Animal models for orthopaedic implant testing are well-established but morphologically dissimilar to human tibiae; notably, most are shorter. The purpose of this study was to quantitatively evaluate the morphology and mechanical properties of the cervine tibia, particularly with regard to its suitability for testing orthopaedic implants. Two endosteal and eleven periosteal measurements were made on 15 cervine tibiae. The mechanical strength in axial compression and torsion was measured using 11 tibiae. The cervine tibia is morphologically similar to the human tibia and more closely matches the length of the human tibia than current tibia models (ovine, porcine, and caprine). The distal epiphysis dimensions are notably different, but no more so than the current tibia models. The torsional stiffness of the cervine tibia is within the range of previously reported values for human tibiae. Furthermore, in many regions, cervine tibiae are abundant and locally available at a low cost. Given these mechanical and morphological data, coupled with potential cost savings if regionally available, the cervine tibia may be an appropriate model for orthopaedic implant testing.

References

References
1.
Martini
,
L.
,
Fini
,
M.
,
Giavaresi
,
G.
, and
Giardino
,
R.
,
2001
, “
Sheep Model in Orthopedic Research: A Literature Review
,”
Comp. Med.
,
51
(
4
), pp.
292
299
.
2.
Taylor
,
W. R.
,
Ehrig
,
R. M.
,
Heller
,
M. O.
,
Schell
,
H.
,
Seebeck
,
P.
, and
Duda
,
G. N.
,
2006
, “
Tibio-Femoral Joint Contact Forces in Sheep
,”
J. Biomech.
,
39
(
5
), pp.
791
798
.10.1016/j.jbiomech.2005.02.006
3.
Gradl
,
G.
,
Herlyn
,
P.
,
Emmerich
,
J.
,
Friebe
,
U.
,
Martin
,
H.
, and
Mittlmeier
,
T.
,
2014
, “
Fracture Near Press-On Interlocking Enhances Callus Mineralisation in a Sheep Midshaft Tibia Osteotomy Model
,”
Osteosynthesis Fract.—Curr. Trends Innov. Küntscher Soc.
,
45
(
1
), pp.
S66
S70
.
4.
Klein
,
P.
,
Opitz
,
M.
,
Schell
,
H.
,
Taylor
,
W. R.
,
Heller
,
M. O.
,
Kassi
,
J. P.
,
Kandziora
,
F.
, and
Duda
,
G. N.
,
2004
, “
Comparison of Unreamed Nailing and External Fixation of Tibial Diastases—Mechanical Conditions During Healing and Biological Outcome
,”
J. Orthop. Res.
,
22
(
5
), pp.
1072
1078
.10.1016/j.orthres.2004.02.006
5.
Lewis
,
D.
,
Lutton
,
C.
,
Wilson
,
L. J.
,
Crawford
,
R. W.
, and
Goss
,
B.
,
2009
, “
Low Cost Polymer Intramedullary Nails for Fracture Fixation: A Biomechanical Study in a Porcine Femur Model
,”
Arch. Orthop. Trauma Surg.
,
129
(
6
), pp.
817
822
.10.1007/s00402-009-0819-7
6.
Osterhoff
,
G.
,
Löffler
,
S.
,
Steinke
,
H.
,
Feja
,
C.
,
Josten
,
C.
, and
Hepp
,
P.
,
2011
, “
Comparative Anatomical Measurements of Osseous Structures in the Ovine and Human Knee
,”
Knee
,
18
(
2
), pp.
98
103
.10.1016/j.knee.2010.02.001
7.
Kumar
,
N.
,
Kukreti
,
S.
,
Ishaque
,
M.
, and
Mulholland
,
R.
,
2000
, “
Anatomy of Deer Spine and Its Comparison to the Human Spine
,”
Anat. Rec.
,
260
(
2
), pp.
189
203
.10.1002/1097-0185(20001001)260:2<189::AID-AR80>3.0.CO;2-N
8.
Kieser
,
D. C.
,
Kanade
,
S.
,
Waddell
,
N. J.
,
Kieser
,
J. A.
,
Theis
,
J.-C.
, and
Swain
,
M. V.
,
2014
, “
The Deer Femur–A Morphological and Biomechanical Animal Model of the Human Femur
,”
Bio-Med. Mater. Eng.
,
24
(
4
), pp.
1693
1703
.
9.
Kumar
,
N.
,
Kukreti
,
S.
,
Ishaque
,
M.
,
Sengupta
,
D. K.
, and
Mulholland
,
R. C.
,
2002
, “
Functional Anatomy of the Deer Spine: An Appropriate Biomechanical Model for the Human Spine?
