Vein maladaptation, leading to poor long-term patency, is a serious clinical problem in patients receiving coronary artery bypass grafts (CABGs) or undergoing related clinical procedures that subject veins to elevated blood flow and pressure. We propose a computational model of venous adaptation to altered pressure based on a constrained mixture theory of growth and remodeling (G&R). We identify constitutive parameters that optimally match biaxial data from a mouse vena cava, then numerically subject the vein to altered pressure conditions and quantify the extent of adaptation for a biologically reasonable set of bounds for G&R parameters. We identify conditions under which a vein graft can adapt optimally and explore physiological constraints that lead to maladaptation. Finally, we test the hypothesis that a gradual, rather than a step, change in pressure will reduce maladaptation. Optimization is used to accelerate parameter identification and numerically evaluate hypotheses of vein remodeling.

References

1.
Sankaran
,
S.
,
Esmaily Moghadam
,
M.
,
Kahn
,
A. M.
,
Guccione
,
J.
,
Tseng
,
E.
, and
Marsden
,
A. L.
,
2012
, “
Patient-Specific Multiscale Modeling of Blood Flow for Coronary Artery Bypass Graft Surgery
,”
Ann. Biomed. Eng.
,
40
(
10
), pp.
2228
2242
.10.1007/s10439-012-0579-3
2.
Humphrey
,
J. D.
,
2002
,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer
,
NY
.
3.
Lüscher
,
T. F.
,
Turina
,
M.
, and
Braunwald
,
E.
,
1994
,
Coronary Artery Graft Disease: Mechanisms and Prevention
,
Springer-Verlag, Berlin
,
Germany
.
4.
Kanterman
,
R. Y.
,
Vesely
,
T. M.
,
Pilgram
,
T. K.
,
Guy
,
B. W.
,
Windus
,
D. W.
, and
Picus
,
D.
,
1995
, “
Dialysis Access Grafts: Anatomic Location of Venous Stenosis and Results of Angioplasty
,”
Radiology
,
195
(
1
), pp.
135
139
.10.1148/radiology.195.1.7892454
5.
Cox
,
J. L.
,
Chiasson
,
D. A.
, and
Gotlieb
,
A. I.
,
1991
, “
Stranger in a Strange Land: The Pathogenesis of Saphenous Vein Graft Stenosis With Emphasis on Structural and Functional Differences Between Veins and Arteries
,”
Prog. Cardiovasc. Dis.
,
34
(
1
), pp.
45
68
.10.1016/0033-0620(91)90019-I
6.
Sokolis
,
D. P.
,
2008
, “
Passive Mechanical Properties and Constitutive Modeling of Blood Vessels in Relation to Microstructure
,”
Med. Biol. Eng. Comput.
,
46
(
12
), pp.
1187
1199
.10.1007/s11517-008-0362-7
7.
Shelton
,
M. E.
,
Forman
,
M. E.
,
Virmani
,
R.
,
Bajaj
,
A.
,
Stoney
,
W. S.
, and
Atkinson
,
J. B.
,
1988
, “
A Comparison of Morphologic and Angiographic Findings in Long-Term Internal Mammary Artery and Saphenous Vein Bypass Grafts
,”
J.Am. Coll. Cardiol.
,
11
(
2
), pp.
297
307
.10.1016/0735-1097(88)90094-0
8.
Liu
,
S. Q.
, and
Fung
,
Y. C.
,
1998
, “
Changes in the Organization of the Smooth Muscle Cells in Rat Vein Grafts
,”
Ann. Biomed. Eng.
,
26
(
1
), pp.
86
95
.10.1114/1.52
9.
Liu
,
S. Q.
,
1998
, “
Influence of Tensile Strain on Smooth Muscle Cell Orientation in Rat Blood Vessels
,”
ASME J. Biomech. Eng.
,
120
(
3
), pp.
313
320
.10.1115/1.2797996
10.
