Cell migration is a highly regulated and complex cellular process to maintain proper homeostasis for various biological processes. Extracellular environment was identified as the main affecting factors determining the direction of cell crawling. It was observed experimentally that the cell prefers migrating to the area with denser or stiffer array of microposts. In this article, an integrated unidirectional cell crawling model was developed to investigate the spatiotemporal dynamics of unidirectional cell migration, which incorporates the dominating intracellular biochemical processes, biomechanical processes and the properties of extracellular micropost arrays. The interpost spacing and the stiffness of microposts are taken into account, respectively, to study the mechanism of unidirectional cell locomotion and the guidance of extracellular influence cues on the direction of unidirectional cell crawling. The model can explain adequately the unidirectional crawling phenomena observed in experiments such as “spatiotaxis” and “durotaxis,” which allows us to obtain further insights into cell migration.

References

References
1.
Vogel
,
V.
, and
Sheetz
,
M.
,
2006
, “
Local Force and Geometry Sensing Regulate Cell Functions
,”
Nat. Rev. Mol. Cell Biol.
,
7
(
4
), pp.
265
275
.10.1038/nrm1890
2.
Engler
,
A. J.
,
Sen
,
S.
,
Sweeney
,
H. L.
, and
Discher
,
D. E.
,
2006
, “
Matrix Elasticity Directs Stem Cell Lineage Specification
,”
Cell
,
126
(
4
), pp.
677
689
.10.1016/j.cell.2006.06.044
3.
Discher
,
D. E.
,
Janmey
,
P.
, and
Wang
,
Y. L.
,
2005
, “
Tissue Cells Feel and Respond to the Stiffness of Their Substrate
,”
Science
,
310
(
5751
), pp.
1139
1143
.10.1126/science.1116995
4.
Chen
,
C. S.
,
2008
, “
Mechanotransduction—A Field Pulling Together?
,”
J. Cell Sci.
,
121
(
Pt 20
), pp.
3285
3292
.10.1242/jcs.023507
5.
Bershadsky
,
A. D.
,
Balaban
,
N. Q.
, and
Geiger
,
B.
,
2003
, “
Adhesion-Dependent Cell Mechanosensitivity
,”
Ann. Rev. Cell Dev. Biol.
,
19
, pp.
677
695
.10.1146/annurev.cellbio.19.111301.153011
6.
Lo
,
C. M.
,
Wang
,
H. B.
,
Dembo
,
M.
, and
Wang
,
Y. L.
,
2000
, “
Cell Movement Is Guided by the Rigidity of the Substrate
,”
Biophys. J.
,
79
(
1
), pp.
144
152
.10.1016/S0006-3495(00)76279-5
7.
Cain
,
R. J.
, and
Ridley
,
A. J.
,
2009
, “
Phosphoinositide 3-Kinases in Cell Migration
,”
Biol. Cell
,
101
(
1
), pp.
13
29
.10.1042/BC20080079
8.
Rorth
,
P.
,
2009
, “
Collective Cell Migration
,”
Ann. Rev. Cell Dev. Biol.
,
25
, pp.
407
429
.10.1146/annurev.cellbio.042308.113231
9.
Ananthakrishnan
,
R.
, and
Ehrlicher
,
A.
,
2007
, “
The Forces Behind Cell Movement
,”
Int. J. Biol. Sci.
,
3
(
5
), pp.
303
317
.10.7150/ijbs.3.303
10.
Lauffenburger
,
D. A.
, and
Horwitz
,
A. F.
,
1996
, “
Cell Migration: A Physically Integrated Molecular Process
,”
Cell
,
84
(
3
), pp.
359
369
.10.1016/S0092-8674(00)81280-5
11.
Lodish
,
H. F.
, and
Darnell
,
J. E.
,
1995
,
Molecular Cell Biology
,
3rd ed.
, Vol.
1
,
Scientific American Books/W.H.Freeman and Co.
,
New York
.
