The shape and geometry of femoral implant influence implant-induced periprosthetic bone resorption and implant-bone interface stresses, which are potential causes of aseptic loosening in cementless total hip arthroplasty (THA). Development of a shape optimization scheme is necessary to achieve a trade-off between these two conflicting objectives. The objective of this study was to develop a novel multi-objective custom-based shape optimization scheme for cementless femoral implant by integrating finite element (FE) analysis and a multi-objective genetic algorithm (GA). The FE model of a proximal femur was based on a subject-specific CT-scan dataset. Eighteen parameters describing the nature of four key sections of the implant were identified as design variables. Two objective functions, one based on implant-bone interface failure criterion, and the other based on resorbed proximal bone mass fraction (BMF), were formulated. The results predicted by the two objective functions were found to be contradictory; a reduction in the proximal bone resorption was accompanied by a greater chance of interface failure. The resorbed proximal BMF was found to be between 23% and 27% for the trade-off geometries as compared to ∼39% for a generic implant. Moreover, the overall chances of interface failure have been minimized for the optimal designs, compared to the generic implant. The adaptive bone remodeling was also found to be minimal for the optimally designed implants and, further with remodeling, the chances of interface debonding increased only marginally.

References

References
1.
Kilgus
,
D. J.
,
Shimaoka
,
E. E.
,
Tipton
,
J. S.
, and
Eberle
,
R. W.
,
1993
, “
Dual-Energy X-Ray Absorptiometry Measurement of Bone Mineral Density Around Porous-Coated Cementless Femoral Implants
,”
J. Bone Jt. Surg., Br.
Vol.,
75
(
2
), pp.
279
287
.
2.
Kuiper
,
J. H.
, and
Huiskes
,
R.
,
1997
, “
Mathematical Optimization of Elastic Properties: Application to Cementless Hip Stem Design
,”
ASME J. Biomech. Eng.
,
119
(
2
), pp.
166
174
.10.1115/1.2796076
3.
Ahnfelt
,
L.
,
Herberts
,
P.
,
Malchau
,
H.
, and
Andersson
,
G. B. H.
,
1990
, “
Prognosis of Total Hip Replacement, a Swedish Multicenter Study of 4664 Revisions
,”
Acta Orthop. Scand.
,
238
, pp.
1
26
.
4.
Kurtz
,
S.
,
Ong
,
K.
,
Lau
,
E.
,
Mowat
,
F.
, and
Halpern
,
M.
,
2007
, “
Projections of Primary and Revision Hip and Knee Arthroplasty in the United States From 2005 to 2030
,”
J. Bone Jt. Surg., Am. Vol.
,
89
(
4
), pp.
780
785
.10.2106/JBJS.F.00222
5.
Huiskes
,
R.
, and
Boeklagen
,
R.
,
1988
, “
The Application of Numerical Shape Optimization to Artificial-Joint Design
,”
Computer Methods Bioengineering
,
7th ed.
, Vol.
9
,
R. L.
Spiker
, and
B. R.
Simon
, eds.,
ASME
,
NY
, pp.
185
197
.
6.
Viceconti
,
M.
,
Monti
,
L.
,
Muccini
,
R.
,
Bernakiewicz
,
M.
, and
Toni
,
A.
,
2001
, “
Even a Thin Layer of Soft Tissue May Compromise the Primary Stability of Cementless Hip Stems
,”
Clin. Biomech.
,
16
(
9
), pp.
765
775
.10.1016/S0268-0033(01)00052-3
7.
Fraternali
,
F.
,
Marino
,
A.
,
Sayed
,
T. E.
, and
Cioppa
,
A. D.
,
2011
, “
On the Structural Shape Optimization Through Variational Methods and Evolutionary Algorithms
,”
Mech. Adv. Mater. Struct.
,
18
(
4
), pp.
225
243
.10.1080/15376494.2010.483319
8.
Khanoki
,
S. A.
, and
Pasini
,
D.
,
2012
, “
Multiscale Design and Multiobjective Optimization of Orthopedic Hip Implants With Functionally Graded Cellular Material
,”
ASME J. Biomech. Eng.
,
134
(
3
), p.
031004
.10.1115/1.4006115
9.
Huiskes
,
R.
, and
Boeklagen
,
R.
