Molecule Expression in Vascular Endothelial Cells Induced by Coculture With Smooth Muscle Cells
,”
Blood
,
101
(
7
), pp.
2667
2674
.10.1182/blood-2002-08-2560
32.
Kladakis
,
S. M.
, and
Nerem
,
R. M.
,
2004
, “
Endothelial Cell Monolayer Formation: Effect of Substrate and Fluid Shear Stress
,”
Endothelium
,
11
(
1
), pp.
29
44
.10.1080/10623320490432461
33.
Go
,
Y. M.
,
Boo
,
Y. C.
,
Park
,
H.
,
Maland
,
M. C.
,
Patel
,
R.
,
Pritchard
,
K. A.
, Jr.
,
Fujio
,
Y.
,
Walsh
,
K.
,
Darley-Usmar
,
V.
, and
Jo
,
H.
,
2001
, “
Protein Kinase B/Akt Activates C-Jun Nh(2)-Terminal Kinase by Increasing No Production in Response to Shear Stress
,”
J. Appl. Physiol.
,
91
(
4
), pp.
1574
1581
.
34.
Melchior
,
B.
, and
Frangos
,
J. A.
,
2014
, “
Distinctive Subcellular Akt-1 Responses to Shear Stress in Endothelial Cells
,”
J. Cell Biochem.
,
115
(
1
), pp.
121
129
.10.1002/jcb.24639
35.
Nguyen
,
K. T.
,
Eskin
,
S. G.
,
Patterson
,
C.
,
Runge
,
M. S.
, and
Mcintire
,
L. V.
,
2001
, “
Shear Stress Reduces Protease Activated Receptor-1 Expression in Human Endothelial Cells
,”
Ann. Biomed. Eng.
,
29
(
2
), pp.
145
152
.10.1114/1.1349700
36.
Kang
,
H.
,
Bayless
,
K. J.
, and
Kaunas
,
R.
,
2008
, “
Fluid Shear Stress Modulates Endothelial Cell Invasion into Three-Dimensional Collagen Matrices
,”
Am. J. Physiol. Heart Circ. Physiol.
,
295
(
5
), pp.
H2087
H2097
.10.1152/ajpheart.00281.2008
37.
Ahsan
,
T.
, and
Nerem
,
R. M.
,
2010
, “
Fluid Shear Stress Promotes an Endothelial-Like Phenotype During the Early Differentiation of Embryonic Stem Cells
,”
Tissue Eng. Part A
,
16
(
11
), pp.
3547
3553
.10.1089/ten.tea.2010.0014
38.
Ozawa
,
N.
,
Shichiri
,
M.
,
Iwashina
,
M.
,
Fukai
,
N.
,
Yoshimoto
,
T.
, and
Hirata
,
Y.
,
2004
, “
Laminar Shear Stress Up-Regulates Inducible Nitric Oxide Synthase in the Endothelium
,”
Hypertens. Res.: Off. J. Jpn. Soc. Hypertens.
,
27
(
2
), p.
93
.10.1291/hypres.27.93
39.
Wolfe
,
R. P.
,
Leleux
,
J.
,
Nerem
,
R. M.
, and
Ahsan
,
T.
,
2012
, “
Effects of Shear Stress on Germ Lineage Specification of Embryonic Stem Cells
,”
Integr. Biol.
,
4
(
10
), pp.
1263
1273
.10.1039/c2ib20040f
40.
Cunningham
,
K. S.
, and
Gotlieb
,
A. I.
,
2005
, “
The Role of Shear Stress in the Pathogenesis of Atherosclerosis
,”
Lab. Invest.
,
85
(
1
), pp.
9
23
.10.1038/labinvest.3700215
41.
Sato
,
M.
,
Ohshima
,
N.
, and
Nerem
,
R.
,
1996
, “
Viscoelastic Properties of Cultured Porcine Aortic Endothelial Cells Exposed to Shear Stress
,”
J. Biomech.
,
29
(
4
), pp.
461
467
.10.1016/0021-9290(95)00069-0
42.
Sato
,
M.
,
Nagayama
,
K.
,
Kataoka
,
N.
,
Sasaki
,
M.
, and
Hane
,
K.
,
2000
, “
Local Mechanical Properties Measured by Atomic Force Microscopy for Cultured Bovine Endothelial Cells Exposed to Shear Stress
,”
J. Biomech.
,
33
(
1
), pp.
127
135
.10.1016/S0021-9290(99)00178-5
43.
Chun
,
T.-H.
,
Itoh
,
H.
,
Ogawa
,
Y.
,
Tamura
,
N.
,
Takaya
,
K.
,
Igaki
,
T.
,
Yamashita
,
J.
,
Doi
,
K.
,
Inoue
,
M.
, and
Masatsugu
,
K.
,
1997
, “
Shear Stress Augments Expression of C-Type Natriuretic Peptide and Adrenomedullin
,”
Hypertension
,
29
(
6
), pp.
1296
1302
.10.1161/01.HYP.29.6.1296
44.
Ives
,
C. L.
,
Eskin
,
S. G.
, and
Mcintire
,
L. V.
,
1986
, “
Mechanical Effects on Endothelial Cell Morphology: In Vitro Assessment
,”
In Vitro Cell Dev. Biol.
,
22
(
9
), pp.
500
507
.10.1007/BF02621134
45.
Potter
,
C. M.
,
Schobesberger
,
S.
,
Lundberg
,
M. H.
,
Weinberg
,
P. D.
,
Mitchell
,
J. A.
, and
Gorelik
,
J.
,
2012
, “
Shape and Compliance of Endothelial Cells After Shear Stress In Vitro or From Different Aortic Regions: Scanning Ion Conductance Microscopy Study
,”
PLoS One
,
7
(
2
), p.
e31228
.10.1371/journal.pone.0031228
46.
Shyy
,
Y. J.
,
Hsieh
,
H. J.
,
Usami
,
S.
, and
Chien
,
S.
,
1994
, “
Fluid Shear Stress Induces a Biphasic Response of Human Monocyte Chemotactic Protein 1 Gene Expression in Vascular Endothelium
,”
Proc. Natl. Acad. Sci. U S A.
,
91
(
11
), pp.
4678
4682
.10.1073/pnas.91.11.4678
47.
Hsieh
,
H. J.
,
Li
,
N. Q.
, and
Frangos
,
J. A.
,
1993
, “
Pulsatile and Steady Flow Induces c-fos Expression in Human Endothelial Cells
,”
J Cell Physiol
,
154
, pp. 143–151.
48.
Dewey
,
C. F.
, Jr.
,
Bussolari
,
S. R.
,
Gimbrone
,
M. A.
, Jr.
, and
Davies
,
P. F.
,
1981
, “
The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress
,”
ASME J. Biomech. Eng.
,
103
(
3
), pp.
177
185
.10.1115/1.3138276
49.
Bussolari
,
S. R.
,
Dewey
,
C. F.
, Jr.
, and
Gimbrone
,
M. A.
, Jr.
,
1982
, “
Apparatus for Subjecting Living Cells to Fluid Shear Stress
,”
Rev. Sci. Instrum.
,
53
(
12
), pp.
1851
1854
.10.1063/1.1136909
50.
Davies
,
P. F.
,
Remuzzi
,
A.
,
Gordon
,
E. J.
,
Dewey
,
C. F.
, Jr.
, and
Gimbrone
,
M. A.
, Jr.
