The implant primary stability of the acetabular cup (AC) is an important parameter for the surgical success of press-fit procedures used for the insertion of cementless hip prostheses. In previous studies by our group (Mathieu, V., Michel, A., Lachaniette, C. H. F., Poignard, A., Hernigou, P., Allain, J., and Haiat, G., 2013, “Variation of the Impact Duration During the in vitro Insertion of Acetabular Cup Implants,” Med. Eng. Phys., 35(11), pp. 1558–1563) and (Michel, A., Bosc, R., Mathieu, V., Hernigou, P., and Haiat, G., 2014, “Monitoring the Press-Fit Insertion of an Acetabular Cup by Impact Measurements: Influence of Bone Abrasion,” Proc. Inst. Mech. Eng., Part H, 228(10), pp. 1027–1034), the impact momentum and duration were shown to carry information on the press-fit insertion of the AC within bone tissue. The aim of the present study is to relate the impact momentum recorded during the AC insertion to the AC biomechanical primary stability. The experimental protocol consisted in testing 13 bovine bone samples that underwent successively series of 15 reproducible mass falls impacts (5 kg, 5 cm) followed by tangential stability testing. Each bone sample was tested with different hole sizes in order to obtain different stability configurations. The impact momentum and the tangential primary stability reach a maximum value for an interference fit equal to around 1 mm. Moreover, a correlation between the impact momentum and the stability was obtained with all samples and all configuration (R2 = 0.65). The implant primary stability can be assessed through the measurement of the impact force signal analysis. This study opens new paths for the development of a medical device which could be used as a decision support system to assist the surgeon during the insertion of the AC implant.

References

References
1.
Morscher
,
E.
,
Bereiter
,
H.
, and
Lampert
,
C.
,
1989
, “
Cementless Press-Fit Cup. Principles, Experimental Data, and Three-Year Follow-Up Study
,”
Clin. Orthop. Relat. Res.
,
249
, pp.
12
20
.
2.
Zivkovic
,
I.
,
Gonzalez
,
M.
, and
Amirouche
,
F.
,
2010
, “
The Effect of Under-Reaming on the Cup/Bone Interface of a Press Fit Hip Replacement
,”
ASME J. Biomech. Eng.
,
132
(
4
), p.
041008
.10.1115/1.2913228
3.
Ramamurti
,
B. S.
,
Orr
,
T. E.
,
Bragdon
,
C. R.
,
Lowenstein
,
J. D.
,
Jasty
,
M.
, and
Harris
,
W. H.
,
1997
, “
Factors Influencing Stability at the Interface Between a Porous Surface and Cancellous Bone: A Finite Element Analysis of a Canine In Vivo Micromotion Experiment
,”
J. Biomed. Mater. Res.
,
36
(
2
), pp.
274
280
.10.1002/(SICI)1097-4636(199708)36:2<274::AID-JBM17>3.0.CO;2-G
4.
Mathieu
,
V.
,
Vayron
,
R.
,
Richard
,
G.
,
Lambert
,
G.
,
Naili
,
S.
,
Meningaud
,
J. P.
, and
Haiat
,
G.
,
2014
, “
Biomechanical Determinants of the Stability of Dental Implants: Influence of the Bone-Implant Interface Properties
,”
J. Biomech.
,
47
(
1
), pp.
3
13
.10.1016/j.jbiomech.2013.09.021
5.
Pilliar
,
R. M.
,
Lee
,
J. M.
, and
Maniatopoulos
,
C.
,
1986
, “
Observations on the Effect of Movement on Bone Ingrowth Into Porous-Surfaced Implants
,”
Clin. Orthop. Relat. Res.
,
208
, pp.
108
113
.
6.
Soballe
,
K.
,
Hansen
,
E. S.
,
Rasmussen
,
H. B.
,
Jorgensen
,
P. H.
, and
Bunger
,
C.
,
1992
, “
Tissue Ingrowth Into Titanium and Hydroxyapatite-Coated Implants During Stable and Unstable Mechanical Conditions
,”
J. Orthop. Res.
,
10
(
2
), pp.
285
299
.10.1002/jor.1100100216
7.
Aspenberg
,
P.
,
Goodman
,
S.
,
Toksvig-Larsen
,
S.
,
Ryd
,
L.
, and
Albrektsson
,
T.
,
1992
, “
Intermittent Micromotion Inhibits Bone Ingrowth. Titanium Implants in Rabbits
,”
Acta Orthop. Scand.
,
63
(
2
), pp.
141
145
.10.3109/17453679209154809
8.
Haiat
,
G.
,
Wang
,
H. L.
, and
Brunski
,
J.
,
2014
, “
Effects of Biomechanical Properties of the Bone-Implant Interface on Dental Implant Stability: From in Silico Approaches to the Patient's Mouth
,”
Annu. Rev. Biomed. Eng.