12.
Horwitz
,
A. R.
, and
Parsons
,
J. T.
,
1999
, “
Cell Biology—Cell Migration—Movin' On
,”
Science
,
286
(
5442
), pp.
1102
1103
.10.1126/science.286.5442.1102
13.
Stossel
,
T. P.
,
1993
, “
On the Crawling of Animal Cells
,”
Science
,
260
(
5111
), pp.
1086
1094
.10.1126/science.8493552
14.
Juliano
,
R. L.
, and
Haskill
,
S.
,
1993
, “
Signal Transduction From the Extracellular-Matrix
,”
J. Cell Biol.
,
120
(
3
), pp.
577
585
.10.1083/jcb.120.3.577
15.
Martin
,
P.
,
1997
, “
Wound Healing—Aiming for Perfect Skin Regeneration
,”
Science
,
276
(
5309
), pp.
75
81
.10.1126/science.276.5309.75
16.
Bray
,
D.
,
2001
,
Cell Movements: From Molecules to Motility
,
2nd ed.
,
Garland Science Publication
,
New York
, p.
372
, xiv.
17.
Sakamoto
,
K.
,
Owada
,
Y.
,
Shikama
,
Y.
,
Wada
,
I.
,
Waguri
,
S.
,
Iwamoto
,
T.
, and
Kimura
,
J.
,
2009
, “
Involvement of Na+/Ca2+ Exchanger in Migration and Contraction of Rat Cultured Tendon Fibroblasts
,”
J. Physiol.-London
,
587
(
22
), pp.
5345
5359
.10.1113/jphysiol.2009.172080
18.
Love
,
A. C.
,
2003
, “
Evolutionary Morphology, Innovation, and the Synthesis of Evolutionary and Developmental Biology
,”
Biol. Philos.
,
18
(
2
), pp.
309
345
.10.1023/A:1023940220348
19.
Ridley
,
A. J.
,
Schwartz
,
M. A.
,
Burridge
,
K.
,
Firtel
,
R. A.
,
Ginsberg
,
M. H.
,
Borisy
,
G.
,
Parsons
,
J. T.
, and
Horwitz
,
A. R.
,
2003
, “
Cell Migration: Integrating Signals From Front to Back
,”
Science
,
302
(
5651
), pp.
1704
1709
.10.1126/science.1092053
20.
Alberts
,
B.
,
Johnson
,
A.
,
Lewis
,
J.
,
Raff
,
M.
,
Roberts
,
K.
, and
Walter
,
P.
,
2008
,
Molecular Biology of the Cell
,
5th ed.
,
Garland Science Publication
,
New York
.
21.
Jabbarzadeh
,
E.
, and
Abrams
,
C. F.
,
2005
, “
Chemotaxis and Random Motility in Unsteady Chemoattractant Fields: A Computational Study
,”
J. Theor. Biol.
,
235
(
2
), pp.
221
232
.10.1016/j.jtbi.2005.01.005
22.
Neilson
,
M. P.
,
Veltman
,
D. M.
,
van Haastert
,
P. J.
,
Webb
,
S. D.
,
Mackenzie
,
J. A.
, and
Insall
,
R. H.
,
2011
, “
Chemotaxis: A Feedback-Based Computational Model Robustly Predicts Multiple Aspects of Real Cell Behaviour
,”
PLoS Biol.
,
9
(
5
), p.
e1000618
.10.1371/journal.pbio.1000618
23.
Carter
,
S. B.
,
1967
, “
Haptotaxis and the Mechanism of Cell Motility
,”
Nature
,
213
(
5073
), pp.
256
260
.10.1038/213256a0
24.
Mallet
,
D. G.
, and
Pettet
,
G. J.
,
2006
, “
A mathematical Model of Integrin-Mediated Haptotactic Cell Migration
,”
Bull. Math. Biol.
,
68
(
2
), pp.
231
253
.10.1007/s11538-005-9032-1
25.