,
1986
, “
Turbulent Fluid Shear Stress Induces Vascular Endothelial Cell Turnover In Vitro
,”
Proc. Natl. Acad. Sci. U S A
,
83
(
7
), pp.
2114
2117
.10.1073/pnas.83.7.2114
51.
Ley
,
K.
,
Lundgren
,
E.
,
Berger
,
E.
, and
Arfors
,
K.-E.
,
1989
, “
Shear-Dependent Inhibition of Granulocyte Adhesion to Cultured Endothelium by Dextran Sulfate
,”
Blood
,
73
(
5
), pp.
1324
1330
.
52.
Yoshizumi
,
M.
,
Kurihara
,
H.
,
Sugiyama
,
T.
,
Takaku
,
F.
,
Yanagisawa
,
M.
,
Masaki
,
T.
, and
Yazaki
,
Y.
,
1989
, “
Hemodynamic Shear Stress Stimulates Endothelin Production by Cultured Endothelial Cells
,”
Biochem. Biophys. Res. Commun.
,
161
(
2
), pp.
859
864
.10.1016/0006-291X(89)92679-X
53.
Schnittler
,
H.-J.
,
Franke
,
R. P.
,
Akbay
,
U.
,
Mrowietz
,
C.
, and
Drenckhahn
,
D.
,
1993
, “
Improved In Vitro Rheological System for Studying the Effect of Fluid Shear Stress on Cultured Cells
,”
Am. J. Physiol.Cell Physiol.
,
265
(
1
), pp.
C289
C298
.
54.
Depaola
,
N.
,
Gimbrone
,
M. A.
, Jr.
,
Davies
,
P. F.
, and
Dewey
,
C. F.
, Jr.
,
1992
, “
Vascular Endothelium Responds to Fluid Shear Stress Gradients
,”
Arterioscler. Thromb.
,
12
(
11
), pp.
1254
1257
.10.1161/01.ATV.12.11.1254
55.
Okahara
,
K.
,
Kambayashi
,
J.-I.
,
Ohnishi
,
T.
,
Fujiwara
,
Y.
,
Kawasaki
,
T.
, and
Monden
,
M.
,
1995
, “
Shear Stress Induces Expression of Cnp Gene in Human Endothelial Cells
,”
FEBS Lett.
,
373
(
2
), pp.
108
110
.10.1016/0014-5793(95)01027-C
56.
Malek
,
A. M.
, and
Izumo
,
S.
,
1996
, “
Mechanism of Endothelial Cell Shape Change and Cytoskeletal Remodeling in Response to Fluid Shear Stress
,”
J. Cell Sci.
,
109
(
Pt 4
), pp.
713
726
.
57.
Topper
,
J. N.
,
Cai
,
J.
,
Falb
,
D.
, and
Gimbrone
,
M. A.
, Jr.
,
1996
, “
Identification of Vascular Endothelial Genes Differentially Responsive to Fluid Mechanical Stimuli: Cyclooxygenase-2, Manganese Superoxide Dismutase, and Endothelial Cell Nitric Oxide Synthase Are Selectively Up-Regulated by Steady Laminar Shear Stress
,”
Proc. Natl. Acad. Sci. U S A.
,
93
(
19
), pp.
10417
10422
.10.1073/pnas.93.19.10417
58.
Rieder
,
M.
,
Carmona
,
R.
,
Krieger
,
J.
,
Pritchard
,
K.
, and
Greene
,
A.
,
1997
, “
Suppression of Angiotensin-Converting Enzyme Expression and Activity by Shear Stress
,”
Circ. Res.
,
80
(
3
), pp.
312
319
.10.1161/01.RES.80.3.312
59.
Palumbo
,
R.
,
Gaetano
,
C.
,
Antonini
,
A.
,
Pompilio
,
G.
,
Bracco
,
E.
,
Rönnstrand
,
L.
,
Heldin
,
C.-H.
, and
Capogrossi
,
M. C.
,
2002
, “
Different Effects of High and Low Shear Stress on Platelet-Derived Growth Factor Isoform Release by Endothelial Cells Consequences for Smooth Muscle Cell Migration
,”
Arterioscler. Thromb. Vasc. Biol.
,
22
(
3
), pp.
405
411
.10.1161/hq0302.104528
60.
Bongrazio
,
M.
,
Pries
,
A. R.
, and
Zakrzewicz
,
A.
,
2003
, “
The Endothelium as Physiological Source of Properdin: Role of Wall Shear Stress
,”
Mol. immunol.
,
39
(
11
), pp.
669
675
.10.1016/S0161-5890(02)00215-8
61.
Magid
,
R.
,
Murphy
,
T.
, and
Galis
,
Z. S.
,
2003
, “
Expression of Matrix Metalloproteinase-9 in Endothelial Cells Is Differentially Regulated by Shear Stress Role of C-Myc
,”
J. Biol. Chem.
,
278
(
35
), pp.
32994
32999
.10.1074/jbc.M304799200
62.
Sorescu
,
G. P.
,
Sykes
,
M.
,
Weiss
,
D.
,
Platt
,
M. O.
,
Saha
,
A.
,
Hwang
,
J.
,
Boyd
,
N.
,
Boo
,
Y. C.
,
Vega
,
J. D.
, and
Taylor
,
W. R.
,
2003
, “
Bone Morphogenic Protein 4 Produced in Endothelial Cells by Oscillatory Shear Stress Stimulates an Inflammatory Response
,”
J. Biol. Chem.
,
278
(
33
), pp.
31128
31135
.10.1074/jbc.M300703200
63.
Davis
,
M. E.
,
Grumbach
,
I. M.
,
Fukai
,
T.
,
Cutchins
,
A.
, and
Harrison
,
D. G.
,
2004
, “
Shear Stress Regulates Endothelial Nitric-Oxide Synthase Promoter Activity Through Nuclear Factor κB Binding
,”
J. Biol. Chem.
,
279
(
1
), pp.
163
168
.10.1074/jbc.M307528200
64.
Pearce
,
M. J.
,
Mcintyre
,
T. M.
,
Prescott
,
S. M.
,
Zimmerman
,
G. A.
, and
Whatley
,
R. E.
,
1996
, “
Shear Stress Activates Cytosolic Phospholipase a2Cpla2 and Map Kinase in Human Endothelial Cells
,”
Biochem. Biophys. Res. Commun.
,
218
(
2
), pp.
500
504
.10.1006/bbrc.1996.0089
65.
Hendrickson
,
R. J.
,
Cahill
,
P. A.
,
Sitzmann
,
J. V.
, and
Redmond
,
E. M.
,
1999
, “
Ethanol Enhances Basal and Flow-Stimulated Nitric Oxide Synthase Activity In Vitro by Activating an Inhibitory Guanine Nucleotide Binding Protein
,”
J. Pharmacol. Exp. Ther.
,
289
(
3
), pp.
1293
1300
.
66.
Chakraborty
,
A.
,
Chakraborty
,
S.
,
Jala
,
V. R.
,
Haribabu
,
B.
,
Sharp
,
M. K.
, and
Berson
,
R. E.
,
2012
, “
Effects of Biaxial Oscillatory Shear Stress on Endothelial Cell Proliferation and Morphology
,”
Biotechnol. Bioeng.
,
109
(
3
), pp.
695
707
.10.1002/bit.24352
67.