,
1989
, “
Mathematical Shape Optimization of Hip Prosthesis Design
,”
J. Biomech.
,
22
(
8–9
), pp.
793
804
.10.1016/0021-9290(89)90063-8
10.
Katoozian
,
H.
, and
Davy
,
D. T.
,
2000
, “
Effects of Loading Conditions and Objective Function on Three-Dimensional Shape Optimization of Femoral Components of Hip Endoprostheses
,”
Med. Eng. Phys.
,
22
(
4
), pp.
243
251
.10.1016/S1350-4533(00)00030-8
11.
Chang
,
P. B.
,
Williams
,
B. J.
,
Bhalla
,
K. S. B.
,
Belknap
,
T. W.
,
Santner
,
T. J.
,
Notz
,
W. I.
, and
Bartel
,
D. L.
,
2001
, “
Design and Analysis of Robust Total Joint Replacements: Finite Element Model Experiments With Environmental Variables
,”
ASME J. Biomech. Eng.
,
123
(
3
), pp.
239
246
.10.1115/1.1372701
12.
Kowalczyk
,
P.
,
2001
, “
Design Optimization of Cementless Femoral Hip Prostheses Using Finite Element Analysis
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
396
402
.10.1115/1.1392311
13.
Fernandes
,
P. R.
,
Folgado
,
J.
, and
Ruben
,
R. B.
,
2004
, “
Shape Optimization of a Cementless Hip Stem for a Minimum of Interface Stress and Displacement
,”
Comput. Methods Biomech. Biomed. Eng.
,
7
(
1
), pp.
51
61
.10.1080/10255840410001661637
14.
Ishida
,
T.
,
Nishimura
,
I.
,
Tanino
,
H.
,
Higa
,
M.
,
Ito
,
H.
, and
Mitamura
,
Y.
,
2011
, “
Use of a Genetic Algorithm for Multiobjective Design Optimization of the Femoral Stem of a Cemented Total Hip Arthroplasty
,”
Artif. Organs
,
35
(
4
), pp.
404
410
.10.1111/j.1525-1594.2010.01117.x
15.
Ruben
,
R. B.
,
Folgado
,
J.
, and
Fernandes
,
P. R.
,
2012
, “
On the Optimal Shape of Hip Implants
,”
J. Biomech.
,
45
(
2
), pp.
239
246
.10.1016/j.jbiomech.2011.10.038
16.
Weinans
,
H.
,
Huiskes
,
R.
,
van Rietbergen
,
B.
,
Sumner
,
D. R.
,
Turner
,
T. M.
, and
Galante
,
J. O.
,
1993
, “
Adaptive Bone Remodelling Around Bonded Noncemented Total Hip Arthroplasty: A Comparison Between Animal Experiments and Computer Simulation
,”
J. Orthop. Res.
,
11
(
4
), pp.
500
513
.10.1002/jor.1100110405
17.
Ruben
,
R. B.
,
Folgado
,
J.
, and
Fernandes
,
P. R.
,
2007
, “
Three-Dimensional Shape Optimization of a Hip Prosthesis Using a Multicriteria Formulation
,”
Struct. Multidisc. Optim.
,
34
(
4
), pp.
261
275
.10.1007/s00158-006-0072-4
18.
Sabatini
,
A. L.
, and
Goswami
,
T.
,
2008
, “
Hip Implants VII: Finite Element Analysis and Optimization of Cross-Sections
,”
Mater. Des.
,
29
(
7
), pp.
1438
1446
.10.1016/j.matdes.2007.09.002
19.
Viceconti
,
M.
,
Bellingeri
,
L.
,
Cristofolini
,
L.
, and
Toni
,
A.
,
1997
, “
A Comparative Study on Different Methods of Automatic Mesh Generation of Human Femurs
,”
Med. Eng. Phys.
,
20
(
1
), pp.
1
10
.10.1016/S1350-4533(97)00049-0
20.
Fraldi
,
M.
,
Esposito
,
L.
,
Perrella
,
G.
,
Cutolo
,
A.
, and
Cowin
,
S.
,
2010
, “
Topological Optimization in Hip Prosthesis Design
,”
Biomech. Model. Mechanobiol.
,
9
(
4
), pp.
389
402
.10.1007/s10237-009-0183-0
21.