Izzard
,
C. S.
, and
Lochner
,
L. R.
,
1980
, “
Formation of Cell-to-Substrate Contacts During Fibroblast Motility—An Interference-Reflexion Study
,”
J. Cell Sci.
,
42
, pp.
81
116
.
26.
Yeung
,
T.
,
Georges
,
P. C.
,
Flanagan
,
L. A.
,
Marg
,
B.
,
Ortiz
,
M.
,
Funaki
,
M.
,
Zahir
,
N.
,
Ming
,
W.
,
Weaver
,
V.
, and
Janmey
,
P. A.
,
2005
, “
Effects of Substrate Stiffness on Cell Morphology, Cytoskeletal Structure, and Adhesion
,”
Cell Motil. Cytoskeleton
,
60
(
1
), pp.
24
34
.10.1002/cm.20041
27.
Peyton
,
S. R.
, and
Putnam
,
A. J.
,
2005
, “
Extracellular Matrix Rigidity Governs Smooth Muscle Cell Motility in a Biphasic Fashion
,”
J. Cell. Physiol.
,
204
(
1
), pp.
198
209
.10.1002/jcp.20274
28.
Krishnan
,
R.
,
Klumpers
,
D. D.
,
Park
,
C. Y.
,
Rajendran
,
K.
,
Trepat
,
X.
,
van Bezu
,
J.
,
van Hinsbergh
,
V. W. M.
,
Carman
,
C. V.
,
Brain
,
J. D.
,
Fredberg
,
J. J.
,
Butler
,
J. P.
, and
Amerongen
,
G. P. V.
,
2011
, “
Substrate Stiffening Promotes Endothelial Monolayer Disruption Through Enhanced Physical Forces
,”
Am. J. Physiol.—Cell Physiol.
,
300
(
1
), pp.
C146
C154
.10.1152/ajpcell.00195.2010
29.
Harris
,
A. K.
,
Wild
,
P.
, and
Stopak
,
D.
,
1980
, “
Silicone Rubber Substrata: A New Wrinkle in the Study of Cell Locomotion
,”
Science
,
208
(
4440
), pp.
177
179
.10.1126/science.6987736
30.
Butler
,
J. P.
,
Tolic-Norrelykke
,
I. M.
,
Fabry
,
B.
, and
Fredberg
,
J. J.
,
2002
, “
Traction Fields, Moments, and Strain Energy that Cells Exert on Their Surroundings
,”
Am. J. Physiol.—Cell Physiol.
,
282
(
3
), pp.
C595
C605
.10.1152/ajpcell.00270.2001
31.
Dembo
,
M.
, and
Wang
,
Y. L.
,
1999
, “
Stresses at the Cell-to-Substrate Interface During Locomotion of Fibroblasts
,”
Biophys. J.
,
76
(
4
), pp.
2307
2316
.10.1016/S0006-3495(99)77386-8
32.
Van Vliet
,
K. J.
,
Bao
,
G.
, and
Suresh
,
S.
,
2003
, “
The Biomechanics Toolbox: Experimental Approaches for Living Cells and Biomolecules
,”
Acta Mater.
,
51
(
19
), pp.
5881
5905
.10.1016/j.actamat.2003.09.001
33.
Pathak
,
A.
,
Deshpande
,
V. S.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
,
2008
, “
The Simulation of Stress Fibre and Focal Adhesion Development in Cells on Patterned Substrates
,”
J. R. Soc., Interface
,
5
(
22
), pp.
507
524
.10.1098/rsif.2007.1182
34.
du Roure
,
O.
,
Saez
,
A.
,
Buguin
,
A.
,
Austin
,
R. H.
,
Chavrier
,
P.
,
Silberzan
,
P.
, and
Ladoux
,
B.
,
2005
, “
Force Mapping in Epithelial Cell Migration
,”
Proc. Natl. Acad. Sci. U. S. A.
,
102
(
7
), pp.