Potter
,
C. M.
,
Lundberg
,
M. H.
,
Harrington
,
L. S.
,
Warboys
,
C. M.
,
Warner
,
T. D.
,
Berson
,
R. E.
,
Moshkov
,
A. V.
,
Gorelik
,
J.
,
Weinberg
,
P. D.
, and
Mitchell
,
J. A.
,
2011
, “
Role of Shear Stress in Endothelial Cell Morphology and Expression of Cyclooxygenase Isoforms
,”
Arterioscler. Thromb. Vasc. Biol.
,
31
(
2
), pp.
384
391
.10.1161/ATVBAHA.110.214031
68.
Elhadj
,
S.
,
Akers
,
R. M.
, and
Forsten-Williams
,
K.
,
2003
, “
Chronic Pulsatile Shear Stress Alters Insulin-Like Growth Factor-I (Igf-I) Binding Protein Release In Vitro
,”
Ann. Biomed. Eng.
,
31
(
2
), pp.
163
170
.10.1114/1.1540637
69.
Redmond
,
E. M.
,
Cahill
,
P. A.
, and
Sitzmann
,
J. V.
,
1995
, “
Perfused Transcapillary Smooth Muscle and Endothelial Cell Co-Culture—A Novelin Vitro Model
,”
In Vitro Cell. Dev. Biol.:Anim.
,
31
(
8
), pp.
601
609
.10.1007/BF02634313
70.
Gutierrez
,
E.
,
Petrich
,
B. G.
,
Shattil
,
S. J.
,
Ginsberg
,
M. H.
,
Groisman
,
A.
, and
Kasirer-Friede
,
A.
,
2008
, “
Microfluidic Devices for Studies of Shear-Dependent Platelet Adhesion
,”
Lab Chip
,
8
(
9
), pp.
1486
1495
.10.1039/b804795b
71.
Chau
,
L.
,
Doran
,
M.
, and
Cooper-White
,
J.
,
2009
, “
A Novel Multishear Microdevice for Studying Cell Mechanics
,”
Lab. Chip
,
9
(
13
), pp.
1897
1902
.10.1039/b823180j
72.
Chung
,
S.
,
Sudo
,
R.
,
Mack
,
P. J.
,
Wan
,
C. R.
,
Vickerman
,
V.
, and
Kamm
,
R. D.
,
2009
, “
Cell Migration Into Scaffolds Under Co-Culture Conditions in a Microfluidic Platform
,”
Lab Chip
,
9
(
2
), pp.
269
275
.10.1039/b807585a
73.
Song
,
J. W.
,
Cavnar
,
S. P.
,
Walker
,
A. C.
,
Luker
,
K. E.
,
Gupta
,
M.
,
Tung
,
Y. C.
,
Luker
,
G. D.
, and
Takayama
,
S.
,
2009
, “
Microfluidic Endothelium for Studying the Intravascular Adhesion of Metastatic Breast Cancer Cells
,”
PLoS One
,
4
(
6
), p.
e5756
.10.1371/journal.pone.0005756
74.
Gunther
,
A.
,
Yasotharan
,
S.
,
Vagaon
,
A.
,
Lochovsky
,
C.
,
Pinto
,
S.
,
Yang
,
J.
,
Lau
,
C.
,
Voigtlaender-Bolz
,
J.
, and
Bolz
,
S. S.
,
2010
, “
A Microfluidic Platform for Probing Small Artery Structure and Function
,”
Lab Chip
,
10
(
18
), pp.
2341
2349
.10.1039/c004675b
75.
Van Der Meer
,
A. D.
,
Vermeul
,
K.
,
Poot
,
A. A.
,
Feijen
,
J.
, and
Vermes
,
I.
,
2010
, “
Flow Cytometric Analysis of the Uptake of Low-Density Lipoprotein by Endothelial Cells in Microfluidic Channels
,”
Cytometry A
,
77
(
10
), pp.
971
975
.10.1002/cyto.a.20937
76.
Tsai
,
M.
,
Kita
,
A.
,
Leach
,
J.
,
Rounsevell
,
R.
,
Huang
,
J. N.
,
Moake
,
J.
,
Ware
,
R. E.
,
Fletcher
,
D. A.
, and
Lam
,
W. A.
,
2012
, “
In Vitro Modeling of the Microvascular Occlusion and Thrombosis That Occur in Hematologic Diseases Using Microfluidic Technology
,”
J. Clin. Invest.
,
122
(
1
), pp.
408
418
.10.1172/JCI58753
77.
Voyvodic
,
P. L.
,
Min
,
D.
, and
Baker
,
A. B.
,
2012
, “
A Multichannel Dampened Flow System for Studies on Shear Stress-Mediated Mechanotransduction
,”
Lab Chip
,
12
(
18
), pp.
3322
3330
.10.1039/c2lc40526a
78.
Kandlikar
,
S.
,
Garimella
,
S.
,
Li
,
D.
,
Colin
,
S.
, and
King
,
M. R.
,
2005
,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
, Oxford, UK.
79.
Reinhart-King
,
C. A.
,
Fujiwara
,
K.
, and
Berk
,
B. C.
,
2008
, “
Physiologic Stress-Mediated Signaling in the Endothelium
,”
Methods Enzymol.
,
443
, pp.
25
44
.10.1016/S0076-6879(08)02002-8
80.
Gaver
, III,
D. P.
, and
Kute
,
S. M.
,
1998
, “
A Theoretical Model Study of the Influence of Fluid Stresses on a Cell Adhering to a Microchannel Wall
,”
Biophys. J.
,
75
(
2
), pp.
721
733
.10.1016/S0006-3495(98)77562-9
81.
Sdougos
,
H.
,
Bussolari
,
S.
, and
Dewey
,
C.
,
1984
, “
Secondary Flow and Turbulence in a Cone-and-Plate Device
,”
J. Fluid Mech.
,
138
, pp.
379
404
.10.1017/S0022112084000161
82.
Spruell
,
C.
, and
Baker
,
A. B.
,
2012
, “
Analysis of a High-Throughput Cone-and-Plate Apparatus for the Application of Defined Spatiotemporal Flow to Cultured Cells
,”
Biotechnol. Bioeng.
,
110
(
6
) pp.
1782
1793
.10.1002/bit.24823
83.
Hubbe
,
M. A.
,
1981
, “
Adhesion and Detachment of Biological Cells In Vitro
,”
Progress Surf. Sci.
,
11
(
2
), pp.
65
137
.10.1016/0079-6816(81)90009-5
84.
Nalayanda
,
D. D.
,
Puleo
,
C.
,
Fulton
,
W. B.
,
Sharpe
,
L. M.
,
Wang
,
T. H.
, and
Abdullah
,
F.
,
2009
, “
An Open-Access Microfluidic Model for Lung-Specific Functional Studies at an Air-Liquid Interface
,”
Biomed. Microdevices
,
11
(
5
), pp.
1081
1089
.10.1007/s10544-009-9325-5
85.
Zervantonakis
,
I. K.
,
Kothapalli
,
C. R.
,
Chung
,
S.
,
Sudo
,
R.
, and
Kamm
,
R. D.
,
2011
, “
Microfluidic Devices for Studying Heterotypic Cell-Cell Interactions and Tissue Specimen Cultures Under Controlled Microenvironments
,”
Biomicrofluidics
,
5
(
1
), p.
13406
.10.1063/1.3553237
86.
Zheng
,
W.
,
Jiang
,
B.
,
Wang
,
D.
,
Zhang
,
W.
,
Wang
,
Z.
, and
Jiang
,
X.