Botkin
,
M. E.
,
1992
, “
Three-Dimensional Shape Optimization Using Fully Automatic Mesh Generation
,”
J. AIAA
,
30
(
7
), pp.
1932
1934
.10.2514/3.11162
22.
Haftka
,
R. T.
, and
Grandhi
,
R. V.
,
1986
, “
Structural Shape Optimization—A Survey
,”
Comput. Methods Appl. Mech. Eng.
,
57
(
1
), pp.
91
106
.10.1016/0045-7825(86)90072-1
23.
Viceconti
,
M.
,
Davinelli
,
M.
,
Taddei
,
F.
, and
Cappello
,
A.
,
2004
, “
Automatic Generation of Accurate Subject Specific Bone Finite Element Models to Be Used in Clinical Studies
,”
J. Biomech.
,
37
(
10
), pp.
1597
1605
.10.1016/j.jbiomech.2003.12.030
24.
Zannoni
,
C.
,
Mantovani
,
R.
, and
Viceconti
,
M.
,
1998
, “
Material Properties Assignment to Finite Element Models of Bone Structures: A New Method
,”
Med. Eng. Phys.
,
20
(
10
), pp.
735
740
.10.1016/S1350-4533(98)00081-2
25.
Taddei
,
F.
,
Pancanti
,
A.
, and
Viceconti
,
M.
,
2004
, “
An Improved Method for the Automatic Mapping of Computed Tomography Numbers Onto Finite Element Models
,”
Med. Eng. Phys.
,
26
(
1
), pp.
61
69
.10.1016/S1350-4533(03)00138-3
26.
Morgan
,
E. F.
,
Bayraktar
,
H. H.
, and
Keaveny
,
T. M.
,
2003
, “
Trabecular Bone Modulus-Density Relationships Depend on Anatomic Site
,”
J. Biomech.
,
36
(
7
), pp.
897
904
.10.1016/S0021-9290(03)00071-X
27.
Vail
,
T. P.
,
Glisson
,
R. R.
,
Koukoubis
,
T. D.
, and
Guilak
,
F.
,
1998
, “
The Effect of Hip Stem Material Modulus on Surface Strain in Human Femora
,”
J. Biomech.
,
31
(
7
), pp.
619
628
.10.1016/S0021-9290(98)00061-X
28.
Martin
,
R. B.
,
Burr
,
D. B.
, and
Sharkey
,
N. A.
,
1998
,
Skeletal Tissue Mechanics
,
Springer
,
NY
, pp.
137
166
.10.1007/978-1-4757-2968-9
29.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G.
,
2001
, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
,
34
(
7
), pp.
859
871
.10.1016/S0021-9290(01)00040-9
30.
Heller
,
M.
,
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Durselen
,
L.
,
Pohl
,
M.
,
Claes
,
L.
, and
Duda
,
G. N.
,
2001
, “
Musculo-Skeletal Loading Conditions at the Hip During Walking and Stair Climbing
,”
J. Biomech.
,
34
(
7
), pp.
883
893
.10.1016/S0021-9290(01)00039-2
31.
Taylor
,
M.
,
2006
, “
Finite Element Analysis of the Resurfaced Femoral Head
,”
Proc. Inst. Mech. Eng., Part H
,
220
(
2
), pp.
289
297
.10.1243/095441105X93631
32.
Duda
,
G. N.
,
Brand
,
D.
,
Freitag
,
S.
,
Liersel
,
W.
, and
Schneider
,
E.
,
1996
, “
Variability of Femoral Muscle Attachments
,”
J. Biomech.
,
29
(
9
), pp.
1185
1190
.10.1016/0021-9290(96)00025-5
33.
Kuiper
,
J. H.
,
1993
, “Numerical Optimization of Artificial Hip Joint Designs,” Ph.D. thesis, Nijmegen, The Netherlands.
34.
Huiskes
,
R.
,
Weinans
,
H.
,
Grootenboer
,
H. J.
,
Dalstra
,
M.
,
Fudala
,
B.
, and
Slooff
,
T. J.
,
1987
, “
Adaptive Bone-Remodelling Theory Applied to Prosthetic-Design Analysis
,”
J. Biomech.
,
20
(
11–12
), pp.
1135
1150
.10.1016/0021-9290(87)90030-3
35.
Huiskes
,
R.
,
Weinans
,
H.