2390
2395
.10.1073/pnas.0408482102
35.
Tan
,
J. L.
,
Tien
,
J.
,
Pirone
,
D. M.
,
Gray
,
D. S.
,
Bhadriraju
,
K.
, and
Chen
,
C. S.
,
2003
, “
Cells Lying on a Bed of Microneedles: An Approach to Isolate Mechanical Force
,”
Proc. Natl. Acad. Sci. U. S. A.
,
100
(
4
), pp.
1484
1489
.10.1073/pnas.0235407100
36.
Saez
,
A.
,
Ghibaudo
,
M.
,
Buguin
,
A.
,
Silberzan
,
P.
, and
Ladoux
,
B.
,
2007
, “
Rigidity-Driven Growth and Migration of Epithelial Cells on Microstructured Anisotropic Substrates
,”
Proc. Natl. Acad. Sci. U. S. A.
,
104
(
20
), pp.
8281
8286
.10.1073/pnas.0702259104
37.
Rabodzey
,
A.
,
Alcaide
,
P.
,
Luscinskas
,
F. W.
, and
Ladoux
,
B.
,
2008
, “
Mechanical Forces Induced by the Transendothelial Migration of Human Neutrophils
,”
Biophys. J.
,
95
(
3
), pp.
1428
1438
.10.1529/biophysj.107.119156
38.
Sochol
,
R. D.
,
Higa
,
A. T.
,
Janairo
,
R. R. R.
,
Li
,
S.
, and
Lin
,
L.
,
2011
, “
Effects of Micropost Spacing and Stiffness on Cell Motility
,”
Micro Nano Lett.
,
6
(
5
), pp.
323
326
.10.1049/mnl.2011.0020
39.
Sochol
,
R. D.
,
Higa
,
A. T.
,
Janairo
,
R. R. R.
,
Li
,
S.
, and
Lin
,
L. W.
,
2011
, “
Unidirectional Mechanical Cellular Stimuli via Micropost Array Gradients
,”
Soft Matter
,
7
(
10
), pp.
4606
4609
.10.1039/c1sm05163f
40.
Singhvi
,
R.
,
Kumar
,
A.
,
Lopez
,
G. P.
,
Stephanopoulos
,
G. N.
,
Wang
,
D. I.
,
Whitesides
,
G. M.
, and
Ingber
,
D. E.
,
1994
, “
Engineering Cell Shape and Function
,”
Science
,
264
(
5159
), pp.
696
698
.10.1126/science.8171320
41.
Lemmon
,
C. A.
,
Sniadecki
,
N. J.
,
Ruiz
,
S. A.
,
Tan
,
J. L.
,
Romer
,
L. H.
, and
Chen
,
C. S.
,
2005
, “
Shear Force at the Cell-Matrix Interface: Enhanced Analysis for Microfabricated Post Array Detectors
,”
Mech. Chem. Biosyst.
,
2
(
1
), pp.
1
16
.
42.
Li
,
B.
,
Xie
,
L.
,
Starr
,
Z. C.
,
Yang
,
Z.
,
Lin
,
J. S.
, and
Wang
,
J. H.
,
2007
, “
Development of Micropost Force Sensor Array With Culture Experiments for Determination of Cell Traction Forces
,”
Cell Motil. Cytoskeleton
,
64
(
7
), pp.
509
518
.10.1002/cm.20200
43.
Sniadecki
,
N. J.
, and
Chen
,
C. S.
,
2007
, “
Microfabricated Silicone Elastomeric Post Arrays for Measuring Traction Forces of Adherent Cells
,”
Methods Cell Biol.
,
83
, pp.
313
328
.10.1016/S0091-679X(07)83013-5
44.
Mogilner
,
A.
,
2009
, “
Mathematics of Cell Motility: Have We Got Its Number?
,”
J. Math. Biol.
,
58
(
1–2
), pp.
105
134
.10.1007/s00285-008-0182-2
45.
Flaherty
,
B.