,
2012
, “
A Microfluidic Flow-Stretch Chip for Investigating Blood Vessel Biomechanics
,”
Lab Chip
,
12
(
18
), pp.
3441
3450
.10.1039/c2lc40173h
87.
Anwar
,
M. A.
,
Shalhoub
,
J.
,
Lim
,
C. S.
,
Gohel
,
M. S.
, and
Davies
,
A. H.
,
2012
, “
The Effect of Pressure-Induced Mechanical Stretch on Vascular Wall Differential Gene Expression
,”
J. Vasc. Res.
,
49
(
6
), pp.
463
478
.10.1159/000339151
88.
Lehoux
,
S.
, and
Tedgui
,
A.
,
2003
, “
Cellular Mechanics and Gene Expression in Blood Vessels
,”
J. Biomech.
,
36
(
5
), pp.
631
643
.10.1016/S0021-9290(02)00441-4
89.
Couet
,
F.
,
Meghezi
,
S.
, and
Mantovani
,
D.
,
2012
, “
Fetal Development, Mechanobiology and Optimal Control Processes Can Improve Vascular Tissue Regeneration in Bioreactors: An Integrative Review
,”
Med. Eng. Phys.
,
34
(
3
), pp.
269
278
.10.1016/j.medengphy.2011.10.009
90.
Kurpinski
,
K.
,
Park
,
J.
,
Thakar
,
R. G.
, and
Li
,
S.
,
2006
, “
Regulation of Vascular Smooth Muscle Cells and Mesenchymal Stem Cells by Mechanical Strain
,”
Mol. Cell Biomech.
,
3
(
1
), pp.
21
34
.
91.
Balestrini
,
J. L.
,
Skorinko
,
J. K.
,
Hera
,
A.
,
Gaudette
,
G. R.
, and
Billiar
,
K. L.
,
2010
, “
Applying Controlled Non-Uniform Deformation for In Vitro Studies of Cell Mechanobiology
,”
Biomech. Model. Mechanobiol.
,
9
(
3
), pp.
329
344
.10.1007/s10237-009-0179-9
92.
Bell
,
B. J.
,
Nauman
,
E.
, and
Voytik-Harbin
,
S. L.
,
2012
, “
Multiscale Strain Analysis of Tissue Equivalents Using a Custom-Designed Biaxial Testing Device
,”
Biophys. J.
,
102
(
6
), pp.
1303
1312
.10.1016/j.bpj.2012.02.007
93.
Butcher
,
J. T.
,
Barrett
,
B. C.
, and
Nerem
,
R. M.
,
2006
, “
Equibiaxial Strain Stimulates Fibroblastic Phenotype Shift in Smooth Muscle Cells in an Engineered Tissue Model of the Aortic Wall
,”
Biomaterials
,
27
(
30
), pp.
5252
5258
.10.1016/j.biomaterials.2006.05.040
94.
Clark
,
C. B.
,
Burkholder
,
T. J.
, and
Frangos
,
J. A.
,
2001
,
Uniaxial Strain System to Investigate Strain Rate Regulation In Vitro
,”
Rev. Sci. Instrum.
,
72
(
5
), pp.
2415
2422
.
95.
Huang
,
L.
,
Mathieu
,
P. S.
, and
Helmke
,
B. P.
,
2010
, “
A Stretching Device for High-Resolution Live-Cell Imaging
,”
Ann. Biomed. Eng.
,
38
(
5
), pp.
1728
1740
.10.1007/s10439-010-9968-7
96.
Raif El
,
M.
,
Seedhom
,
B. B.
,
Pullan
,
M. J.
, and
Toyoda
,
T.
,
2007
, “
Cyclic Straining of Cell-Seeded Synthetic Ligament Scaffolds: Development of Apparatus and Methodology
,”
Tissue Eng.
,
13
(
3
), pp.
629
640
.10.1089/ten.2006.0065
97.
Rosenblatt
,
N.
,
Hu
,
S.
,
Chen
,
J.
,
Wang
,
N.
, and
Stamenovic
,
D.
,
2004
, “
Distending Stress of the Cytoskeleton is a Key Determinant of Cell Rheological Behavior
,”
Biochem. Biophys. Res. Commun.
,
321
(
3
), pp.
617
622
.10.1016/j.bbrc.2004.07.011
98.
Ursekar
,
C. P.
,
Teo
,
S. K.
,
Hirata
,
H.
,
Harada
,
I.
,
Chiam
,
K. H.
, and
Sawada
,
Y.
,
2014
, “
Design and Construction of an Equibiaxial Cell Stretching System That Is Improved for Biochemical Analysis
,”
PLoS One
,
9
(
3
), p.
e90665
.10.1371/journal.pone.0090665
99.
Wang
,
J. H.
,
Goldschmidt-Clermont
,
P.
,
Wille
,
J.
, and
Yin
,
F. C.
,
2001
, “
Specificity of Endothelial Cell Reorientation in Response to Cyclic Mechanical Stretching
,”
J. Biomech.
,
34
(
12
), pp.
1563
1572
.10.1016/S0021-9290(01)00150-6
100.
Meikle
,
M. C.
,
Reynolds
,
J. J.
,
Sellers
,
A.
, and
Dingle
,
J. T.
,
1979
, “
Rabbit Cranial Sutures In Vitro: A New Experimental Model for Studying the Response of Fibrous Joints to Mechanical Stress
,”
Calcif. Tissue Int.
,
28
(
2
), pp.
137
144
.10.1007/BF02441232
101.
Imsirovic
,
J.
,
Derricks
,
K.
,
Buczek-Thomas
,
J. A.
,
Rich
,
C. B.
,
Nugent
,
M. A.
, and
Suki
,
B.
,
2013
, “
A Novel Device to Stretch Multiple Tissue Samples With Variable Patterns: Application for mRNA Regulation in Tissue-Engineered Constructs
,”
Biomatter
,
3
(
3
), p. e24650.10.4161/biom.24650
102.
Akbari
,
S.
, and
Shea
,
H. R.
,
2012
, “
Microfabrication and Characterization of an Array of Dielectric Elastomer Actuators Generating Uniaxial Strain to Stretch Individual Cells
,”
J. Micromech. Microeng.
,
22
(
4
), p.
045020
.10.1088/0960-1317/22/4/045020
103.
Zhou
,
J.
, and
Niklason
,
L. E.
,
2012
, “
Microfluidic Artificial “Vessels” for Dynamic Mechanical Stimulation of Mesenchymal Stem Cells
,”
Integr. Biol.
,
4
(
12
), pp.
1487
1497
.10.1039/c2ib00171c
104.
Dolle
,
J. P.
,
Morrison
,
B.
, 3rd
,
Schloss
,
R. S.
, and
Yarmush
,
M. L.
,
2013
, “
An Organotypic Uniaxial Strain Model Using Microfluidics
,”
Lab Chip
,
13
(
3
), pp.
432
442
.10.1039/c2lc41063j
105.
Huh
,
D.
,
Matthews
,
B. D.
,
Mammoto
,
A.
,
Montoya-Zavala
,
M.
,
Hsin
,
H. Y.
, and
Ingber
,
D. E.
,
2010
, “
Reconstituting Organ-Level Lung Functions on a Chip
,”
Science
,
328
(
5986
), pp.
1662
1668
.10.1126/science.1188302
106.
Matsumoto
,
T.
,
Yung
,
Y. C.
,
Fischbach
,
C.