Galt
,
S. W.
,
Zwolak
,
R. W.
,
Wagner
,
R. J.
, and
Gilbertson
,
J. J.
,
1993
, “
Differential Response of Arteries and Vein Grafts to Blood Flow Reduction
,”
J. Vasc. Surg.
,
17
(
3
), pp.
563
570
.10.1016/0741-5214(93)90156-G
11.
Fillinger
,
M.
,
Cronenwett
,
J. L.
,
Besso
,
S.
,
Walsh
,
D. B.
, and
Zwolak
,
R. M.
,
1994
, “
Vein Adaptation to the Hemodynamic Environment of Infrainguinal Grafts
,”
J. Vasc. Surg.
,
19
(
6
), pp.
970
979
.10.1016/S0741-5214(94)70208-X
12.
Baek
,
S.
,
Rajagopal
,
K. R.
, and
Humphrey
,
J. D.
,
2006
, “
A Theoretical Model of Enlarging Intracranial Fusiform Aneurysms
,”
ASME J. Biomech. Eng.
,
128
(
1
), pp.
142
149
.10.1115/1.2132374
13.
Eberth
,
J. F.
,
Cardamone
,
L.
, and
Humphrey
,
J. D.
,
1995
, “
Evolving Biaxial Mechanical Properties of Mouse Carotid Arteries in Hypertension
,”
J. Biomech.
,
21
, pp.
460
471
.
14.
Humphrey
,
J. D.
,
Baek
,
S.
, and
Niklason
,
L. E.
,
2007
, “
Biochemomechanics of Cerebral Vasospasm and Its Resolution: I. A New Hypothesis and Theoretical Framework
,”
Ann. Biomed. Eng.
,
35
(
9
), pp.
1485
1497
.10.1007/s10439-007-9321-y
15.
Baek
,
S.
,
Valentin
,
A.
, and
Humphrey
,
J. D.
,
2007
, “
Biochemomechanics of Cerebral Vasospasm and Its Resolution: II. Constitutive Relations and Model Simulations
,”
Ann. Biomed. Eng.
,
35
(
9
), pp.
1498
1509
.10.1007/s10439-007-9322-x
16.
Dobrin
,
P.
,
Littooy
,
F. N.
, and
Endean
,
E. D.
,
1989
, “
Mechanical Factors Predisposing to Intimal Hyperplasia and Medial Thickening in Autogenous Vein Grafts
,”
Surgery
,
105
, pp.
393
400
.
17.
Tran-Son-Tay
,
R.
,
Hwang
,
M.
,
Garbey
,
M.
,
Jiang
,
Z.
,
Ozaki
,
C. K.
, and
Berceli
,
S.
,
2008
, “
An Experiment-Based Model of Vein Graft Remodeling Induced by Shear Stress
,”
Ann. Biomed. Eng.
,
36
(
7
), pp.
1083
1091
.10.1007/s10439-008-9495-y
18.
Lee
,
Y. U.
,
Naito
,
Y.
,
Kurobe
,
H.
,
Breuer
,
C. K.
, and
Humphrey
,
J. D.
,
2013
, “
Biaxial Mechanical Properties of the Inferior Vena Cava in C57BL/6 and CB-17 SCID/bg Mice
,”
J. Biomech.
,
46
(
13
), pp.
2277
2282
.10.1016/j.jbiomech.2013.06.013
19.
Valentin
,
A.
,
Cardamone
,
L.
,
Baek
,
S.
, and
Humphrey
,
J. D.
,
2009
, “
Complementary Vasoactivity and Matrix Remodelling in Arterial Adaptations to Altered Flow and Pressure
,”
J. R. Soc. Interface
,
6
(
32
), pp.
293
306
.10.1098/rsif.2008.0254
20.
Humphrey
,
J. D.
, and
Rajagopal
,
K. R.
,
2002
, “
A Constrained Mixture Model for Growth and Remodeling of Soft Tissues
,”
Math. Models Methods Appl. Sci.
,
12
(
3
), pp.
407
430
.10.1142/S0218202502001714
21.