,
16
, pp.
187
213
.10.1146/annurev-bioeng-071813-104854
9.
Fritsche
,
A.
,
Bialek
,
K.
,
Mittelmeier
,
W.
,
Simnacher
,
M.
,
Fethke
,
K.
,
Wree
,
A.
, and
Bader
,
R.
,
2008
, “
Experimental Investigations of the Insertion and Deformation Behavior of Press-Fit and Threaded Acetabular Cups for Total Hip Replacement
,”
J. Orthop. Sci.
,
13
(
3
), pp.
240
247
.10.1007/s00776-008-1212-z
10.
Bobyn
,
J. D.
,
Pilliar
,
R. M.
,
Cameron
,
H. U.
, and
Weatherly
,
G. C.
,
1980
, “
The Optimum Pore Size for the Fixation of Porous-Surfaced Metal Implants by the Ingrowth of Bone
,”
Clin. Orthop. Relat. Res.
,
150
, pp.
263
270
.
11.
Clemow
,
A. J.
,
Weinstein
,
A. M.
,
Klawitter
,
J. J.
,
Koeneman
,
J.
, and
Anderson
,
J.
,
1981
, “
Interface Mechanics of Porous Titanium Implants
,”
J. Biomed. Mater. Res.
,
15
(
1
), pp.
73
82
.10.1002/jbm.820150111
12.
Cook
,
S. D.
,
Walsh
,
K. A.
, and
Haddad
,
R. J.
, Jr
.,
1985
, “
Interface Mechanics and Bone Growth Into Porous Co-Cr-Mo Alloy Implants
,”
Clin. Orthop. Relat. Res.
,
193
, pp.
271
280
.
13.
Adler
,
E.
,
Stuchin
,
S. A.
, and
Kummer
,
F. J.
,
1992
, “
Stability of Press-Fit Acetabular Cups
,”
J. Arthroplasty
,
7
(
3
), pp.
295
301
.10.1016/0883-5403(92)90052-R
14.
Baleani
,
M.
,
Fognani
,
R.
, and
Toni
,
A.
,
2001
, “
Initial Stability of a Cementless Acetabular Cup Design: Experimental Investigation on the Effect of Adding Fins to the Rim of the Cup
,”
Artif. Organs
,
25
(
8
), pp.
664
669
.10.1046/j.1525-1594.2001.025008664.x
15.
Curtis
,
M. J.
,
Jinnah
,
R. H.
,
Wilson
,
V. D.
, and
Hungerford
,
D. S.
,
1992
, “
The Initial Stability of Uncemented Acetabular Components
,”
J. Bone Jt. Surg., Br.
Vol.,
74
(
3
), pp.
372
376
.
16.
Clarke
,
H. J.
,
Jinnah
,
R. H.
,
Warden
,
K. E.
,
Cox
,
Q. G.
, and
Curtis
,
M. J.
,
1991
, “
Evaluation of Acetabular Stability in Uncemented Prostheses
,”
J. Arthroplasty
,
6
(
4
), pp.
335
340
.10.1016/S0883-5403(06)80185-3
17.
Hsu
,
J. T.
,
Lai
,
K. A.
,
Chen
,
Q.
,
Zobitz
,
M. E.
,
Huang
,
H. L.
,
An
,
K. N.
, and
Chang
,
C. H.
,
2006
, “
The Relation Between Micromotion and Screw Fixation in Acetabular Cup
,”
Comput. Methods Prog. Biomed.
,
84
(
1
), pp.
34
41
.10.1016/j.cmpb.2006.08.002
18.
Saleh
,
K. J.
,
Bear
,
B.
,
Bostrom
,
M.
,
Wright
,
T.
, and
Sculco
,
T. P.
,
2008
, “
Initial Stability of Press-Fit Acetabular Components: An In Vitro Biomechanical Study
,”
Am. J. Orthop. (Belle Mead NJ)
,
37
(
10
), pp.
519
522
.
19.
Markel
,
D.
,
Day
,
J.
,
Siskey
,
R.
,
Liepins
,
I.
,
Kurtz
,
S.
, and
Ong
,
K.
,
2011
, “
Deformation of Metal-Backed Acetabular Components and the Impact of Liner Thickness in a Cadaveric Model
,”
Int. Orthop.
,
35
(
8
), pp.
1131
1137
.10.1007/s00264-010-1077-6
20.
Perona
,
P. G.
,
Lawrence
,
J.
,
Paprosky
,
W. G.
,
Patwardhan
,
A. G.
, and
Sartori
,
M.
