Central artery stiffness has emerged over the past 15 years as a clinically significant indicator of cardiovascular function and initiator of disease. Loss of elastic fiber integrity is one of the primary contributors to increased arterial stiffening in aging, hypertension, and related conditions. Elastic fibers consist of an elastin core and multiple glycoproteins; hence defects in any of these constituents can adversely affect arterial wall mechanics. In this paper, we focus on mechanical consequences of the loss of fibulin-5, an elastin-associated glycoprotein involved in elastogenesis. Specifically, we compared the biaxial mechanical properties of five central arteries—the ascending thoracic aorta, descending thoracic aorta, suprarenal abdominal aorta, infrarenal abdominal aorta, and common carotid artery—from male and female wild-type and fibulin-5 deficient mice. Results revealed that, independent of sex, all five regions in the fibulin-5 deficient mice manifested a marked increase in structural stiffness but also a marked decrease in elastic energy storage and typically an increase in energy dissipation, with all differences being most dramatic in the ascending and abdominal aortas. Given that the primary function of large arteries is to store elastic energy during systole and to use this energy during diastole to work on the blood, fibulin-5 deficiency results in a widespread diminishment of central artery function that can have significant effects on hemodynamics and cardiac function.

References

References
1.
Yanagisawa
,
H.
, and
Davis
,
E. C.
,
2010
, “
Unraveling the Mechanism of Elastic Fiber Assembly: The Roles of Short Fibulins
,”
Int. J. Biochem. Cell Biol.
,
42
(
7
), pp.
1084
1093
.10.1016/j.biocel.2010.03.009
2.
Ramirez
,
F.
, and
Dietz
,
H. C.
,
2007
, “
Fibrillin-Rich Microfibrils: Structural Determinants of Morphogenetic and Homeostatic Events
,”
J. Cell. Physiol.
,
213
(
2
), pp.
326
330
.10.1002/jcp.21189
3.
Huang
,
J.
,
Davis
,
E. C.
,
Chapman
,
S. L.
,
Budatha
,
M.
,
Marmorstein
,
L. Y.
,
Word
,
R. A.
, and
Yanagisawa
,
H.
,
2010
, “
Fibulin-4 Deficiency Results in Ascending Aortic Aneurysms: A Potential Link Between Abnormal Smooth Muscle Cell Phenotype and Aneurysm Progression
,”
Circ. Res.
,
106
(
3
), pp.
583
592
.10.1161/CIRCRESAHA.109.207852
4.
Nakamura
,
T.
,
Lozano
,
P. R.
,
Ikeda
,
Y.
,
Iwanaga
,
Y.
,
Hinek
,
A.
,
Minamisawa
,
S.
,
Cheng
,
C.-F.
,
Kobuke
,
K.
,
Dalton
,
N.
,
Takada
,
Y.
,
Tashiro
,
K.
,
Ross
,
J.
, Jr.
,
Honjo
,
T.
, and
Chien
,
K. R.
,
2002
, “
Fibulin-5/DANCE is Essential for Elastogenesis In Vivo
,”
Nature
,
415
(
6868
), pp.
171
175
.10.1038/415171a
5.
Yanagisawa
,
H.
,
Davis
,
E. C.
,
Starcher
,
B. C.
,
Ouchi
,
T.
,
Yanagisawa
,
M.
,
Richardson
,
J. A.
, and
Olson
,
E. N.
,
2002
, “
Fibulin-5 is an Elastin-Binding Protein Essential for Elastic Fibre Development In Vivo
,”
Nature
,
415
(
6868
), pp.
168
171
.10.1038/415168a
6.
Yanagisawa
,
H.
,
Schluterman
,
M. K.
, and
Brekken
,
R. A.
,
2009
, “
Fibulin-5, an Integrin-Binding Matricellular Protein: Its Function in Development and Disease
,”
J. Cell Commun. Signalling
,
3
(
3–4
), pp.
337
347
.10.1007/s12079-009-0065-3
7.
Spencer
,
J. A.
,
Hacker
,
S. L.
,
Davis
,
E. C.
,
Mecham
,
R. P.
,
Knutsen
,
R. H.
,
Li
,
D. Y.
,
Gerard
,
R. D.
,
Richardson
,
J. A.
,
Olson
,
E. N.
, and
Yanagisawa
,
H.
