High-tibial osteotomy (HTO) is a surgical technique aimed at shifting load away from one tibiofemoral compartment, in order the reduce pain and progression of osteoarthritis (OA). Various implants have been designed to stabilize the osteotomy and previous studies have been focused on determining primary stability (a global measure) that these designs provide. It has been shown that the local mechanical environment, characterized by bone strains and segment micromotion, is important in understanding healing and these data are not currently available. Finite element (FE) modeling was utilized to assess the local mechanical environment provided by three different fixation plate designs: short plate with spacer, long plate with spacer and long plate without spacer. Image-based FE models of the knee were constructed from healthy individuals (N = 5) with normal knee alignment. An HTO gap was virtually added without changing the knee alignment and HTO implants were inserted. Subsequently, the local mechanical environment, defined by bone compressive strain and wedge micromotion, was assessed. Furthermore, implant stresses were calculated. Values were computed under vertical compression in zero-degree knee extension with loads set at 1 and 2 times the subject-specific body weight (1 BW, 2 BW). All studied HTO implant designs provide an environment for successful healing at 1 BW and 2 BW loading. Implant von Mises stresses (99th percentile) were below 60 MPa in all experiments, below the material yield strength and significantly lower in long spacer plates. Volume fraction of high compressive strain ( > 3000 microstrain) was below 5% in all experiments and no significant difference between implants was detected. Maximum vertical micromotion between bone segments was below 200 μm in all experiments and significantly larger in the implant without a tooth. Differences between plate designs generally became apparent only at 2 BW loading. Results suggest that with compressive loading of 2 BW, long spacer plates experience the lowest implant stresses, and spacer plates (long or short) result in smaller wedge micromotion, potentially beneficial for healing. Values are sensitive to subject bone geometry, highlighting the need for subject-specific modeling. This study demonstrates the benefits of using image-based FE modeling and bone theory to fine-tune HTO implant design.

References

References
1.
Birmingham
,
T. B.
,
Giffin
,
J. R.
,
Chesworth
,
B. M.
,
Bryant
,
D. M.
,
Litchfield
,
R. B.
,
Willits
,
K.
,
Jenkyn
,
T. R.
, and
Fowler
,
P. J.
,
2009
, “
Medial Opening Wedge High Tibial Osteotomy: A Prospective Cohort Study of Gait, Radiographic, and Patient-Reported Outcomes
,”
Arthritis Rheum.
,
61
(
5
), pp.
648
657
.10.1002/art.24466
2.
Brinkman
,
J. M.
,
Lobenhoffer
,
P.
,
Agneskirchner
,
J. D.
,
Staubli
,
A. E.
,
Wymenga
,
A. B.
, and
Heerwaarden
,
R. J. V.
,
2008
, “
Osteotomies Around the Knee: Patient Selection, Stability of Fixation and Bone Healing in High Tibial Osteotomies
,”
J. Bone Jt. Surg., Br. Vol.
,
90-B
(
12
), pp.
1548
1557
.10.1302/0301-620X.90B12.21198
3.
Meidinger
,
G.
,
Imhoff
,
A. B.
,
Paul
,
J.
,
Kirchhoff
,
C.
,
Sauerschnig
,
M.
, and
Hinterwimmer
,
S.
,
2011
, “
May Smokers and Overweight Patients be Treated With a Medial Open-Wedge HTO? Risk Factors for Non-Union
,”
Knee Surg., Sports Traumatol., Arthroscopy: Off. J. ESSKA
,
19
(
3
), pp.
333
339
.10.1007/s00167-010-1335-6
4.
Pape
,
D.
,
Kohn
,
D.
,
van Giffen
,
N.
,
Hoffmann
,
A.
,
Seil
,
R.
, and
Lorbach
,
O.
,
2013
, “
Differences in Fixation Stability Between Spacer Plate and Plate Fixator Following High Tibial Osteotomy
,”
Knee Surg., Sports Traumatol., Arthroscopy: Off. J. ESSKA
,
21
(
1
), pp.