, and
van Rietbergen
,
B.
,
1992
, “
The Relationship Between Stress Shielding and Bone Resorption Around Total Hip Stems and the Effect of Flexible Materials
,”
Clin. Orthop. Relat. Res.
,
274
, pp.
124
134
.10.1097/00003086-199201000-00014
36.
Huiskes
,
R.
, and
van Rietbergen
,
B.
,
1995
, “
Preclinical Testing of Total Hip Stem: The Effects of Coating Placement
,”
Clin. Orthop. Relat. Res.
,
319
, pp.
64
76
.10.1097/00003086-199510000-00007
37.
Ghosh
,
R.
,
Mukherjee
,
K.
, and
Gupta
,
S.
,
2013
, “
Bone Remodelling Around Uncemented Metallic and Ceramic Acetabular Components
,”
Proc. Inst. Mech. Eng., Part H
,
227
(
5
), pp.
490
502
.10.1177/0954411913478703
38.
Ghosh
,
R.
, and
Gupta
,
S.
,
2014
, “
Bone Remodelling Around Cementless Composite Acetabular Components: The Effects of Implant Geometry and Implant-Bone Interfacial Conditions
,”
J. Mech. Behav. Biomed. Mater.
,
32
, pp.
257
269
.10.1016/j.jmbbm.2014.01.010
39.
Hoffman
,
O.
,
1967
, “
The Brittle Strength of Orthotropic Materials
,”
J. Compos. Mater.
,
1
(
3
), pp.
200
206
.10.1177/002199836700100210
40.
Pal
,
B.
,
Gupta
,
S.
, and
New
,
A. M. R.
,
2010
, “
Design Considerations for Ceramic Resurfaced Femoral Head: Effect of Interface Characteristics on Failure Mechanisms
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
2
), pp.
143
155
.10.1080/10255840903067064
41.
Kaplan
,
S. J.
,
Hayes
,
W. C.
, and
Stone
,
J. L.
,
1985
, “
Tensile Strength of Bovine Trabecular Bone
,”
J. Biomech.
,
18
(
9
), pp.
723
727
.10.1016/0021-9290(85)90027-2
42.
Stone
,
J. L.
,
Beaupré
,
G. S.
, and
Hayes
,
W. C.
,
1983
, “
Multiaxial Strength Characteristics of Trabecular Bone
,”
J. Biomech.
,
16
(
9
), pp.
743
752
.10.1016/0021-9290(83)90083-0
43.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
44.
Deb
,
K.
,
2001
,
Multi-Objective Optimization Using Evolutionary Algorithms
,
1st ed.
, (
Wiley-Interscience Series in Systems and Optimization
), John Wiley & Sons Ltd, Baffins Lane, Chichester, West Sussex, England.
45.
van Rietbergen
,
B.
,
Huiskes
,
R.
,
Weinans
,
H.
,
Sumner
,
D. R.
,
Turner
,
T. M.
, and
Galante
,
J. O.
,
1993
, “
The Mechanism of Bone Remodelling and Resorption Around Press-Fitted THA Stems
,”
J. Biomech.
,
26
(
4–5
), pp.
369
382
.10.1016/0021-9290(93)90001-U
46.
Pal
,
B.
,
Gupta
,
S.
, and
New
,
A.
,
2009
, “
A Numerical Study of Failure Mechanisms in the Cemented Resurfaced Femur: Effects of Interface Characteristics and Bone Remodelling
,”
Proc. Inst. Mech. Eng., Part H
,
223
(
4
), pp.
471
484
.10.1243/09544119JEIM488
47.
Martin
,
R. B.
,
1972
, “
The Effect of Geometric Feedback in the Development of Osteoporosis
,”
J. Biomech.
,
5
(
5
), pp.
447
455
.10.1016/0021-9290(72)90003-6
48.
He
,
J.
, and
Yao
,
X.
,
2003
, “
Towards an Analytic Framework for Analysing the Computation Time of Evolutionary Algorithms
,”
Artif. Int.
,
145
(
1–2
), pp.
59
97
.10.1016/S0004-3702(02)00381-8
49.
Søballe
,
K.
, and
Christensen
,
F.
,
1988
, “
Calcar Resorption After Total Hip Arthroplasty
,”
J. Arthrop.
,
3
(
2
), pp.