,
Kong
,
H. J.
,
Nakaoka
,
R.
, and
Mooney
,
D. J.
,
2007
, “
Mechanical Strain Regulates Endothelial Cell Patterning In Vitro
,”
Tissue Eng.
,
13
(
1
), pp.
207
217
.10.1089/ten.2006.0058
107.
Yung
,
Y. C.
,
Vandenburgh
,
H.
, and
Mooney
,
D. J.
,
2009
, “
Cellular Strain Assessment Tool (CSAT): Precision-Controlled Cyclic Uniaxial Tensile Loading
,”
J. Biomech.
,
42
(
2
), pp.
178
182
.10.1016/j.jbiomech.2008.10.038
108.
Gerstmair
,
A.
,
Fois
,
G.
,
Innerbichler
,
S.
,
Dietl
,
P.
, and
Felder
,
E.
,
2009
, “
A Device for Simultaneous Live Cell Imaging During Uni-Axial Mechanical Strain or Compression
,”
J. Appl. Physiol.
,
107
(
2
), pp.
613
620
.10.1152/japplphysiol.00012.2009
109.
Iba
,
T.
, and
Sumpio
,
B. E.
,
1991
, “
Morphological Response of Human Endothelial Cells Subjected to Cyclic Strain In Vitro
,”
Microvasc. Res.
,
42
(
3
), pp.
245
254
.10.1016/0026-2862(91)90059-K
110.
Grabner
,
B.
,
Varga
,
F.
,
Fratzl-Zelman
,
N.
,
Luegmayr
,
E.
,
Glantschnig
,
H.
,
Rumpler
,
M.
,
Tatschl
,
A.
,
Fratzl
,
P.
, and
Klaushofer
,
K.
,
2000
, “
A New Stretching Apparatus for Applying Anisotropic Mechanical Strain to Bone Cells In-Vitro
,”
Rev. Sci. Instrum.
,
71
(
9
), pp.
3522
3529
.10.1063/1.1287623
111.
Ohashi
,
T.
,
Masuda
,
M.
,
Matsumoto
,
T.
, and
Sato
,
M.
,
2007
, “
Nonuniform Strain of Substrate Induces Local Development of Stress Fibers in Endothelial Cells Under Uniaxial Cyclic Stretching
,”
Clin. Hemorheol. Microcirc.
,
37
(
1–2
), pp.
37
46
.
112.
Hu
,
J.-J.
,
Liu
,
Y.-C.
,
Chen
,
G.-W.
,
Wang
,
M.-X.
, and
Lee
,
P.-Y.
,
2013
, “
Development of Fibroblast-Seeded Collagen Gels Under Planar Biaxial Mechanical Constraints: A Biomechanical Study
,”
Biomech. Model. Mechanobiol.
,
12
(
5
), pp.
849
868
.10.1007/s10237-012-0448-x
113.
Wang
,
J. H.
,
Goldschmidt-Clermont
,
P.
, and
Yin
,
F. C.
,
2000
, “
Contractility Affects Stress Fiber Remodeling and Reorientation of Endothelial Cells Subjected to Cyclic Mechanical Stretching
,”
Ann. Biomed. Eng.
,
28
(
10
), pp.
1165
1171
.10.1114/1.1317528
114.
Lee
,
J.
,
Wong
,
M.
,
Smith
,
Q.
, and
Baker
,
A. B.
,
2013
, “
A Novel System for Studying Mechanical Strain Waveform-Dependent Responses in Vascular Smooth Muscle Cells
,”
Lab Chip
,
13
(
23
), pp.
4573
4582
.10.1039/c3lc50894c
115.
Park
,
J. S.
,
Chu
,
J. S.
,
Cheng
,
C.
,
Chen
,
F.
,
Chen
,
D.
, and
Li
,
S.
,
2004
, “
Differential Effects of Equiaxial and Uniaxial Strain on Mesenchymal Stem Cells
,”
Biotechnol. Bioeng.
,
88
(
3
), pp.
359
368
.10.1002/bit.20250
116.
Rana
,
O. R.
,
Zobel
,
C.
,
Saygili
,
E.
,
Brixius
,
K.
,
Gramley
,
F.
,
Schimpf
,
T.
,
Mischke
,
K.
,
Frechen
,
D.
,
Knackstedt
,
C.
,
Schwinger
,
R. H.
, and
Schauerte
,
P.
,
2008
, “
A Simple Device to Apply Equibiaxial Strain to Cells Cultured on Flexible Membranes
,”
Am. J. Physiol. Heart Circ. Physiol.
,
294
(
1
), pp.
H532
H540
.10.1152/ajpheart.00649.2007
117.
Richardson
,
W. J.
,
Metz
,
R. P.
,
Moreno
,
M. R.
,
Wilson
,
E.
, and
Moore
,
J. E.
, Jr.
,
2011
, “
A Device to Study the Effects of Stretch Gradients on Cell Behavior
,”
ASME J. Biomech. Eng.
,
133
(
10
), p.
101008
.10.1115/1.4005251
118.
Sotoudeh
,
M.
,
Jalali
,
S.
,
Usami
,
S.
,
Shyy
,
J. Y.
, and
Chien
,
S.
,
1998
, “
A Strain Device Imposing Dynamic and Uniform Equi-Biaxial Strain to Cultured Cells
,”
Ann. Biomed. Eng.
,
26
(
2
), pp.
181
189
.10.1114/1.88
119.
Kreutzer
,
J.
,
Ikonen
,
L.
,
Hirvonen
,
J.
,
Pekkanen-Mattila
,
M.
,
Aalto-Setala
,
K.
, and
Kallio
,
P.
,
2014
, “
Pneumatic Cell Stretching System for Cardiac Differentiation and Culture
,”
Med. Eng. Phys.
,
36
(
4
), pp.
496
501
.10.1016/j.medengphy.2013.09.008
120.
“Flexcell FlexFlow: Shear Stress Device,” Accessed Sept. 20, 2013, FlexCell International Corporation, http://www.flexcellint.com/catalog/FlexFlow.pdf
121.
“FlexFlow Manual,” Accessed Sept. 20, 2013, FlexCell International Corporation, http://www.flexcellint.com/documents/FlexFlowManualRev071510.pdf
122.
Higgins
,
S.
,
Lee
,
J. S.
,
Ha
,
L.
, and
Lim
,
J. Y.
,
2013
, “
Inducing Neurite Outgrowth by Mechanical Cell Stretch
,”
Biores. Open Access
,
2
(
3
), pp.
212
216
.10.1089/biores.2013.0008
123.
Lau
,
J. J.
,
Wang
,
R. M.
, and
Black
,
L. D.
, 3rd
,
2014
, “
Development of an Arbitrary Waveform Membrane Stretcher for Dynamic Cell Culture
,”
Ann. Biomed. Eng.
,
42
(
5
), pp.
1062
1073
.10.1007/s10439-014-0976-x
124.
Ahmed
,
W. W.
,
Kural
,
M. H.
, and
Saif
,
T. A.
,
2010
, “
A Novel Platform for In Situ Investigation of Cells and Tissues Under Mechanical Strain
,”
Acta Biomater
,
6
(
8
), pp.
2979
2990
.10.1016/j.actbio.2010.02.035
125.
Kluge
,
J. A.
,
Leisk
,
G. G.
,
Cardwell
,
R. D.
,
Fernandes
,
A. P.
,
House
,
M.
,
Ward
,
A.