,
McGarry
,
J. P.
, and
McHugh
,
P. E.
,
2007
, “
Mathematical Models of Cell Motility
,”
Cell Biochem. Biophys.
,
49
(
1
), pp.
14
28
.10.1007/s12013-007-0045-2
46.
Gracheva
,
M. E.
, and
Othmer
,
H. G.
,
2004
, “
A Continuum Model of Motility in Ameboid Cells
,”
Bull. Math. Biol.
,
66
(
1
), pp.
167
193
.10.1016/j.bulm.2003.08.007
47.
Dokukina
,
I. V.
, and
Gracheva
,
M. E.
,
2010
, “
A Model of Fibroblast Motility on Substrates With Different Rigidities
,”
Biophys. J.
,
98
(
12
), pp.
2794
2803
.10.1016/j.bpj.2010.03.026
48.
Gefen
,
A.
, and
Oomens
,
C.
,
2013
, “
Preface. Special Issue on Computational Cellular and Biomolecular Mechanics and Mechanobiology
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
10
), p.
1041
.10.1080/10255842.2013.851520
49.
Deshpande
,
V. S.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
,
2007
, “
A Model for the Contractility of the Cytoskeleton Including the Effects of Stress-Fibre Formation and Dissociation
,”
Proc. R. Soc. A
,
463
(
2079
), pp.
787
815
.10.1098/rspa.2006.1793
50.
Han
,
S. J.
, and
Sniadecki
,
N. J.
,
2011
, “
Simulations of the Contractile Cycle in Cell Migration Using a Bio-Chemical-Mechanical Model
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
5
), pp.
459
468
.10.1080/10255842.2011.554412
51.
Higa
,
A.
,
2012
, “
Cellular Mechanotransduction via Microfabricated Post Arrays
,” Ph.D. thesis, University of California, Berkeley, CA.
52.
Breckenridge
,
M. T.
,
Desai
,
R. A.
,
Yang
,
M. T.
,
Fu
,
J. P.
, and
Chen
,
C. S.
,
2014
, “
Substrates With Engineered Step Changes in Rigidity Induce Traction Force Polarity and Durotaxis
,”
Cell. Mol. Bioeng.
,
7
(
1
), pp.
26
34
.10.1007/s12195-013-0307-6
53.
van Haastert
,
P. J.
,
Keizer-Gunnink
,
I.
, and
Kortholt
,
A.
,
2007
, “
Essential Role of PI3-Kinase and Phospholipase A2 in Dictyostelium Discoideum Chemotaxis
,”
J. Cell Biol.
,
177
(
5
), pp.
809
816
.10.1083/jcb.200701134
54.
Brundage
,
R. A.
,
Fogarty
,
K. E.
,
Tuft
,
R. A.
, and
Fay
,
F. S.
,
1991
, “
Calcium Gradients Underlying Polarization and Chemotaxis of Eosinophils
,”
Science
,
254
(
5032
), pp.
703
706
.10.1126/science.1948048
55.
Lee
,
J.
,
Ishihara
,
A.
,
Oxford
,
G.
,
Johnson
,
B.
, and
Jacobson
,
K.
,
1999
, “
Regulation of Cell Movement Is Mediated by Stretch-Activated Calcium Channels
,”
Nature
,
400
(
6742
), pp.
382
386
.10.1038/22578
56.
Wei
,
C.
,
Wang
,
X.
,
Chen
,
M.
,
Ouyang
,
K.
,
Song
,
L. S.
, and
Cheng
,
H.
,
2009
, “
Calcium Flickers Steer Cell Migration
,”
Nature
,
457
(
7231
), pp.
901
905
.10.1038/nature07577
57.
Hahn
,
K.
,
DeBiasio
,
R.
, and
Taylor
,
D. L.
,
1992
, “
Patterns of Elevated Free Calcium and Calmodulin Activation in Living Cells
,”
Nature
,
359
(
6397
), pp.