Gleason
,
R. L.
, and
Humphrey
,
J. D.
,
2004
, “
A Mixture Model of Arterial Growth and Remodeling in Hypertension: Altered Muscle Tone and Tissue Turnover
,”
J. Vasc. Res.
,
41
(
4
), pp.
352
363
.10.1159/000080699
22.
Karšaj
,
I.
, and
Humphrey
,
J. D.
,
2012
, “
A Multilayered Wall Model of Arterial Growth and Remodeling
,”
Mech. Mater.
,
44
, pp.
110
119
.10.1016/j.mechmat.2011.05.006
23.
Humphrey
,
J. D.
, and
Taylor
,
C. A.
,
2008
, “
Intracranial and Abdominal Aortic Aneurysms: Similarities, Differences, and Need for a New Class of Computational Models
,”
Ann. Rev. Biomed. Eng.
,
10
, pp.
221
246
.10.1146/annurev.bioeng.10.061807.160439
24.
Sokolis
,
D. P.
,
2013
, “
Experimental Investigation and Constitutive Modeling of the 3D Histomechanical Properties of Vein Tissue
,”
Biomech. Modell. Mechanobiol.
,
12
(
3
), pp.
431
451
.10.1007/s10237-012-0410-y
25.
Fung
,
Y. C.
,
1993
,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer-Verlag
,
NY
.
26.
Rachev
,
A.
, and
Hayashi
,
K.
,
1999
, “
Theoretical Study of the Effects of Vascular Smooth Muscle Contraction on Strain and Stress Distributions in Arteries
,”
Ann. Biomed. Eng.
,
27
(
4
), pp.
459
468
.10.1114/1.191
27.
Zhang
,
R.
,
Gashev
,
A. A.
,
Zawieja
,
D. C.
, and
Davis
,
M. J.
,
2007
, “
Length–Tension Relationships of Small Arteries, Veins, and Lymphatics From the Rat Mesenteric Microcirculation
,”
Am. J. Physiol. Heart Circ. Physiol.
,
292
, pp.
H1943
H1952
.10.1152/ajpheart.01000.2005
28.
Langille
,
B. L.
,
1996
, “
Arterial Remodeling: Relation to Hemodynamics
,”
Can. J. Physiol. Pharmacol.
,
74
(
7
), pp.
834
841
.10.1139/y96-082
29.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast. Phys. Sci. Solids
,
61
, pp.
1
48
.10.1016/S0022-3697(99)00252-8
30.
Marsden
,
A. L.
,
Wang
,
M.
,
Dennis
,
J. E.
, and
Moin
,
P.
,
2007
, “
Trailing-Edge Noise Reduction Using Derivative-Free Optimization and Large-Eddy Simulation
,”
J. Fluid Mech.
,
572
, pp.
13
36
.10.1017/S0022112006003235
31.
Marsden
,
A. L.
,
Wang
,
M.
,
Dennis
,
J. E.
, Jr.
, and
Moin
,
P.
,
2004
, “
Suppression of Vortex-Shedding Noise via Derivative-Free Shape Optimization
,”
Phys. Fluids
,
16
(
10
), pp.
L83
L86
.10.1063/1.1786551
32.
Yang
,
W.
,
Feinstein
,
J. A.
, and
Marsden
,
A. L.
,
2010
, “
Constrained Optimization of an Idealized Y-Shaped Baffle for the Fontan Surgery at Rest and Exercise
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
33–36
), pp.
2135
2149
.10.1016/j.cma.2010.03.012
33.
Booker
,
A. J.
,
Dennis
,
J. E.
, Jr.
,
Frank
,
P. D.
,
Serafini
,
D. B.
,
Torczon
,
V.
, and
Trosset
,
M. W.
,
1999
, “
A Rigorous Framework for Optimization of Expensive Functions by Surrogates
,”
Struct. Optim.
,
17
(
1
), pp.
1
13
.10.1007/BF01197708
34.
Marsden
,
A. L.
,
Wang
,
M.
,
Dennis
,
J. E.
, Jr.
, and
Moin
,
P.