,
Dorfmann
,
A. L.
, and
Kaplan
,
D. L.
,
2011
, “
Bioreactor System Using Noninvasive Imaging and Mechanical Stretch for Biomaterial Screening
,”
Ann. Biomed. Eng.
,
39
(
5
), pp.
1390
1402
.10.1007/s10439-010-0243-8
126.
Fu
,
S.
,
Fan
,
J.
,
Liu
,
L.
,
Jiao
,
H.
,
Gan
,
C.
,
Tian
,
J.
,
Chen
,
W.
,
Yang
,
Z.
, and
Yin
,
Z.
,
2013
, “
A Uniaxial Cell Stretcher In Vitro Model Simulating Tissue Expansion of Plastic Surgery
,”
J. Craniofacial Surg.
,
24
(
4
), pp.
1431
1435
.10.1097/SCS.0b013e31828dcc1f
127.
Lehnich
,
H.
,
Simm
,
A.
,
Weber
,
B.
, and
Bartling
,
B.
,
2012
, “
Development of a Cyclic Multi-Axial Strain Cell Culture Device
,”
Biomed. Tech.
,
57
(
Suppl. 1
), pp.
677
680
.10.1515/bmt-2012-4182
128.
Reimann
,
S.
,
Rath-Deschner
,
B.
,
Deschner
,
J.
,
Keilig
,
L.
,
Jäger
,
A.
, and
Bourauel
,
C.
,
2009
, “
Development of an Experimental Device for the Application of Static and Dynamic Tensile Strain on Cells
,”
4th European Conference of the International Federation for Medical and Biological Engineering
,
Antwerp, Belgium
, Nov. 23–27,
P.
Verdonck
,
M.
Nyssen
, and
J.
Haueisen
, eds.,
Springer, Berlin
, Heidelberg, Vol.
22
, pp.
2019
2022
.10.1007/978-3-540-89208-3_481
129.
Moraes
,
C.
,
Likhitpanichkul
,
M.
,
Lam
,
C. J.
,
Beca
,
B. M.
,
Sun
,
Y.
, and
Simmons
,
C. A.
,
2013
, “
Microdevice Array-Based Identification of Distinct Mechanobiological Response Profiles in Layer-Specific Valve Interstitial Cells
,”
Integr. Biol.
,
5
(
4
), pp.
673
680
.10.1039/c3ib20254b
130.
Zhao
,
S.
,
Suciu
,
A.
,
Ziegler
,
T.
,
Moore
,
J. E.
, Jr.
,
Burki
,
E.
,
Meister
,
J. J.
, and
Brunner
,
H. R.
,
1995
, “
Synergistic Effects of Fluid Shear Stress and Cyclic Circumferential Stretch on Vascular Endothelial Cell Morphology and Cytoskeleton
,”
Arterioscler. Thromb. Vasc. Biol.
,
15
(
10
), pp.
1781
1786
.10.1161/01.ATV.15.10.1781
131.
Kwak
,
B. R.
,
Silacci
,
P.
,
Stergiopulos
,
N.
,
Hayoz
,
D.
, and
Meda
,
P.
,
2005
, “
Shear Stress and Cyclic Circumferential Stretch, but Not Pressure, Alter Connexin43 Expression in Endothelial Cells
,”
Cell Commun. Adhes.
,
12
(
5–6
), pp.
261
270
.10.1080/15419060500514119
132.
Zulliger
,
M. A.
,
Montorzi
,
G.
, and
Stergiopulos
,
N.
,
2002
, “
Biomechanical Adaptation of Porcine Carotid Vascular Smooth Muscle to Hypo and Hypertension In Vitro
,”
J. Biomech.
,
35
(
6
), pp.
757
765
.10.1016/S0021-9290(02)00020-9
133.
Andersson
,
M.
,
Karlsson
,
L.
,
Svensson
,
P. A.
,
Ulfhammer
,
E.
,
Ekman
,
M.
,
Jernas
,
M.
,
Carlsson
,
L. M.
, and
Jern
,
S.
,
2005
, “
Differential Global Gene Expression Response Patterns of Human Endothelium Exposed to Shear Stress and Intraluminal Pressure
,”
J. Vasc. Res.
,
42
(
5
), pp.
441
452
.10.1159/000087983
134.
Cheng
,
C. P.
,
Parker
,
D.
, and
Taylor
,
C. A.
,
2002
, “
Quantification of Wall Shear Stress in Large Blood Vessels Using Lagrangian Interpolation Functions With Cine Phase-Contrast Magnetic Resonance Imaging
,”
Ann. Biomed. Eng.
,
30
(
8
), pp.
1020
1032
.10.1114/1.1511239
135.
He
,
X.
,
Ku
,
D. N.
, and
Moore
, Jr.,
J. E.
,
1993
, “
Simple Calculation of the Velocity Profiles for Pulsatile Flow in a Blood Vessel Using Mathematica
,”
Ann. Biomed. Eng.
,
21
(
1
), pp.
45
49
.10.1007/BF02368163
136.
Benbrahim
,
A.
,
L'italien
,
G. J.
,
Milinazzo
,
B. B.
,
Warnock
,
D. F.
,
Dhara
,
S.
,
Gertler
,
J. P.
,
Orkin
,
R. W.
, and
Abbott
,
W. M.
,
1994
, “
A Compliant Tubular Device to Study the Influences of Wall Strain and Fluid Shear Stress on Cells of the Vascular Wall
,”
J. Vasc. Surg.
,
20
(
2
), pp.
184
194
.10.1016/0741-5214(94)90005-1
137.
Estrada
,
R.
,
Giridharan
,
G. A.
,
Nguyen
,
M. D.
,
Roussel
,
T. J.
,
Shakeri
,
M.
,
Parichehreh
,
V.
,
Prabhu
,
S. D.
, and
Sethu
,
P.
,
2011
, “Endothelial Cell Culture Model for Replication of Physiological Profiles of Pressure, Flow, Stretch, and Shear Stress in Vitro,”
Anal Chem
,
83
(8), pp. 3170–3177.10.1021/ac2002998
138.
Dancu
,
M. B.
, and
Tarbell
,
J. M.
,
2006
, “
Large Negative Stress Phase Angle (Spa) Attenuates Nitric Oxide Production in Bovine Aortic Endothelial Cells
,”
ASME J. Biomech. Eng.
,
128
(
3
), pp.
329
334
.10.1115/1.1824120
139.
Wang
,
D.
, and
Tarbell
,
J.
,
1995
, “
Nonlinear Analysis of Oscillatory Flow, With a Nonzero Mean, in an Elastic Tube (Artery)
,”
ASME J. Biomech. Eng.
,
117
(
1
), pp.
127
135
.10.1115/1.2792260
140.
Dutta
,
A.
,
Wang
,
D.
, and
Tarbell
,
J.
,
1992
, “
Numerical Analysis of Flow in an Elastic Artery Model
,”
ASME J. Biomech. Eng.
,
114
(
1
), pp.
26
33
.10.1115/1.2895444
141.
Wang
,
D.
, and
Tarbell
,
J.
,
1992
, “
Nonlinear Analysis of Flow in an Elastic Tube (Artery): Steady Streaming Effects
,”
J. Fluid Mech.
,
239
, pp.
341
358
.10.1017/S0022112092004439
142.
Qiu
,
Y.