103
107
.10.1016/S0883-5403(88)80074-3
50.
Kröger
,
H.
,
Venesmaa
,
P.
,
Jurvelin
,
J.
,
Miettinen
,
H.
,
Suomalainen
,
O.
, and
Alhava
,
E.
,
1998
, “
Bone Density at the Proximal Femur After Total Hip Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
352
, pp.
66
74
.
51.
Roth
,
A.
,
Richartz
,
G.
,
Sander
,
K.
,
Sachse
,
A.
,
Fuhrmann
,
R.
,
Wagner
,
A.
, and
Venbrocks
,
R. A.
,
2005
, “
Periprosthetic Bone Loss After Total Hip Endoprosthesis. Dependence on the Type of Prosthesis and Preoperative Bone Configuration
,”
Orthopade
,
34
(
4
), pp.
334
344
.10.1007/s00132-005-0773-1
52.
Ritter
,
M. A.
, and
Fechtman
,
R. W.
,
1988
, “
Distal Cortical Hypertrophy Following Total Hip Arthroplasty
,”
J. Arthrop.
,
3
(
2
), pp.
117
121
.10.1016/S0883-5403(88)80076-7
53.
Sköldenberg
,
O. G.
,
Boden
,
H. S.
,
Salemyr
,
M. O.
,
Ahl
,
T. E.
, and
Adolphson
,
P. Y.
,
2006
, “
Peri-Prosthetic Proximal Bone Loss After Uncemented Hip Arthroplasty Is Related to Stem Size: DXA Measurements in 138 Patients Followed for 2–7 Years
,”
Acta Orthop.
,
77
(
3
), pp.
386
392
.10.1080/17453670610046307
54.
Dorr
,
L. D.
, and
Wan
,
Z.
,
1996
, “
Comparative Results of a Distal Modular Sleeve, Circumferential Coating, and Stiffness Relief Using the Anatomic Porous Replacement II
,”
J. Arthrop.
,
11
(
4
), pp.
419
428
.10.1016/S0883-5403(96)80032-5
55.
Vresilovic
,
E. J.
,
Hozack
,
W. J.
, and
Rothman
,
R. H.
,
1996
, “
Incidence of Thigh Pain After Uncemented Total Hip Arthroplasty as a Function of Femoral Stem Size
,”
J. Arthrop.
,
11
(
3
), pp.
304
311
.10.1016/S0883-5403(96)80083-0
56.
Kim
,
Y. H.
,
Park
,
J. W.
,
Kim
,
J. S.
, and
Kang
,
J. S.
,
2014
, “
Long-Term Results and Bone Remodeling After THA With a Short, Metaphyseal-Fitting Anatomic Cementless Stem
,”
Clin. Orthop. Relat. Res.
,
472
(
3
), pp.
943
950
.10.1007/s11999-013-3354-3
57.
Leali
,
A.
, and
Fetto
,
J.
,
2007
, “
Promising Mid-Term Results of Total Hip Arthroplasties Using an Uncemented Lateral-Flare Hip Prosthesis: A Clinical and Radiographic Study
,”
Int. Orthop.
,
31
(
8
), pp.
845
849
.10.1007/s00264-006-0267-8
58.
Abdul-Kadir
,
M. R.
, and
Kamsah
,
N.
,
2009
, “
Interface Micromotion of Cementless Hip Stems in Simulated Hip Arthroplasty
,”
Am. J. Appl. Sci.
,
6
(
9
), pp.
1682
1689
.10.3844/ajassp.2009.1682.1689
59.
Hedia
,
H. S.
,
Shabara
,
M. A. N.
,
El-Midany
,
T. T.
, and
Fouda
,
N.
,
2006
, “
Improved Design of Cementless Hip Stems Using Two-Dimensional Functionally Graded Materials
,”
J. Biomed. Mater. Res. B
,
79
(
1
), pp.
42
49
.10.1002/jbm.b.30509
60.
Yildiz
,
H.
,
Chang
,
F. K.
, and
Goodman
,
S.
,
1998
, “
Composite Hip Prosthesis Design. II. Simulation
,”
J. Biomed. Mater. Res.
,
39
(
1
), pp.
102
119
.10.1002/(SICI)1097-4636(199801)39:1<102::AID-JBM13>3.0.CO;2-H
61.
Sakai
,
R.