,
2004
, “
Optimal Aeroacoustic Shape Design Using the Surrogate Management Framework
,”
Optim. Eng.
,
5
(
2
), pp.
235
262
.10.1023/B:OPTE.0000033376.89159.65
35.
Sankaran
,
S.
, and
Marsden
,
A. L.
,
2010
, “
The Impact of Uncertainty on Shape Optimization of Idealized Bypass Graft Models in Unsteady Flow
,”
Phys. Fluids
,
22
(
12
), p.
121902
.10.1063/1.3529444
36.
Sankaran
,
S.
,
Humphrey
,
J. D.
, and
Marsden
,
A. L.
,
2013
, “
An Efficient Framework for optimization and Parameter Sensitivity Analysis in Arterial Growth and Remodeling Computations
,”
Comput. Methods Appl. Mech. Eng.
,
256
, pp.
200
210
.10.1016/j.cma.2012.12.013
37.
Audet
,
C.
, and
Dennis
,
J. E.
, Jr.
,
2006
, “
Mesh Adaptive Direct Search Algorithms for Constrained Optimization
,”
SIAM J. Optim.
,
17
(
1
), pp.
188
217
.10.1137/040603371
38.
Nissen
,
R.
,
Cardinale
,
G. J.
, and
Udenfriend
,
S.
,
1978
, “
Increased Turnover of Arterial Collagen in Hypertensive Rats
,”
Proc. Natl. Acad. Sci. U.S.A.
,
75
(
1
), pp.
451
453
.10.1073/pnas.75.1.451
39.
Xu
,
C.
,
Lee
,
S.
,
Singh
,
T. M.
,
Sho
,
E.
,
Li
,
X.
,
Sho
,
M.
,
Masuda
,
H.
, and
Zarins
,
C. K.
,
2001
, “
Molecular Mechanisms of Aortic Wall Remodeling in Response to Hypertension
,”
J. Vasc. Surg.
,
33
(
3
), pp.
570
578
.10.1067/mva.2001.112231
40.
Sassani
,
S. G.
,
Theofani
,
A.
,
Sokrates
,
T.
, and
Sokolis
,
D. P.
,
2013
, “
Time-Course of Venous Wall Biomechanical Adaptation in Pressure and Flow-Overload: Assessment by a Microstructure-Based Material Model
,”
J. Biomech.
,
46
(
14
), pp.
2451
2462
.10.1016/j.jbiomech.2013.07.011
41.
Dajnowiec
,
D.
, and
Langille
,
B.
,
2007
, “
Arterial Adaptations to Chronic Changes in Haemodynamic Function: Coupling Vasomotor Tone to Structural Remodelling
,”
Clin. Sci.
,
113
, pp.
15
23
.10.1042/CS20060337
42.
Humphrey
,
J. D.
,
2008
, “
Mechanisms of Arterial Remodeling in Hypertension Coupled Roles of Wall Shear and Intramural Stress
,”
Hypertension
,
52
, pp.
195
200
.10.1161/HYPERTENSIONAHA.107.103440
43.
Hwang
,
M.
,
Berceli
,
S. A.
,
Garbey
,
M.
,
Kim
,
N. H.
, and
Tran-Son-Tay
,
R.
,
2012
, “
The Dynamics of Vein Graft Remodeling Induced by Hemodynamic Forces: A Mathematical Model
,”
Biomech. Modell. Mechanobiol.
,
11
(
3–4
), pp.
411
423
.10.1007/s10237-011-0321-3
44.
Wagenseil
,
J. E.
, and
Mecham
,
R. P.
,
2009
, “
Vascular Extracellular Matrix and Arterial Mechanics
,”
Physiol. Rev.
,
89
, pp.
957
989
.10.1152/physrev.00041.2008
45.
Kritharis
,
E. P.
,
Kakisis
,
J. D.
,
Giagini
,
A. T.
,
Manos
,
T.
,
Stergiopulos
,
N.
,
Tsangaris
,
S.