, and
Tarbell
,
J. M.
,
2000
, “
Numerical Simulation of Pulsatile Flow in a Compliant Curved Tube Model of a Coronary Artery
,”
ASME J. Biomech. Eng.
,
122
(
1
), pp.
77
85
.10.1115/1.429629
143.
Gambillara
,
V.
,
Thacher
,
T.
,
Silacci
,
P.
, and
Stergiopulos
,
N.
,
2008
, “
Effects of Reduced Cyclic Stretch on Vascular Smooth Muscle Cell Function of Pig Carotids Perfused Ex Vivo
,”
Am. J. Hypertens.
,
21
(
4
), pp.
425
431
.10.1038/ajh.2007.72
144.
Thacher
,
T.
,
Da Silva
,
R. F.
, and
Stergiopulos
,
N.
,
2009
, “
Differential Effects of Reduced Cyclic Stretch and Perturbed Shear Stress Within the Arterial Wall and on Smooth Muscle Function
,”
Am. J. Hypertens.
,
22
(
12
), pp.
1250
1257
.10.1038/ajh.2009.193
145.
Thacher
,
T. N.
,
Silacci
,
P.
,
Stergiopulos
,
N.
, and
Da Silva
,
R. F.
,
2010
, “
Autonomous Effects of Shear Stress and Cyclic Circumferential Stretch Regarding Endothelial Dysfunction and Oxidative Stress: An Ex Vivo Arterial Model
,”
J. Vasc. Res.
,
47
(
4
), pp.
336
345
.10.1159/000265567
146.
Gambillara
,
V.
,
Montorzi
,
G.
,
Haziza-Pigeon
,
C.
,
Stergiopulos
,
N.
, and
Silacci
,
P.
,
2005
, “
Arterial Wall Response to Ex Vivo Exposure to Oscillatory Shear Stress
,”
J. Vasc. Res.
,
42
(
6
), pp.
535
544
.10.1159/000088343
147.
Thacher
,
T.
,
Gambillara
,
V.
,
Da Silva
,
R. F.
,
Silacci
,
P.
, and
Stergiopulos
,
N.
,
2010
, “
Reduced Cyclic Stretch, Endothelial Dysfunction, and Oxidative Stress: An Ex Vivo Model
,”
Cardiovasc. Pathol.
,
19
(
4
), pp.
e91
e98
.10.1016/j.carpath.2009.06.007
148.
Thompson
,
M.
,
Budd
,
J.
,
Eady
,
S.
,
James
,
R.
, and
Bell
,
P.
,
1994
, “
Effect of Pulsatile Shear Stress on Endothelial Attachment to Native Vascular Surfaces
,”
Br. J. Surg.
,
81
(
8
), pp.
1121
1127
.10.1002/bjs.1800810813
149.
Moore
,
J. E.
, Jr.
,
Burki
,
E.
,
Suciu
,
A.
,
Zhao
,
S.
,
Burnier
,
M.
,
Brunner
,
H. R.
, and
Meister
,
J. J.
,
1994
, “
A Device for Subjecting Vascular Endothelial Cells to Both Fluid Shear Stress and Circumferential Cyclic Stretch
,”
Ann. Biomed. Eng.
,
22
(
4
), pp.
416
422
.10.1007/BF02368248
150.
Harada
,
N.
,
Masuda
,
M.
, and
Fujiwara
,
K.
,
1995
, “
Fluid Flow and Osmotic Stress Induce Tyrosine Phosphorylation of an Endothelial Cell 128 kDa Surface Glycoprotein
,”
Biochem. Biophys. Res. Commun.
,
214
(
1
), pp.
69
74
.10.1006/bbrc.1995.2257
151.
Benbrahim
,
A.
,
L'italien
,
G. J.
,
Kwolek
,
C. J.
,
Petersen
,
M. J.
,
Milinazzo
,
B.
,
Gertler
,
J. P.
,
Abbott
,
W. M.
, and
Orkin
,
R. W.
,
1996
, “
Characteristics of Vascular Wall Cells Subjected to Dynamic Cyclic Strain and Fluid Shear Conditions In Vitro
,”
J. Surg. Res.
,
65
(
2
), pp.
119
127
.10.1006/jsre.1996.0353
152.
Ziegler
,
T.
,
Bouzourene
,
K.
,
Harrison
,
V. J.
,
Brunner
,
H. R.
, and
Hayoz
,
D.
,
1998
, “
Influence of Oscillatory and Unidirectional Flow Environments on the Expression of Endothelin and Nitric Oxide Synthase in Cultured Endothelial Cells
,”
Arterioscler. Thromb. Vasc. Biol.
,
18
(
5
), pp.
686
692
.10.1161/01.ATV.18.5.686
153.
Peng
,
X.
,
Recchia
,
F. A.
,
Byrne
,
B. J.
,
Wittstein
,
I. S.
,
Ziegelstein
,
R. C.
, and
Kass
,
D. A.
,
2000
,
In Vitro System to Study Realistic Pulsatile Flow and Stretch Signaling in Cultured Vascular Cells
,”
Am. J. Physiol. Cell Physiol.
,
279
(
3
), pp.
C797
C805
.
154.
Qiu
,
Y.
, and
Tarbell
,
J. M.
,
2000
, “
Interaction Between Wall Shear Stress and Circumferential Strain Affects Endothelial Cell Biochemical Production
,”
J. Vasc. Res.
,
37
(
3
), pp.
147
157
.10.1159/000025726
155.
Shin
,
H. Y.
,
Smith
,
M. L.
,
Toy
,
K. J.
,
Williams
,
P. M.
,
Bizios
,
R.
, and
Gerritsen
,
M. E.
,
2002
, “
Vegf-C Mediates Cyclic Pressure-Induced Endothelial Cell Proliferation
,”
Physiol. Genomics
,
11
(
3
), pp.
245
251
.
156.
Montorzi
,
G.
,
Silacci
,
P.
,
Zulliger
,
M.
, and
Stergiopulos
,
N.
,
2004
, “
Functional, Mechanical and Geometrical Adaptation of the Arterial Wall of a Non-Axisymmetric Artery In Vitro
,”
J. Hypertens.
,
22
(
2
), pp.
339
347
.10.1097/00004872-200402000-00018
157.
Jeong
,
S. I.
,
Kwon
,
J. H.
,
Lim
,
J. I.
,
Cho
,
S. W.
,
Jung
,
Y.
,
Sung
,
W. J.
,
Kim
,
S. H.
,
Kim
,
Y. H.
,
Lee
,
Y. M.
,
Kim
,
B. S.
,
Choi
,
C. Y.
, and
Kim
,
S. J.
,
2005
, “
Mechano-Active Tissue Engineering of Vascular Smooth Muscle Using Pulsatile Perfusion Bioreactors and Elastic PLCL Scaffolds
,”
Biomaterials
,
26
(
12
), pp.
1405
1411
.10.1016/j.biomaterials.2004.04.036
158.
Nakadate
,
H.
,
Hirose
,
Y.
,
Sekizuka
,
E.
, and
Minamitani
,
H.
, “
A New In Vitro Pulsatile Perfusion System That Mimics Physiological Transmural Pressure and Shear Stress in Any Size of In Vivo Vessel
,”
J. Biomech. Sci. Eng.
,
3
(
1
), pp.
25
37
.10.1299/jbse.3.25
159.
O'Cearbhaill
,
E. D.
,
Punchard
,
M. A.
,
Murphy
,
M.
,
Barry
,
F. P.
,
Mchugh
,
P. E.
, and
Barron
,
V.