,
Itoman
,
M.
, and
Mabuchi
,
K.
,
2006
, “
Assessments of Different Kinds of Stems by Experiments and FEM Analysis: Appropriate Stress Distribution on a Hip Prosthesis
,”
Clin. Biomech.
,
21
(
8
), pp.
826
833
.10.1016/j.clinbiomech.2006.03.008
62.
Bryan
,
J. M.
,
Sumner
,
D. R.
,
Hurwitz
,
D. E.
,
Tompkins
,
G. S.
,
Andriacchi
,
T. P.
, and
Galante
,
J. O.
,
1996
, “
Altered Load History Affects Periprosthetic Bone Loss Following Cementless Total Hip Arthroplasty
,”
J. Orthop. Res.
,
14
(
5
), pp.
762
768
.10.1002/jor.1100140513
63.
Maurer
,
S. G.
,
Baitner
,
A. C.
, and
Di Cesare
,
P. E.
,
2000
, “
Reconstruction of the Failed Femoral Component and Proximal Femoral Bone Loss in Revision Hip Surgery
,”
Am. Acad. Orthop. Surg.
,
8
(
6
), pp.
354
363
.
64.
Thomsen
,
M. N.
,
Breusch
,
S. J.
,
Aldinger
,
P. R.
,
Görtz
,
W.
,
Lahmer
,
A.
,
Honl
,
M.
,
Birke
,
A.
, and
Nägerl
,
H.
,
2002
, “
Robotically-Milled Bone Cavities: A Comparison With Hand-Broaching in Different Types of Cementless Hip Stems
,”
Acta Orthop. Scand.
,
73
(
4
), pp.
379
385
.10.1080/00016470216317
65.
Rosenthall
,
L.
,
Bobyn
,
J. D.
, and
Tanzer
,
M.
,
1999
, “
Bone Densitometry: Influence of Prosthetic Design and Hydroxyapatite Coating on Regional Adaptive Bone Remodeling
,”
Int. Orthop.
,
23
(6), pp.
325
329
.10.1007/s002640050383
66.
Sandiford
,
N.
,
Doctor
,
C.
,
Rajaratnam
,
S. S.
,
Ahmed
,
S.
,
East
,
D. J.
,
Miles
,
K.
,
Butler-Manuel
,
A.
, and
Shepperd
,
J. A.
,
2013
, “
Primary Total Hip Replacement With a Furlong Fully Hydroxyapatite-Coated Titanium Alloy Femoral Component: Results at a Minimum Follow-Up of 20 Years
,”
Bone Jt. J.
,
95-B
(
4
), pp.
467
471
.10.1302/0301-620X.95B4.30445
67.
Shetty
,
A. A.
,
Slack
,
R.
,
Tindall
,
A.
,
James
,
K. D.
, and
Rand
,
C.
,
2005
, “
Results of a Hydroxyapatite-Coated (Furlong) Total Hip Replacement: A 13- to 15-year Follow-Up
,”
J. Bone Jt. Surg. [Br]
,
87
(
8
), pp.
1050
1054
.10.1302/0301-620X.87B8.16011
68.
Singh
,
S.
,
Trikha
,
S. P.
, and
Edge
,
A. J.
,
2004
, “
Hydroxyapatite Ceramic Coated Femoral Stems in Young Patients: A Prospective Ten-Year Study
,”
J. Bone Jt. Surg. [Br]
,
86-B
(8), pp.
1118
1123
.10.1302/0301-620X.86B8.14928
69.
ten Broeke
,
R. H. M.
,
Tarala
,
M.
,
Arts
,
J. J.
,
Janssen
,
D. W.
,
Verdonschot
,
N.
, and
Geesink
,
R. G. T.
,
2014
, “
Improving Peri-Prosthetic Bone Adaptation Around Cementless Hip Stems: A Clinical and Finite Element Study
,”
Med. Eng. Phys.
,
36
(3), pp.
345
353
.10.1016/j.medengphy.2013.12.006
70.
Baca
,
V.
,
Horak
,
Z.
,
Mikulenka
,
P.
, and
Dzupa
,
V.
,
2008
, “
Comparison of an Inhomogeneous Orthotropic and Isotropic Material Models Used for FE Analyses
,”
Med. Eng. Phys.
,
30
(
7
), pp.