736
738
.10.1038/359736a0
58.
Deshpande
,
V. S.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
,
2006
, “
A Bio-Chemo-Mechanical Model for Cell Contractility
,”
Proc. Natl. Acad. Sci. U. S. A.
,
103
(
38
), pp.
14015
14020
.10.1073/pnas.0605837103
59.
Roberts
,
S. R.
,
Knight
,
M. M.
,
Lee
,
D. A.
, and
Bader
,
D. L.
,
2001
, “
Mechanical Compression Influences Intracellular Ca2+ Signaling in Chondrocytes Seeded in Agarose Constructs
,”
J. Appl. Physiol.
,
90
(
4
), pp.
1385
1391
.
60.
Wang
,
N.
,
Tytell
,
J. D.
, and
Ingber
,
D. E.
,
2009
, “
Mechanotransduction at a Distance: Mechanically Coupling the Extracellular Matrix With the Nucleus
,”
Nat Rev. Mol. Cell Biol.
,
10
(
1
), pp.
75
82
.10.1038/nrm2594
61.
Kolega
,
J.
,
1986
, “
Effects of Mechanical Tension on Protrusive Activity and Microfilament and Intermediate Filament Organization in an Epidermal Epithelium Moving in Culture
,”
J. Cell Biol.
,
102
(
4
), pp.
1400
1411
.10.1083/jcb.102.4.1400
62.
Pellegrin
,
S.
, and
Mellor
,
H.
,
2007
, “
Actin Stress Fibres
,”
J. Cell Sci.
,
120
(
Pt 20
), pp.
3491
3499
.10.1242/jcs.018473
63.
Tojkander
,
S.
,
Gateva
,
G.
, and
Lappalainen
,
P.
,
2012
, “
Actin Stress Fibers—Assembly, Dynamics and Biological Roles
,”
J. Cell Sci.
,
125
(
Pt 8
), pp.
1855
1864
.10.1242/jcs.098087
64.
McGarry
,
J. P.
,
Fu
,
J.
,
Yang
,
M. T.
,
Chen
,
C. S.
,
McMeeking
,
R. M.
,
Evans
,
A. G.
, and
Deshpande
,
V. S.
,
2009
, “
Simulation of the Contractile Response of Cells on an Array of Micro-Posts
,”
Philos. Trans. R. Soc., A
,
367
(
1902
), pp.
3477
3497
.10.1098/rsta.2009.0097
65.
Hill
,
A. V.
,
1938
, “
The Heat of Shortening and the Dynamic Constants of Muscle
,”
Proc. R. Soc. London, Ser. B
,
126
(
843
), pp.
136
195
.10.1098/rspb.1938.0050
66.
Mitrossilis
,
D.
,
Fouchard
,
J.
,
Guiroy
,
A.
,
Desprat
,
N.
,
Rodriguez
,
N.
,
Fabry
,
B.
, and
Asnacios
,
A.
,
2009
, “
Single-Cell Response to Stiffness Exhibits Muscle-Like Behavior
,”
Proc. Natl. Acad. Sci. U. S. A.
,
106
(
43
), pp.
18243
18248
.10.1073/pnas.0903994106
67.
Warshaw
,
D. M.
,
Desrosiers
,
J. M.
,
Work
,
S. S.
, and
Trybus
,
K. M.
,
1990
, “
Smooth Muscle Myosin Cross-Bridge Interactions Modulate Actin Filament Sliding Velocity In Vitro
,”
J. Cell Biol.
,
111
(
2
), pp.
453
463
.10.1083/jcb.111.2.453
68.
Chen
,
W. T.
,
1981
, “
Mechanism of Retraction of the Trailing Edge During Fibroblast Movement
,”
J. Cell Biol.
,
90
(
1
), pp.
187
200
.10.1083/jcb.90.1.187
69.
Naumanen
,
P.
,
Lappalainen
,
P.
, and
Hotulainen
,
P.