,
2008
, “
Response of Mesenchymal Stem Cells to the Biomechanical Environment of the Endothelium on a Flexible Tubular Silicone Substrate
,”
Biomaterials
,
29
(
11
), pp.
1610
1619
.10.1016/j.biomaterials.2007.11.042
160.
Berardi
,
D. E.
, and
Tarbell
,
J. M.
,
2009
, “
Stretch and Shear Interactions Affect Intercellular Junction Protein Expression and Turnover in Endothelial Cells
,”
Cell Mol. Bioeng.
,
2
(
3
), pp.
320
331
.10.1007/s12195-009-0073-7
161.
Punchard
,
M. A.
,
O'cearbhaill
,
E. D.
,
Mackle
,
J. N.
,
Mchugh
,
P. E.
,
Smith
,
T. J.
,
Stenson-Cox
,
C.
, and
Barron
,
V.
,
2009
, “
Evaluation of Human Endothelial Cells Post Stent Deployment in a Cardiovascular Simulator In Vitro
,”
Ann. Biomed. Eng.
,
37
(
7
), pp.
1322
1330
.10.1007/s10439-009-9701-6
162.
Estrada
,
R.
,
Giridharan
,
G. A.
,
Nguyen
,
M. D.
,
Prabhu
,
S. D.
, and
Sethu
,
P.
,
2011
, “
Microfluidic Endothelial Cell Culture Model to Replicate Disturbed Flow Conditions Seen in Atherosclerosis Susceptible Regions
,”
Biomicrofluidics
,
5
(
3
), p.
032006
.10.1063/1.3608137
163.
Maul
,
T. M.
,
Chew
,
D. W.
,
Nieponice
,
A.
, and
Vorp
,
D. A.
,
2011
, “
Mechanical Stimuli Differentially Control Stem Cell Behavior: Morphology, Proliferation, and Differentiation
,”
Biomech. Model. Mechanobiol.
,
10
(
6
), pp.
939
953
.10.1007/s10237-010-0285-8
164.
Reichenberg
,
Y.
, and
Lanir
,
Y.
,
2011
, “
A Flow Bio-Reactor for Studying the Effects of Haemodynamic Forces on the Morphology and Rheology of Cylindrically Cultured Endothelial Cells
,”
J. Med. Eng. Technol.
,
35
(
5
), pp.
231
238
.10.3109/03091902.2011.571334
165.
Reichenberg
,
Y.
, and
Lanir
,
Y.
,
2012
, “
Duration of Microbead Seeding on Endothelial Cells Significantly Affects Their Response to Magnetic Excitation
,”
Phys. Rev. E: Stat. Nonlinear Soft Matter Phys.
,
85
(
4 Pt 1
), p.
041915
.10.1103/PhysRevE.85.041915
166.
Ghriallais
,
R. N.
,
Mcnamara
,
L.
, and
Bruzzi
,
M.
,
2013
, “
Comparison of In Vitro Human Endothelial Cell Response to Self-Expanding Stent Deployment in a Straight and Curved Peripheral Artery Simulator
,”
J. R. Soc. Interface
,
10
(
81
), p.
20120965
.10.1098/rsif.2012.0965
167.
Grenon
,
S. M.
,
Jeanne
,
M.
,
Aguado-Zuniga
,
J.
,
Conte
,
M. S.
, and
Hughes-Fulford
,
M.
,
2013
, “
Effects of Gravitational Mechanical Unloading in Endothelial Cells: Association Between Caveolins, Inflammation and Adhesion Molecules
,”
Sci. Rep.
,
3
, p. 1494.10.1038/srep01494
168.
Maeda
,
E.
,
Hagiwara
,
Y.
,
Wang
,
J. H.
, and
Ohashi
,
T.
,
2013
, “
A New Experimental System for Simultaneous Application of Cyclic Tensile Strain and Fluid Shear Stress to Tenocytes In Vitro
,”
Biomed. Microdevices
,
15
(
6
), pp.
1067
1075
.10.1007/s10544-013-9798-0
169.
Shojaei
,
S.
,
Tafazzoli-Shahdpour
,
M.
,
Shokrgozar
,
M. A.
, and
Haghighipour
,
N.
,
2013
, “
Effects of Mechanical and Chemical Stimuli on Differentiation of Human Adipose-Derived Stem Cells Into Endothelial Cells
,”
Int. J. Artif. Organs
,
36
(
9
), pp.
663
673
.10.5301/ijao.5000242
170.
Colombo
,
A.
,
Zahedmanesh
,
H.
,
Toner
,
D. M.
,
Cahill
,
P. A.
, and
Lally
,
C.
,
2010
, “
A Method to Develop Mock Arteries Suitable for Cell Seeding and In-Vitro Cell Culture Experiments
,”
J. Mech. Behav. Biomed. Mater.
,
3
(
6
), pp.
470
477
.10.1016/j.jmbbm.2010.04.003
171.
Pazos
,
V.
,
Mongrain
,
R.
, and
Tardif
,
J. C.
,
2010
, “
Deformable Mock Stenotic Artery With a Lipid Pool
,”
ASME J. Biomech. Eng.
,
132
(
3
), p.
034501
.10.1115/1.4000937
172.
Estrada
,
R.
,
Giridharan
,
G.
,
Prabhu
,
S. D.
, and
Sethu
,
P.
,
2011
, “
Endothelial Cell Culture Model of Carotid Artery Atherosclerosis
,”
Annual International Conference of IEEE Engineering Medicine Biology Society
,
Boston, MA
, Aug. 30–Sept. 3, pp.
186
189
.10.1109/IEMBS.2011.6089925
173.
Hammer
,
S.
,
Jeays
,
A.
,
Allan
,
P. L.
,
Hose
,
R.
,
Barber
,
D.
,
Easson
,
W. J.
, and
Hoskins
,
P. R.
,
2009
, “
Acquisition of 3-D Arterial Geometries and Integration With Computational Fluid Dynamics
,”
Ultrasound Med. Biol.
,
35
(
12
), pp.
2069
2083
.10.1016/j.ultrasmedbio.2009.06.1099
174.
Zambrano
,
S.
,
Thompson
,
R. S.
, and
Moreno
,
M. R.
, “
Stress Angle Device: An In Vitro System for Reproducing the Mechanical Environment Associated With Regions Susceptible to Vascular Disease for the Study of Endothelial Cells
,”
Presentation at the Annual Meeting of the Biomedical Engineering Society
,
Seattle, WA.
, Sept. 25–28.
175.
Osawa
,
M.
,
Masuda
,
M.
,
Kusano
,
K.
, and
Fujiwara
,
K.
,
2002
, “
Evidence for a Role of Platelet Endothelial Cell Adhesion Molecule-1 in Endothelial Cell Mechanosignal Transduction: Is It a Mechanoresponsive Molecule?
,”
J. Cell Biol.
,
158
(
4
), pp.
773
785
.10.1083/jcb.200205049
176.
Osawa
,
M.
,
Masuda
,
M.
,
Harada
,
N.
,
Lopes
,
R. B.
, and
Fujiwara
,
K.
,
1997
, “
Tyrosine Phosphorylation of Platelet Endothelial Cell Adhesion Molecule-1 (Pecam-1, Cd31) in Mechanically Stimulated Vascular Endothelial Cells
,”
Eur. J. Cell Biol.
,
72
(
3
), pp.
229
237
.
You do not currently have access to this content.