924
930
.10.1016/j.medengphy.2007.12.009
71.
Peng
,
L.
,
Bai
,
J.
,
Zeng
,
X.
, and
Zhou
,
Y.
,
2006
, “
Comparison of Isotropic and Orthotropic Material Property Assignments on Femoral Finite Element Models Under Two Loading Conditions
,”
Med. Eng. Phys.
,
28
(
3
), pp.
227
233
.10.1016/j.medengphy.2005.06.003
72.
Huiskes
,
R.
,
1990
, “
The Various Stress Patterns of Press-Fit, Ingrown, and Cemented Femoral Stems
,”
Clin. Orthop.
,
261
, pp.
27
38
.10.1097/00003086-199012000-00006
73.
Engh
,
C. A.
, and
Bobyn
,
J. D.
,
1988
, “
The Influence of Stem Size and Extent of Porous Coating on Femoral Bone Resorption After Primary Cementless Hip Arthroplasty
,”
Clin. Orthop.
,
231
, pp.
7
28
.10.1097/00003086-198806000-00002
74.
Gupta
,
S.
,
Pal
,
B.
, and
New
,
A. M. R.
,
2010
, “
The Effects of Interfacial Conditions and Stem Length on Potential Failure Mechanisms in the Uncemented Resurfaced Femur
,”
Anal. Biomed. Eng.
,
38
(
6
), pp.
2107
2120
.10.1007/s10439-010-0007-5
75.
Wu
,
L. D.
,
Hahne
,
H. J.
, and
Hassenpflug
,
J.
,
2004
, “
The Dimensional Accuracy of Preparation of Femoral Cavity in Cementless Total Hip Arthroplasty
,”
J. Zheijiang Univ. Sci.
,
5
(
10
), pp.
1270
1278
.10.1631/jzus.2004.1270
76.
Howard
,
J. L.
,
Hui
,
A. J.
,
Bourne
,
R. B.
,
McCalden
,
R. W.
,
McDonald
,
S. J.
, and
Rorabeck
,
C. H.
,
2004
, “
A Quantitative Analysis of Bone Support Comparing Cementless Tapered and Distal Fixation Total Hip Replacement
,”
J. Arthrop.
,
19
(
3
), pp.
266
273
.10.1016/j.arth.2003.09.011
77.
Mann
,
K. A.
,
Bartel
,
D. L.
,
Wright
,
T. M.
, and
Ingraffea
,
A. R.
,
1991
, “
Mechanical Characteristics of the Stem-Cement Interface
,”
J. Orthop. Res.
,
9
(
6
), pp.
798
808
.10.1002/jor.1100090605
78.
Viceconti
,
M.
,
Muccini
,
R.
,
Bernakiewicz
,
M.
,
Baleani
,
M.
, and
Cristofolini
,
L.
,
2000
, “
Large-Sliding Contact Elements Accurately Predict Levels of Bone-Implant Micromotion Relevant to Osseointegration
,”
J. Biomech.
,
33
(
12
), pp.
1611
1618
.10.1016/S0021-9290(00)00140-8
79.
Viceconti
,
M.
,
Brusi
,
G.
,
Pancanti
,
A.
, and
Cristofolini
,
L.
,
2006
, “
Primary Stability of an Anatomical Cementless Hip Stem: A Statistical Analysis
,”
J. Biomech.
,
39
(
7
), pp.
1169
1179
.10.1016/j.jbiomech.2005.03.024
80.
Araujo
,
A. B.
,
Travison
,
T. G.
,
Harris
,
S. S.
,
Holick
,
M. F.
,
Turner
,
A. K.
, and
McKinlay
,
J. B.
,
2007
, “
Race/Ethnic Differences in Bone Mineral Density in Men
,”
Osteoporos. Int.
,
18
(7), pp.
943
953
.10.1007/s00198-006-0321-9
81.
Bryan
,
R.
,
Mohan
,
P. S.
,
Hopkins
,
A.
,
Galloway
,
F.
,
Taylor
,
M.
, and
Nair
,
P. B.
,
2010
, “
Statistical Modelling of the Whole Human Femur Incorporating Geometric and Material Properties
,”
Med. Eng. Phys.
,
32
(
1
), pp.
57
65
.10.1016/j.medengphy.2009.10.008
You do not currently have access to this content.