,
2008
, “
Mechanisms of Actin Stress Fibre Assembly
,”
J. Microsc.
,
231
(
3
), pp.
446
454
.10.1111/j.1365-2818.2008.02057.x
70.
Small
,
J. V.
,
Rottner
,
K.
,
Kaverina
,
I.
, and
Anderson
,
K. I.
,
1998
, “
Assembling an Actin Cytoskeleton for Cell Attachment and Movement
,”
Biochim. Biophys. Acta
,
1404
(
3
), pp.
271
281
.10.1016/S0167-4889(98)00080-9
71.
Wang
,
N.
,
Ostuni
,
E.
,
Whitesides
,
G. M.
, and
Ingber
,
D. E.
,
2002
, “
Micropatterning Tractional Forces in Living Cells
,”
Cell Motil. Cytoskeleton
,
52
(
2
), pp.
97
106
.10.1002/cm.10037
72.
Park
,
J.
,
Ryu
,
J.
,
Choi
,
S. K.
,
Seo
,
E.
,
Cha
,
J. M.
,
Ryu
,
S.
,
Kim
,
J.
,
Kim
,
B.
, and
Lee
,
S. H.
,
2005
, “
Real-Time Measurement of the Contractile Forces of Self-Organized Cardiomyocytes on Hybrid Biopolymer Microcantilevers
,”
Anal. Chem.
,
77
(
20
), pp.
6571
6580
.10.1021/ac0507800
73.
Galbraith
,
C. G.
, and
Sheetz
,
M. P.
,
1997
, “
A Micromachined Device Provides a New Bend on Fibroblast Traction Forces
,”
Proc. Natl. Acad. Sci. U. S. A.
,
94
(
17
), pp.
9114
9118
.10.1073/pnas.94.17.9114
74.
Layton
,
B. E.
,
Allen
,
K. B.
,
Myers
,
K. A.
,
Stokes
,
M. D.
, and
Baas
,
P. W.
,
2005
, “
Towards a Method for Peripheral Nervous System Axonal Stiffness Measurements With MEMS-Based Microgrippers
,”
Proceedings of the 2005 2nd Internatinoal
IEEE
/EMBS Conference on Neural Engineering, Arlington, VA, Mar. 16–19, pp.
403
405
10.1109/CNE.2005.1419644.
75.
Cheng
,
Q.
,
Almasri
,
M.
,
Sun
,
Z.
, and
Meininger
,
G. A.
,
2010
, “
Micropost Array for Force Mapping of Vascular Smooth Muscle Cells
,”
Proceedings of the 2010 IEEE Sensors
, pp.
1583
1586
.
76.
Cheng
,
Q.
,
Sun
,
Z.
,
Meininger
,
G.
, and
Almasri
,
M.
,
2013
, “
PDMS Elastic Micropost Arrays for Studying Vascular Smooth Muscle Cells
,”
Sens. Actuators, B
,
188
, pp.
1055
1063
.10.1016/j.snb.2013.08.018
77.
Parsons
,
J. T.
,
Horwitz
,
A. R.
, and
Schwartz
,
M. A.
,
2010
, “
Cell Adhesion: Integrating Cytoskeletal Dynamics and Cellular Tension
,”
Nat. Rev. Mol. Cell Biol.
,
11
(
9
), pp.
633
643
.10.1038/nrm2957
78.
Del Alamo
,
J. C.
,
Meili
,
R.
,
Alonso-Latorre
,
B.
,
Rodriguez-Rodriguez
,
J.
,
Aliseda
,
A.
,
Firtel
,
R. A.
, and
Lasheras
,
J. C.
,
2007
, “
Spatio-Temporal Analysis of Eukaryotic Cell Motility by Improved Force Cytometry
,”
Proc. Natl. Acad. Sci. U. S. A.
,
104
(
33
), pp.
13343
13348
.10.1073/pnas.0705815104
79.
Burton
,
K.