,
2005
, “
Altered Vascular Remodeling in Fibulin-5-Deficient Mice Reveals a Role of Fibulin-5 in Smooth Muscle Cell Proliferation and Migration
,”
Proc. Natl. Acad. Sci. USA
,
102
(
8
), pp.
2946
2951
.10.1073/pnas.0500058102
8.
Wan
,
W.
,
Yanagisawa
,
H.
, and
Gleason
,
R. L.
, Jr.
,
2010
, “
Biomechanical and Microstructural Properties of Common Carotid Arteries From Fibulin-5 Null Mice
,”
Ann. Biomed. Eng.
,
38
(
12
), pp.
3605
3617
.10.1007/s10439-010-0114-3
9.
Wan
,
W.
, and
Gleason
,
R. L.
,
2013
, “
Dysfunction in Elastic Fiber Formation in Fibulin-5 Null Mice Abrogates the Evolution in Mechanical Response of Carotid Arteries During Maturation
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
304
(
5
), pp.
H674
H686
.10.1152/ajpheart.00459.2012
10.
Boutouyrie
,
P.
,
Laurent
,
S.
, and
Briet
,
M.
,
2008
, “
Importance of Arterial Stiffness as Cardiovascular Risk Factor for Future Development of New Type of Drugs
,”
Fundam. Clin. Pharmacol.
,
22
(
3
), pp.
241
246
.10.1111/j.1472-8206.2008.00584.x
11.
Adji
,
A.
,
O'Rourke
,
M. F.
, and
Namasivayam
,
M.
,
2011
, “
Arterial Stiffness, Its Assessment, Prognostic Value, and Implications for Treatment
,”
Am. J. Hypertens.
,
24
(
1
), pp.
5
17
.10.1038/ajh.2010.192
12.
Najjar
,
S. S.
,
Scuteri
,
A.
,
Shetty
,
V.
,
Wright
,
J. G.
,
Muller
,
D. C.
,
Fleg
,
J. L.
,
Spurgeon
,
H. P.
,
Ferrucci
,
L.
, and
Lakatta
,
E. G.
,
2008
, “
Pulse Wave Velocity is an Independent Predictor of the Longitudinal Increase in Systolic Blood Pressure and of Incident Hypertension in the Baltimore Longitudinal Study of Aging
,”
J. Am. Coll. Cardiol.
,
51
(
14
), pp.
1377
1383
.10.1016/j.jacc.2007.10.065
13.
Wang
,
K.-L.
,
Cheng
,
H.-M.
,
Sung
,
S.-H.
,
Chuang
,
S.-Y.
,
Li
,
C.-H.
,
Spurgeon
,
H. A.
,
Ting
,
C.-T.
,
Najjar
,
S. S.
,
Lakatta
,
E. G.
,
Yin
,
F. C. P.
,
Chou
,
P.
, and
Chen
,
C.-H.
,
2010
, “
Wave Reflection and Arterial Stiffness in the Prediction of 15-Year All-Cause and Cardiovascular Mortalities: A Community-Based Study
,”
Hypertension
,
55
(
3
), pp.
799
805
.10.1161/HYPERTENSIONAHA.109.139964
14.
Agabiti-Rosei
,
E.
,
Mancia
,
G.
,
O'Rourke
,
M. F.
,
Roman
,
M. J.
,
Safar
,
M. E.
,
Smulyan
,
H.
,
Wang
,
J.-G.
,
Wilkinson
,
I. B.
,
Williams
,
B.
, and
Vlachopoulos
,
C.
,
2007
, “
Central Blood Pressure Measurements and Antihypertensive Therapy: A Consensus Document
,”
Hypertension
,
50
(
1
), pp.
154
160
.10.1161/HYPERTENSIONAHA.107.090068
15.
Lakatta
,
E. G.
,
Wang
,
M.
, and
Najjar
,
S. S.
,
2009
, “
Arterial Aging and Subclinical Arterial Disease are Fundamentally Intertwined at Macroscopic and Molecular Levels
,”
Med. Clin. N. Am.