,”
Anat. Rec.
,
266
(
2
), pp.
108
117
.10.1002/ar.10041
10.
Corbiere
,
N. C.
,
Lewicki
,
K. A.
,
Issen
,
K. A.
, and
Kuxhaus
,
L.
,
2014
, “
Creating Physiologically Realistic Vertebral Fractures in a Cervine Model
,”
ASME J. Biomed. Eng.
,
136
(
6
), p.
064504
.10.1115/1.4027059
11.
Ruff
,
C. B.
, and
Hayes
,
W. C.
,
1983
, “
Cross-Sectional Geometry of Pecos Pueblo Femora and Tibiae? A Biomechanical Investigation: I. Method and General Patterns of Variation
,”
Am. J. Phys. Anthropol.
,
60
(
3
), pp.
359
381
.10.1002/ajpa.1330600308
12.
Cristofolini
,
L.
, and
Viceconti
,
M.
,
2000
, “
Mechanical Validation of Whole Bone Composite Tibia Models
,”
J. Biomech.
,
33
(
3
), pp.
279
288
.10.1016/S0021-9290(99)00186-4
13.
Wang
,
C. J.
,
Brown
,
C. J.
,
Yettram
,
A. L.
, and
Procter
,
P.
,
2003
, “
Intramedullary Nails: Some Design Features of the Distal End
,”
Med. Eng. Phys.
,
25
(
9
), pp.
789
794
.10.1016/S1350-4533(03)00098-5
14.
Bartel
,
D.
,
Davy
,
D.
, and
Keaveny
,
T.
,
2006
,
Orthopaedic Biomechanics: Mechanics and Design in Musculoskeletal Systems
,
Pearson Prentice Hall
,
Upper Saddle River, NJ
.
15.
Lu
,
Y.
,
Nemke
,
B.
,
Lorang
,
D. M.
,
Trip
,
R.
,
Kobayashi
,
H.
, and
Markel
,
M. D.
,
2009
, “
Comparison of a New Braid Fixation System to an Interlocking Intramedullary Nail for Tibial Osteotomy Repair in an Ovine Model
,”
Vet. Surg.
,
38
(
4
), pp.
467
476
.10.1111/j.1532-950X.2009.00517.x
16.
Saunders
,
D. A.
,
1988
, “
White-Tailed Deer
,”
Adirondack Mammals
,
College of Environmental Science and Forestry, State University of New York
, Syracuse, NY, p.
216
.
17.
Edwards
,
W. B.
,
Schnitzer
,
T. J.
, and
Troy
,
K. L.
,
2013
, “
Torsional Stiffness and Strength of the Proximal Tibia are Better Predicted by Finite Element Models Than DXA or QCT
,”
J. Biomech.
,
46
(
10
), pp.
1655
1662
.10.1016/j.jbiomech.2013.04.016
18.
Brown
,
N. A. T.
,
Bryan
,
N. A.
, and
Stevens
,
P. M.
,
2007
, “
Torsional Stability of Intramedullary Compression Nails: Tibial Osteotomy Model
,”
Clin. Biomech.
,
22
(
4
), pp.
449
456
.10.1016/j.clinbiomech.2006.11.009
19.
Dailey
,
H. L.
,
Daly
,
C. J.
,
Galbraith
,
J. G.
,
Cronin
,
M.
, and
Harty
,
J. A.
,
2013
, “
The Flexible Axial Stimulation (FAST) Intramedullary Nail Provides Interfragmentary Micromotion and Enhanced Torsional Stability
,”
Clin. Biomech.
,
28
(
5
), pp.
579
585
.10.1016/j.clinbiomech.2013.04.006
20.
Weninger
,
P.
,
Schueller
,
M.
,
Jamek
,
M.
,
Stanzl-Tschegg
,
S.
,
Redl
,
H.
, and
Tschegg
,
E. K.
,
2009
, “
Factors Influencing Interlocking Screw Failure in Unreamed Small Diameter Nails—A Biomechanical Study Using a Distal Tibia Fracture Model
,”
Clin. Biomech.
,
24
(
4
), pp.
379
384
.10.1016/j.clinbiomech.2009.01.003
21.
Heiner
,
A. D.
, and
Brown
,
T. D.
,
2001
, “
Structural Properties of a New Design of Composite Replicate Femurs and Tibias
,”
J. Biomech.
,
34
(
6
), pp.
773
781
.10.1016/S0021-9290(01)00015-X
You do not currently have access to this content.