82
89
.10.1007/s00167-011-1693-8
5.
Spahn
,
G.
, and
Wittig
,
R.
,
2002
, “
Primary Stability of Various Implants in Tibial Opening Wedge Osteotomy: A Biomechanical Study
,”
J. Orthop. Sci.
,
7
(
6
), pp.
683
687
.10.1007/s007760200121
6.
Gaasbeek
,
R. D. A.
,
Welsing
,
R. T. C.
,
Verdonschot
,
N.
,
Rijnberg
,
W. J.
,
van Loon
,
C. J. M.
, and
van Kampen
,
A.
,
2005
, “
Accuracy and Initial Stability of Open- and Closed-Wedge High Tibial Osteotomy: A Cadaveric RSA Study
,”
Knee Surg., Sports Traumatol., Arthroscopy: Off. J. ESSKA
,
13
(
8
), pp.
689
694
.10.1007/s00167-004-0599-0
7.
Agneskirchner
,
J. D.
,
Freiling
,
D.
,
Hurschler
,
C.
, and
Lobenhoffer
,
P.
,
2006
, “
Primary Stability of Four Different Implants for Opening Wedge High Tibial Osteotomy
,”
Knee Surg., Sports Traumatol., Arthroscopy: Off. J. ESSKA
,
14
(
3
), pp.
291
300
.10.1007/s00167-005-0690-1
8.
Miller
,
B. S.
,
Dorsey
,
W. O. P.
,
Bryant
,
C. R.
, and
Austin
,
J. C.
,
2005
, “
The Effect of Lateral Cortex Disruption and Repair on the Stability of the Medial Opening Wedge High Tibial Osteotomy
,”
Am. J. Sports Med.
,
33
(
10
), pp.
1552
1557
.10.1177/0363546505275488
9.
Stoffel
,
K.
,
Stachowiak
,
G.
, and
Kuster
,
M.
,
2004
, “
Open Wedge High Tibial Osteotomy: Biomechanical Investigation of the Modified Arthrex Osteotomy Plate (Puddu Plate) and the TomoFix Plate
,”
Clin. Biomech.
,
19
(
9
), pp.
944
950
.10.1016/j.clinbiomech.2004.06.007
10.
Maas
,
S.
,
Diffo Kaze
,
A.
,
Dueck
,
K.
, and
Pape
,
D.
,
2013
, “
Static and Dynamic Differences in Fixation Stability Between a Spacer Plate and a Small Stature Plate Fixator Used for High Tibial Osteotomies: A Biomechanical Bone Composite Study
,”
ISRN Orthop.
,
2013
, pp.
1
10
.10.1155/2013/387620
11.
Claes
,
L. E.
,
Heigele
,
C. A.
,
Neidlinger-Wilke
,
C.
,
Kaspar
,
D.
,
Seidl
,
W.
,
Margevicius
,
K. J.
, and
Augat
,
P.
,
1998
, “
Effects of Mechanical Factors on the Fracture Healing Process
,”
Clin. Orthop. Relat. Res.
,
355
(
Suppl
), pp.
S132
S147
.10.1097/00003086-199810001-00015
12.
Frost
,
H. M.
,
2004
, “
A 2003 Update of Bone Physiology and Wolff's Law for Clinicians
,”
Angle Orthodontist
,
74
(
1
), pp.
3
15
.
13.
Blecha
,
L. D.
,
Zambelli
,
P. Y.
,
Ramaniraka
,
N. A.
,
Bourban
,
P. E.
,
Månson
,
J. A.
, and
Pioletti
,
D. P.
,
2005
, “
How Plate Positioning Impacts the Biomechanics of the Open Wedge Tibial Osteotomy; A Finite Element Analysis
,”
Comput. Methods Biomech. Biomed. Eng.
,
8
(
5
), pp.
307
313
.10.1080/10255840500322433
14.