,
93
(
3
), pp.
583
604
.10.1016/j.mcna.2009.02.008
16.
Safar
,
M. E.
,
2010
, “
Arterial Aging—Hemodynamic Changes and Therapeutic Options
,”
Nat. Rev. Cardiol.
,
7
(
8
), pp.
442
449
.10.1038/nrcardio.2010.96
17.
Sugawara
,
J.
,
Hayashi
,
K.
,
Yokoi
,
T.
, and
Tanaka
,
H.
,
2008
, “
Age-Associated Elongation of the Ascending Aorta in Adults
,”
JACC Cardiovasc. Imaging
,
1
(
6
), pp.
739
748
.10.1016/j.jcmg.2008.06.010
18.
Hickson
,
S. S.
,
Butlin
,
M.
,
Graves
,
M.
,
Taviani
,
V.
,
Avolio
,
A. P.
,
McEniery
,
C. M.
, and
Wilkinson
,
I. B.
,
2010
, “
The Relationship of Age With Regional Aortic Stiffness and Diameter
,”
JACC Cardiovasc. Imaging
,
3
(
12
), pp.
1247
1255
.10.1016/j.jcmg.2010.09.016
19.
Redheuil
,
A.
,
Yu
,
W.-C.
,
Wu
,
C. O.
,
Mousseaux
,
E.
,
Cesare
,
A.
,
de, Yan
,
R.
,
Kachenoura
,
N.
,
Bluemke
,
D.
, and
Lima
,
J. A. C.
,
2010
, “
Reduced Ascending Aortic Strain and Distensibility: Earliest Manifestations of Vascular Aging in Humans
,”
Hypertension
,
55
(
2
), pp.
319
326
.10.1161/HYPERTENSIONAHA.109.141275
20.
O'Rourke
,
M. F.
, and
Hashimoto
,
J.
,
2007
, “
Mechanical Factors in Arterial Aging: A Clinical Perspective
,”
J. Am. Coll. Cardiol.
,
50
(
1
), pp.
1
13
.10.1016/j.jacc.2006.12.050
21.
Lacolley
,
P.
,
Challande
,
P.
,
Osborne-Pellegrin
,
M.
, and
Regnault
,
V.
,
2009
, “
Genetics and Pathophysiology of Arterial Stiffness
,”
Cardiovasc. Res.
,
81
(
4
), pp.
637
648
.10.1093/cvr/cvn353
22.
Wagenseil
,
J. E.
, and
Mecham
,
R. P.
,
2012
, “
Elastin in Large Artery Stiffness and Hypertension
,”
J. Cardiovasc. Transl. Res.
,
5
(
3
), pp.
264
273
.10.1007/s12265-012-9349-8
23.
Rachev
,
A.
,
Greenwald
,
S.
, and
Shazly
,
T.
,
2013
, “
Are Geometrical and Structural Variations Along the Length of the Aorta Governed by a Principle of ‘Optimal Mechanical Operation
’?,”
ASME J. Biomech. Eng.
,
135
(
8
), p.
081006
.10.1115/1.4024664
24.
Roccabianca
,
S.
,
Figueroa
,
C. A.
,
Tellides
,
G.
, and
Humphrey
,
J. D.
,
2014
, “
Quantification of Regional Differences in Aortic Stiffness in the Aging Human
,”
J. Mech. Behav. Biomed. Mater.
,
29
(
1
), pp.
618
634
.10.1016/j.jmbbm.2013.01.026
25.
Daugherty
,
A.
,
Rateri
,
D.
,
Hong
,
L.
, and
Balakrishnan
,
A.
,
2009
, “
Measuring Blood Pressure in Mice Using Volume Pressure Recording, a Tail-Cuff Method
,”
J. Vis. Exp.
, (27).10.3791/1291
26.
Gleason
,
R. L.
,
Wilson
,
E.
,
Humphrey
,
J. D.
, and
Gray
,
S. P.
,
2005
, “
A Multiaxial Computer-Controlled Organ Culture and Biomechanical Device for Mouse Carotid Arteries
,”
ASME J. Biomech. Eng.
,
126
(
6
), pp.