, and
Sokolis
,
D. P.
,
2010
, “
Biomechanical, Morphological and Zero-Stress State Characterization of Jugular Vein Remodeling in Arteriovenous Fistulas for Hemodialysis
,”
Biorheology
,
47
, pp.
297
319
.
46.
El-Kurdi
,
M. S.
,
Hong
,
Y. I.
,
Stankus
,
J. J.
,
Soletti
,
L.
,
Wagner
,
W. R.
, and
Vorp
,
D. A.
,
2008
, “
Transient Elastic Support for Vein Grafts Using a Constricting Microfibrillar Polymer Wrap
,”
Biomaterials
,
29
(
22
), pp.
3213
3220
.10.1016/j.biomaterials.2008.04.009
47.
Liu
,
S. Q.
,
Moore
,
M. M.
, and
Yap
,
C.
,
2000
, “
Prevention of Mechanical Stretch-Induced Endothelial and Smooth Muscle Cell Injury in Experimental Vein Grafts
,”
ASME J. Biomech. Eng.
,
122
(
1
), pp.
31
38
.10.1115/1.429625
48.
Rhodin
,
J. A. G.
,
2011
, “
Architecture of the Vessel Wall
,”
Compr. Physiol.
, pp.
1
31
.10.1002/cphy.cp020201
49.
Kamiya
,
A.
,
Bukhari
,
R.
, and
Togawa
,
T.
,
1984
, “
Adaptive Regulation of Wall Shear Stress Optimizing Vascular Tree Function
,”
Bull. Math. Biol.
,
46
(
1
), pp.
127
137
.10.1007/BF02463726
50.
Kudo
,
F. A.
,
Muto
,
A.
,
Maloney
,
S.
,
Pimiento
,
J. M.
,
Bergaya
,
S.
,
Fitzgerald
,
T. N.
,
Westvik
,
T. S.
,
Frattini
,
J.
,
Breuer
,
C.
,
Cha
,
C.
,
Nishibe
,
T.
,
Tellides
,
G.
,
Sessa
,
W. C.
, and
Dardik
,
A.
,
2007
, “
Venous Identity Is Lost but Arterial Identity Is Not Gained During Vein Graft Adaptation
,”
Arteriosclerosis
,
27
, pp.
1562
1571
.10.1161/ATVBAHA.107.143032
51.
Lüscher
,
T. F.
,
1991
, “
Vascular Biology of Coronary Bypass Grafts
,”
Curr. Opin. Cardiol.
,
6
, pp.
868
876
.10.1097/00001573-199112000-00003
52.
Manos
,
T. A.
,
Sokolis
,
D. P.
,
Giagini
,
A. T.
,
Davos
,
C. H.
,
Kakisis
,
J. D.
,
Kritharis
,
E. P.
,
Stergiopulos
,
N.
,
Karayannacos
,
P. E.
, and
Tsangaris
,
S.
,
2010
, “
Local Hemodynamics and Intimal Hyperplasia at the Venous Side of a Porcine Arteriovenous Shunt
,”
IEEE Trans. Inf. Tech. Biomed.
,
14
(
3
), pp.
681
690
.10.1109/TITB.2010.2040288
53.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Arterioscler., Thromb., Vasc. Biol.
,
5
, pp.
293
302
.10.1161/01.ATV.5.3.293
54.
Karšaj
,
I.
,
Sorić
,
J.
, and
Humphrey
,
J. D.
,
2010
, “
A 3-D Framework for Arterial Growth and Remodeling in Response to Altered Hemodynamics
,”
Int. J. Eng. Sci.
,
48
(
11
), pp.
1357
1372
.10.1016/j.ijengsci.2010.06.033
55.
Švejcar
,
J.
,
Přerovsk `y
,
I.
,
Linhart
,
J.
, and
Kruml
,
J.
,
1962
, “
Content of Collagen, Elastin, and Water in Walls of the Internal Saphenous Vein in Man
,”
Circ. Res.
,
2
, pp.
296
300
.10.1161/01.RES.11.2.296
You do not currently have access to this content.