,
1992
, “
Acetabular Micromotion as a Measure of Initial Implant Stability in Primary Hip Arthroplasty. An In Vitro Comparison of Different Methods of Initial Acetabular Component Fixation
,”
J. Arthroplasty
,
7
(
4
), pp.
537
547
.10.1016/S0883-5403(06)80076-8
21.
Zietz
,
C.
,
Fritsche
,
A.
,
Kluess
,
D.
,
Mittelmeier
,
W.
, and
Bader
,
R.
,
2009
, “
Influence of Acetabular Cup Design on the Primary Implant Stability: An Experimental and Numerical Analysis
,”
Orthopade
,
38
(
11
), pp.
1097
1105
.10.1007/s00132-009-1467-x
22.
Jacofsky
,
D. J.
,
McCamley
,
J. D.
,
Jaczynski
,
A. M.
,
Shrader
,
M. W.
, and
Jacofsky
,
M. C.
,
2012
, “
Improving Initial Acetabular Component Stability in Revision Total Hip Arthroplasty Calcium Phosphate Cement vs Reverse Reamed Cancellous Allograft
,”
J. Arthroplasty
,
27
(
2
), pp.
305
309
.10.1016/j.arth.2011.05.009
23.
Burkner
,
A.
,
Fottner
,
A.
,
Lichtinger
,
T.
,
Teske
,
W.
,
Vogel
,
T.
,
Jansson
,
V.
, and
von Schulze Pellengahr
,
C.
,
2012
, “
Primary Stability of Cementless Threaded Acetabular Cups at First Implantation and in the Case of Revision Regarding Micromotions as Indicators
,”
Biomed. Tech. (Berl)
,
57
(
3
), pp.
169
174
.
24.
Shalabi
,
M. M.
,
Wolke
,
J. G. C.
,
Cuijpers
,
V. M. J. I.
, and
Jansen
,
J. A.
,
2007
, “
Evaluation of Bone Response to Titanium-Coated Polymethyl Methacrylate Resin (PMMA) Implants by X-Ray Tomography
,”
J. Mater. Sci.: Mater. Med.
,
18
(
10
), pp.
2033
2039
.
25.
Hecht
,
S.
,
Adams
,
W. H.
,
Narak
,
J.
, and
Thomas
,
W. B.
,
2011
, “
Magnetic Resonance Imaging Susceptibility Artifacts due to Metallic Foreign Bodies
,”
Vet. Radiol. Ultrasound
,
52
(
4
), pp.
409
414
.10.1111/j.1740-8261.2011.01809.x
26.
Pastrav
,
L. C.
,
Jaecques
,
S. V.
,
Jonkers
,
I.
,
Perre
,
G. V.
, and
Mulier
,
M.
,
2009
, “
In Vivo Evaluation of a Vibration Analysis Technique for the Per-Operative Monitoring of the Fixation of Hip Prostheses
,”
J. Orthop. Surg. Res.
,
4
, pp.
4
10
.10.1186/1749-799X-4-10
27.
Sakai
,
R.
,
Kikuchi
,
A.
,
Morita
,
T.
,
Takahira
,
N.
,
Uchiyama
,
K.
,
Yamamoto
,
T.
,
Moriya
,
M.
,
Uchida
,
K.
,
Fukushima
,
K.
,
Tanaka
,
K.
,
Takaso
,
M.
,
Itoman
,
M.
, and
Mabuchi
,
K.
,
2011
, “
Hammering Sound Frequency Analysis and Prevention of Intraoperative Periprosthetic Fractures During Total Hip Arthroplasty
,”
Hip Int.
,
21
(
6
), pp.
718
723
.10.5301/HIP.2011.8823
28.
Varini
,
E.
,
Bialoblocka-Juszczyk
,
E.
,
Lannocca
,
M.
,
Cappello
,
A.
, and
Cristofolini
,
L.
,
2010
, “
Assessment of Implant Stability of Cementless Hip Prostheses Through the Frequency Response Function of the Stem-Bone System
,”
Sens. Actuators, A
,
163
(
2
), pp.
526
532
.10.1016/j.sna.2010.08.029
29.
Mathieu
,
V.
,
Michel
,
A.
,
Lachaniette
,
C. H. F.
,
Poignard
,
A.
,
Hernigou
,
P.
,
Allain
,
J.
, and
Haiat
,
G.
,
2013
, “
Variation of the Impact Duration During the In Vitro Insertion of Acetabular Cup Implants
,”
Med. Eng. Phys.
,
35
(
11
), pp.
1558
1563
.10.1016/j.medengphy.2013.04.005
30.
Michel
,
A.
,
Bosc
,
R.
,
Mathieu
,
V.
,
Hernigou
,
P.
, and
Haiat
,
G.
,
2014
, “
Monitoring the Press-Fit Insertion of an Acetabular Cup by Impact Measurements: Influence of Bone Abrasion
,”
Proc. Inst. Mech. Eng., Part H
,
228
(
10
), pp.