787
795
.10.1115/1.1824130
27.
Ferruzzi
,
J.
,
Bersi
,
M. R.
, and
Humphrey
,
J. D.
,
2013
, “
Biomechanical Phenotyping of Central Arteries in Health and Disease: Advantages of and Methods for Murine Models
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1311
1330
.10.1007/s10439-013-0799-1
28.
Bersi
,
M. R.
,
Ferruzzi
,
J.
,
Eberth
,
J. F.
,
Gleason
,
R. L.
, and
Humphrey
,
J. D.
,
2014
, “
Consistent Biomechanical Phenotyping of Common Carotid Arteries From Seven Genetic, Pharmacological, and Surgical Mouse Models
,”
Ann. Biomed. Eng.
,
42
(
6
), pp.
1207
1223
.10.1007/s10439-014-0988-6
29.
Gleason
,
R. L.
,
Dye
,
W. W.
,
Wilson
,
E.
, and
Humphrey
,
J. D.
,
2008
, “
Quantification of the Mechanical Behavior of Carotid Arteries From Wild-Type, Dystrophin-Deficient, and Sarcoglycan-δ Knockout Mice
,”
J. Biomech.
,
41
(
15
), pp.
3213
3218
.10.1016/j.jbiomech.2008.08.012
30.
Eberth
,
J. F.
,
Taucer
,
A. I.
,
Wilson
,
E.
, and
Humphrey
,
J. D.
,
2009
, “
Mechanics of Carotid Arteries in a Mouse Model of Marfan Syndrome
,”
Ann. Biomed. Eng.
,
37
(
6
), pp.
1093
1104
.10.1007/s10439-009-9686-1
31.
Ferruzzi
,
J.
,
Collins
,
M. J.
,
Yeh
,
A. T.
, and
Humphrey
,
J. D.
,
2011
, “
Mechanical Assessment of Elastin Integrity in Fibrillin-1-Deficient Carotid Arteries: Implications for Marfan Syndrome
,”
Cardiovasc. Res.
,
92
(
2
), pp.
287
295
.10.1093/cvr/cvr195
32.
Bersi
,
M. R.
,
Collins
,
M. J.
,
Wilson
,
E.
, and
Humphrey
,
J. D.
,
2012
, “
Disparate Changes in the Mechanical Properties of Murine Carotid Arteries and Aorta in Response to Chronic Infusion of Angiotensin-II
,”
Int. J. Adv. Eng. Sci. Appl. Math.
,
4
(
4
), pp.
228
240
.10.1007/s12572-012-0052-4
33.
Humphrey
,
J. D.
,
2002
,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer
, New York.
34.
Ferruzzi
,
J.
,
Vorp
,
D. A.
, and
Humphrey
,
J. D.
,
2011
, “
On Constitutive Descriptors of the Biaxial Mechanical Behaviour of Human Abdominal Aorta and Aneurysms
,”
J. R. Soc. Interface
,
8
(
56
), pp.
435
450
.10.1098/rsif.2010.0299
35.
Baek
,
S.
,
Gleason
,
R. L.
,
Rajagopal
,
K. R.
, and
Humphrey
,
J. D.
,
2007
, “
Theory of Small on Large: Potential Utility in Computations of Fluid–Solid Interactions in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
31–32
), pp.
3070
3078
.10.1016/j.cma.2006.06.018
36.
Warriner
,
R. K.
,
Johnston
,
K. W.
, and
Cobbold
,
R. S. C.
,
2008
, “
A Viscoelastic Model of Arterial Wall Motion in Pulsatile Flow: Implications for Doppler Ultrasound Clutter Assessment
,”
Physiol. Meas.
,
29
(
2
), pp.
157
159
.10.1088/0967-3334/29/2/001
37.
Wight
,
T. N.
,
1989
, “
Cell Biology of Arterial Proteoglycans
,”
Arterioscler. Thromb. Vasc. Biol.
,
9
(
1
), pp.
1
20
.10.1161/01.ATV.9.1.1
38.
Merrilees
,
M. J.
,
Tiang
,
K. M.
, and
Scott
,
L.