,
Park
,
J. H.
, and
Taylor
,
D. L.
,
1999
, “
Keratocytes Generate Traction Forces in Two Phases
,”
Mol. Biol. Cell
,
10
(
11
), pp.
3745
3769
.10.1091/mbc.10.11.3745
80.
Roy
,
P.
,
Petroll
,
W. M.
,
Chuong
,
C. J.
,
Cavanagh
,
H. D.
, and
Jester
,
J. V.
,
1999
, “
Effect of Cell Migration on the Maintenance of Tension on a Collagen Matrix
,”
Ann. Biomed. Eng.
,
27
(
6
), pp.
721
730
.10.1114/1.227
81.
Yang
,
M. T.
,
Sniadecki
,
N. J.
, and
Chen
,
C. S.
,
2007
, “
Geometric Considerations of Micro- to Nanoscale Elastomeric Post Arrays to Study Cellular Traction Forces
,”
Adv. Mater.
,
19
(
20
), pp.
3119
3123
.10.1002/adma.200701956
82.
Han
,
S. J.
,
Bielawski
,
K. S.
,
Ting
,
L. H.
,
Rodriguez
,
M. L.
, and
Sniadecki
,
N. J.
,
2012
, “
Decoupling Substrate Stiffness, Spread Area, and Micropost Density: A Close Spatial Relationship Between Traction Forces and Focal Adhesions
,”
Biophys. J.
,
103
(
4
), pp.
640
648
.10.1016/j.bpj.2012.07.023
83.
Chodniewicz
,
D.
, and
Klemke
,
R. L.
,
2004
, “
Guiding Cell Migration Through Directed Extension and Stabilization of Pseudopodia
,”
Exp. Cell Res.
,
301
(
1
), pp.
31
37
.10.1016/j.yexcr.2004.08.006
84.
Saez
,
A.
,
Buguin
,
A.
,
Silberzan
,
P.
, and
Ladoux
,
B.
,
2005
, “
Is the Mechanical Activity of Epithelial Cells Controlled by Deformations or Forces?
,”
Biophys. J.
,
89
(
6
), pp.
L52
L54
.10.1529/biophysj.105.071217
85.
Trichet
,
L.
,
Le Digabel
,
J.
,
Hawkins
,
R. J.
,
Vedula
,
S. R.
,
Gupta
,
M.
,
Ribrault
,
C.
,
Hersen
,
P.
,
Voituriez
,
R.
, and
Ladoux
,
B.
,
2012
, “
Evidence of a Large-Scale Mechanosensing Mechanism for Cellular Adaptation to Substrate Stiffness
,”
Proc. Natl. Acad. Sci. U. S. A.
,
109
(
18
), pp.
6933
6938
.10.1073/pnas.1117810109
86.
Weng
,
S.
, and
Fu
,
J.
,
2011
, “
Synergistic Regulation of Cell Function by Matrix Rigidity and Adhesive Pattern
,”
Biomaterials
,
32
(
36
), pp.
9584
9593
.10.1016/j.biomaterials.2011.09.006
87.
Schwarz
,
U.
,
2007
, “
Soft Matters in Cell Adhesion: Rigidity Sensing on Soft Elastic Substrates
,”
Soft Matter
,
3
(
3
), pp.
263
266
.10.1039/b606409d
88.
Bischofs
,
I. B.
, and
Schwarz
,
U. S.
,
2003
, “
Cell Organization in Soft Media due to Active Mechanosensing
,”
Proc. Natl. Acad. Sci. U. S. A.
,
100
(
16
), pp.
9274
9279
.10.1073/pnas.1233544100
89.
Chen
,
C. S.
,
Tan
,
J.
, and
Tien
,
J.
,
2004
, “
Mechanotransduction at Cell-Matrix and Cell–Cell Contacts
,”
Ann. Rev. Biomed. Eng.
,
6
, pp.
275
302
.10.1146/annurev.bioeng.6.040803.140040
You do not currently have access to this content.