1027
1034
.10.1177/0954411914552433
31.
Giardini
,
S.
,
Cornwell
,
P.
, and
Meneghini
,
R. M.
,
2005
, “
Monitoring Femoral Component Installation Using Vibration Testing
,”
Biomed. Sci. Instrum.
,
41
, pp.
13
18
.
32.
Meneghini
,
R. M.
,
Guthrie
,
M.
,
Moore
,
H. D.
,
Abou-Trabi
,
D.
,
Cornwell
,
P.
, and
Rosenberg
,
A. G.
,
2010
, “
A Novel Method for Prevention of Intraoperative Fracture in Cementless Hip Arthroplasty: Vibration Analysis During Femoral Component Insertion
,”
Surg. Technol. Int.
,
20
, pp.
334
339
.
33.
Macdonald
,
W.
,
Carlsson
,
L. V.
,
Charnley
,
G. J.
, and
Jacobsson
,
C. M.
,
1999
, “
Press-Fit Acetabular Cup Fixation: Principles and Testing
,”
Proc. Inst. Mech. Eng., Part H
,
213
(
1
), pp.
33
39
.10.1243/0954411991534780
34.
Spears
,
I. R.
,
Morlock
,
M. M.
,
Pfleiderer
,
M.
,
Schneider
,
E.
, and
Hille
,
E.
,
1999
, “
The Influence of Friction and Interference on the Seating of a Hemispherical Press-Fit Cup: A Finite Element Investigation
,”
J. Biomech.
,
32
(
11
), pp.
1183
1189
.10.1016/S0021-9290(99)00121-9
35.
Spears
,
I. R.
,
Pfleiderer
,
M.
,
Schneider
,
E.
,
Hille
,
E.
, and
Morlock
,
M. M.
,
2001
, “
The Effect of Interfacial Parameters on Cup-Bone Relative Micromotions. A Finite Element Investigation
,”
J. Biomech.
,
34
(
1
), pp.
113
120
.10.1016/S0021-9290(00)00112-3
36.
Udofia
,
I.
,
Liu
,
F.
,
Jin
,
Z.
,
Roberts
,
P.
, and
Grigoris
,
P.
,
2007
, “
The Initial Stability and Contact Mechanics of a Press-Fit Resurfacing Arthroplasty of the Hip
,”
J. Bone Jt. Surg., Br.
Vol.,
89
(
4
), pp.
549
556
.
37.
Kwong
,
L. M.
,
O'Connor
,
D. O.
,
Sedlacek
,
R. C.
,
Krushell
,
R. J.
,
Maloney
,
W. J.
, and
Harris
,
W. H.
,
1994
, “
A Quantitative In Vitro Assessment of Fit and Screw Fixation on the Stability of a Cementless Hemispherical Acetabular Component
,”
J. Arthroplasty
,
9
(
2
), pp.
163
170
.10.1016/0883-5403(94)90065-5
38.
Carter
,
D. R.
,
Vasu
,
R.
, and
Harris
,
W. H.
,
1983
, “
Periacetabular Stress Distributions After Joint Replacement With Subchondral Bone Retention
,”
Acta, Orthop. Scand.
,
54
(
1
), pp.
29
35
.10.3109/17453678308992866
39.
Poumarat
,
G.
, and
Squire
,
P.
,
1993
, “
Comparison of Mechanical Properties of Human, Bovine Bone and a New Processed Bone Xenograft
,”
Biomaterials
,
14
(
5
), pp.
337
340
.10.1016/0142-9612(93)90051-3
40.
Markel
,
D. C.
,
Hora
,
N.
, and
Grimm
,
M.
,
2002
, “
Press-Fit Stability of Uncemented Hemispheric Acetabular Components: A Comparison of Three Porous Coating Systems
,”
Int. Orthop.
,
26
(
2
), pp.
72
75
.
41.
Klika
,
A. K.
,
Murray
,
T. G.
,
Darwiche
,
H.
, and
Barsoum
,
W. K.
,
2007
, “
Options for Acetabular Fixation Surfaces
,”
J. Long-Term Eff. Med. Implants
,
17
(
3
), pp.
187
192
.10.1615/JLongTermEffMedImplants.v17.i3.20
42.
Small
,
S. R.
,
Berend
,
M. E.
,
Howard
,
L. A.
,
Rogge
,
R. D.
,
Buckley
,
C. A.
, and
Ritter
,
M. A.
,
2013
, “
High Initial Stability in Porous Titanium Acetabular Cups: A Biomechanical Study
,”
J. Arthroplasty
,
28
(
3
), pp.
510
516
.10.1016/j.arth.2012.07.035
You do not currently have access to this content.