,
1987
, “
Changes in Collagen Fibril Diameters Across Artery Walls Including a Correlation With Glycosaminoglycan Content
,”
Connect. Tissue Res.
,
16
(
3
), pp.
237
257
.10.3109/03008208709006979
39.
Rezakhaniha
,
R.
,
Agianniotis
,
A.
,
Schrauwen
,
J. T. C.
,
Griffa
,
A.
,
Sage
,
D.
,
Bouten
,
C. V. C.
,
van de Vosse
,
F. N.
,
Unser
,
M.
, and
Stergiopulos
,
N.
,
2012
, “
Experimental Investigation of Collagen Waviness and Orientation in the Arterial Adventitia Using Confocal Laser Scanning Microscopy
,”
Biomech. Model. Mechanobiol.
,
11
(
3–4
), pp.
461
473
.10.1007/s10237-011-0325-z
40.
Crawley
,
M. J.
,
2012
,
The R Book
,
Wiley
, Chichester, UK.
41.
Arribas
,
S. M.
,
Hinek
,
A.
, and
González
,
M. C.
,
2006
, “
Elastic Fibres and Vascular Structure in Hypertension
,”
Pharmacol. Ther.
,
111
(
3
), pp.
771
791
.10.1016/j.pharmthera.2005.12.003
42.
Karnik
,
S. K.
,
Brooke
,
B. S.
,
Bayes-Genis
,
A.
,
Sorensen
,
L.
,
Wythe
,
J. D.
,
Schwartz
,
R. S.
,
Keating
,
M. T.
, and
Li
,
D. Y.
,
2003
, “
A Critical Role for Elastin Signaling in Vascular Morphogenesis and Disease
,”
Development
,
130
(
2
), pp.
411
423
.10.1242/dev.00223
43.
Carta
,
L.
,
Wagenseil
,
J. E.
,
Knutsen
,
R. H.
,
Mariko
,
B.
,
Faury
,
G.
,
Davis
,
E. C.
,
Starcher
,
B.
,
Mecham
,
R. P.
, and
Ramirez
,
F.
,
2009
, “
Discrete Contributions of Elastic Fiber Components to Arterial Development and Mechanical Compliance
,”
Arterioscler. Thromb. Vasc. Biol.
,
29
(
12
), pp.
2083
2089
.10.1161/ATVBAHA.109.193227
44.
Wagenseil
,
J. E.
,
Nerurkar
,
N. L.
,
Knutsen
,
R. H.
,
Okamoto
,
R. J.
,
Li
,
D. Y.
, and
Mecham
,
R. P.
,
2005
, “
Effects of Elastin Haploinsufficiency on the Mechanical Behavior of Mouse Arteries
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
289
(
3
), pp.
H1209
H1217
.10.1152/ajpheart.00046.2005
45.
Eberth
,
J. F.
,
Gresham
,
V. C.
,
Reddy
,
A. K.
,
Popovic
,
N.
,
Wilson
,
E.
, and
Humphrey
,
J. D.
,
2009
, “
Importance of Pulsatility in Hypertensive Carotid Artery Growth and Remodeling
,”
J. Hypertens.
,
27
(
10
), pp.
2010
2021
.10.1097/HJH.0b013e32832e8dc8
46.
Humphrey
,
J. D.
,
Eberth
,
J. F.
,
Dye
,
W. W.
, and
Gleason
,
R. L.
,
2009
, “
Fundamental Role of Axial Stress in Compensatory Adaptations by Arteries
,”
J. Biomech.
,
42
(
1
), pp.
1
8
.10.1016/j.jbiomech.2008.11.011
47.
Truesdell
,
C.
, and
Noll
,
W.
,
2004
,
The Non-Linear Field Theories of Mechanics
,
Springer
,
Berlin, Germany
.
48.
Eberth
,
J. F.
,
Cardamone
,
L.
, and
Humphrey
,
J. D.
,
2011
, “
Evolving Biaxial Mechanical Properties of Mouse Carotid Arteries in Hypertension
,”
J. Biomech.
,
44
(
14
), pp.
2532
2537
.10.1016/j.jbiomech.2011.07.018
49.