Raja Izaham
,
R. M. A.
,
Abdul Kadir
,
M. R.
,
Abdul Rashid
,
A. H.
,
Hossain
,
M. G.
, and
Kamarul
,
T.
,
2012
, “
Finite Element Analysis of Puddu and Tomofix Plate Fixation for Open Wedge High Tibial Osteotomy
,”
Injury
,
43
(
6
), pp.
898
902
.10.1016/j.injury.2011.12.006
15.
McErlain
,
D. D.
,
Milner
,
J. S.
,
Ivanov
,
T. G.
,
Jencikova-Celerin
,
L.
,
Pollmann
,
S. I.
, and
Holdsworth
,
D. W.
,
2011
, “
Subchondral Cysts Create Increased Intra-Osseous Stress in Early Knee OA: A Finite Element Analysis Using Simulated Lesions
,”
Bone
,
48
(
3
), pp.
639
646
.10.1016/j.bone.2010.11.010
16.
Suan
,
J. C.
,
Chhem
,
R. K.
,
Gati
,
J. S.
,
Norley
,
C. J.
, and
Holdsworth
,
D. W.
,
2005
, “
4 T MRI of Chondrocalcinosis in Combination With Three-Dimensional CT, Radiography, and Arthroscopy: A Report of Three Cases
,”
Skeletal Radiol.
,
34
(
11
), pp.
714
721
.10.1007/s00256-005-0930-y
17.
Austman
,
R. L.
,
Milner
,
J. S.
,
Holdsworth
,
D. W.
, and
Dunning
,
C. E.
,
2009
, “
Development of a Customized Density-Modulus Relationship for Use in Subject-Specific Finite Element Models of the Ulna
,”
Proc. Inst. Mech. Eng., Part H
,
223
(
6
), pp.
787
794
.10.1243/09544119JEIM553
18.
Pena
,
E.
,
Calvo
,
B.
,
Martinez
,
M. A.
, and
Doblare
,
M.
,
2006
, “
A Three-Dimensional Finite Element Analysis of the Combined Behavior of Ligaments and Menisci in the Healthy Human Knee Joint
,”
J. Biomech.
,
39
(
9
), pp.
1686
1701
.10.1016/j.jbiomech.2005.04.030
19.
Donahue
,
T. L. H.
,
Hull
,
M. L.
,
Rashid
,
M. M.
, and
Jacobs
,
C. R.
,
2002
, “
A Finite Element Model of the Human Knee Joint for the Study of Tibio-Femoral Contact
,”
ASME J. Biomech. Eng.
,
124
(
3
), pp.
273
280
.10.1115/1.1470171
20.
Quapp
,
K. M.
, and
Weiss
,
J. A.
,
1998
, “
Material Characterization of Human Medial Collateral Ligament
,”
ASME J. Biomech. Eng.
,
120
(
6
), pp.
757
763
.10.1115/1.2834890
21.
Zielinska
,
B.
, and
Donahue
,
T. L. H.
,
2006
, “
3D Finite Element Model of Meniscectomy: Changes in Joint Contact Behavior
,”
ASME J. Biomech. Eng.
,
128
(
1
), pp.
115
123
.10.1115/1.2132370
22.
Trabelsi
,
N.
,
Yosibash
,
Z.
,
Wutte
,
C.
,
Augat
,
P.
, and
Eberle
,
S.
,
2011
, “
Patient-Specific Finite Element Analysis of the Human Femur—A Double-Blinded Biomechanical Validation
,”
J. Biomech.
,
44
(
9
), pp.
1666
1672
.10.1016/j.jbiomech.2011.03.024
23.
Kutzner
,
I.
,
Heinlein
,
B.
,
Graichen
,
F.
,
Bender
,
A.
,
Rohlmann
,
A.
,
Halder
,
A.
,
Beier
,
A.
, and
Bergmann
,
G.
,
2010
, “
Loading of the Knee Joint During Activities of Daily Living Measured In Vivo in Five Subjects
,”
J. Biomech.
,
43
(
11
), pp.