Humphrey
,
J. D.
,
2008
, “
Vascular Adaptation and Mechanical Homeostasis at Tissue, Cellular, and Sub-Cellular Levels
,”
Cell Biochem. Biophys.
,
50
(
2
), pp.
53
78
.10.1007/s12013-007-9002-3
50.
Tanaka
,
T. T.
, and
Fung
,
Y.-C.
,
1974
, “
Elastic and Inelastic Properties of the Canine Aorta and Their Variation Along the Aortic Tree
,”
J. Biomech.
,
7
(
4
), pp.
357
370
.10.1016/0021-9290(74)90031-1
51.
Sokolis
,
D. P.
,
2007
, “
Passive Mechanical Properties and Structure of the Aorta: Segmental Analysis
,”
Acta Physiol.
,
190
(
4
), pp.
277
289
.10.1111/j.1748-1716.2006.01661.x
52.
Sokolis
,
D. P.
,
Boudoulas
,
H.
, and
Karayannacos
,
P. E.
,
2008
, “
Segmental Differences of Aortic Function and Composition: Clinical Implications
,”
Hell. J. Cardiol.
,
49
(
3
), pp.
145
154
, available at: http://www.hellenicjcardiol.com/archive/full_text/2008/3/2008_3_145.pdf
53.
Zhao
,
J.
,
Day
,
J.
,
Yuan
,
Z. F.
, and
Gregersen
,
H.
,
2002
, “
Regional Arterial Stress–Strain Distributions Referenced to the Zero-Stress State in the Rat
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
282
(
2
), pp.
H622
H629
.10.1152/ajpheart.00620.2000
54.
Guo
,
X.
, and
Kassab
,
G. S.
,
2003
, “
Variation of Mechanical Properties Along the Length of the Aorta in C57bl/6 Mice
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
285
(
6
), pp.
H2614
H2622
.10.1152/ajpheart.00567.2003
55.
Faury
,
G.
,
Pezet
,
M.
,
Knutsen
,
R. H.
,
Boyle
,
W. A.
,
Heximer
,
S. P.
,
McLean
,
S. E.
,
Minkes
,
R. K.
,
Blumer
,
K. J.
,
Kovacs
,
A.
,
Kelly
,
D. P.
,
Li
,
D. Y.
,
Starcher
,
B.
, and
Mecham
,
R. P.
,
2003
, “
Developmental Adaptation of the Mouse Cardiovascular System to Elastin Haploinsufficiency
,”
J. Clin. Invest.
,
112
(
9
), pp.
1419
1428
.10.1172/JCI19028
56.
Wagenseil
,
J. E.
, and
Mecham
,
R. P.
,
2009
, “
Vascular Extracellular Matrix and Arterial Mechanics
,”
Physiol. Rev.
,
89
(
3
), pp.
957
989
.10.1152/physrev.00041.2008
57.
Han
,
H.-C.
, and
Fung
,
Y.-C.
,
1995
, “
Longitudinal Strain of Canine and Porcine Aortas
,”
J. Biomech.
,
28
(
5
), pp.
637
641
.10.1016/0021-9290(94)00091-H
58.
Beller
,
C. J.
,
Labrosse
,
M. R.
,
Thubrikar
,
M. J.
, and
Robicsek
,
F.
,
2004
, “
Role of Aortic Root Motion in the Pathogenesis of Aortic Dissection
,”
Circulation
,
109
(
6
), pp.
763
769
.10.1161/01.CIR.0000112569.27151.F7
59.
Jin
,
S.
,
Oshinski
,
J.
, and
Giddens
,
D. P.
,
2003
, “
Effects of Wall Motion and Compliance on Flow Patterns in the Ascending Aorta
,”
ASME J. Biomech. Eng.
,
125
(
3
), pp.
347
354
.10.1115/1.1574332
60.
Labrosse
,
M. R.
,
Gerson
,
E. R.
,
Veinot
,
J. P.
, and
Beller
,
C. J.
,
2013
, “
Mechanical Characterization of Human Aortas From Pressurization Testing and a Paradigm Shift for Circumferential Residual Stress
,”
J. Mech. Behav. Biomed. Mater.
,
17
, pp.
44
55
.10.1016/j.jmbbm.2012.08.004
You do not currently have access to this content.