2164
2173
.10.1016/j.jbiomech.2010.03.046
24.
Navarro
,
M.
,
Michiardi
,
A.
,
Castaño
,
O.
, and
Planell
,
J. A.
,
2008
, “
Biomaterials in Orthopaedics
,”
J. R. Soc. Interface
,
5
(
27
), pp.
1137
1158
.10.1098/rsif.2008.0151
25.
Pistoia
,
W.
,
Rietbergen
,
B. V.
,
Lochmüller
,
E. M.
,
Lill
,
C. A.
,
Eckstein
,
F.
, and
Rüegsegger
,
P.
,
2002
, “
Estimation of Distal Radius Failure Load With Micro-Finite Element Analysis Models Based on Three-Dimensional Peripheral Quantitative Computed Tomography Images
,”
Bone
,
30
(
6
), pp.
842
848
.10.1016/S8756-3282(02)00736-6
26.
Schaller
,
T. M.
, and
Roehr
,
B.
,
2007
, “
Salvage of a Failed Opening Wedge Tibial Osteotomy Using a Locking Plate
,”
Orthopedics
,
30
(
2
), pp.
161
162
.
27.
Nelissen
,
E. M.
,
van Langelaan
,
E. J.
, and
Nelissen
,
R. G. H. H.
,
2010
, “
Stability of Medial Opening Wedge High Tibial Osteotomy: A Failure Analysis
,”
Int. Orthop.
,
34
(
2
), pp.
217
223
.10.1007/s00264-009-0723-3
28.
Chehade
,
M. J.
,
Solomon
,
L. B.
,
Callary
,
S. A.
,
Benveniste
,
S. H.
,
Pohl
,
A. P.
, and
Howie
,
D. W.
,
2009
, “
Differentially Loaded Radiostereometric Analysis to Monitor Fracture Stiffness: A Feasibility Study
,”
Clin. Orthop. Relat. Res.
,
467
(
7
), pp.
1839
1847
.10.1007/s11999-009-0708-y
29.
MacLeod
,
A. R.
,
Pankaj
,
P.
, and
Simpson
,
A. H. R. W.
,
2012
, “
Does Screw-Bone Interface Modelling Matter in Finite Element Analyses?
,”
J. Biomech.
,
45
(
9
), pp.
1712
1716
.10.1016/j.jbiomech.2012.04.008
30.
Cordey
,
J.
,
Borgeaud
,
M.
, and
Perren
,
S. M.
,
2000
, “
Force Transfer Between the Plate and the Bone: Relative Importance of the Bending Stiffness of the Screws Friction Between Plate and Bone
,”
Injury
,
31
(
Suppl 3
), pp.
C21
C28
.10.1016/S0020-1383(00)80028-5
31.
Aryee
,
S.
,
Imhoff
,
A. B.
,
Rose
,
T.
, and
Tischer
,
T.
,
2008
, “
Do We Need Synthetic Osteotomy Augmentation Materials for Opening-Wedge High Tibial Osteotomy
,”
Biomaterials
,
29
(
26
), pp.
3497
3502
.10.1016/j.biomaterials.2008.05.027
32.
Xu
,
Z.-J.
,
Chen
,
L.-Y.
,
Zhong
,
C.
,
Tan
,
Y.-B.
, and
He
,
R.-X.
,
2011
, “
Mechanical Properties of 7–10 mm Bone Grafts and Small Slurry Grafts in Impaction Bone Grafting
,”
J. Orthop. Res.
,
29
(
10
), pp.
1491
1495
.10.1002/jor.21357
33.
Amis
,
A. A.
,
2013
, “
Biomechanics of High Tibial Osteotomy
,”
Knee Surg., Sports Traumatol., Arthroscopy: Off. J. ESSKA
,
21
(
1
), pp.
197
205
.10.1007/s00167-012-2122-3
You do not currently have access to this content.