Modern biomedical computer simulations produce spatiotemporal results that are often viewed at a single point in time on standard 2D displays. An immersive visualization environment (IVE) with 3D stereoscopic capability can mitigate some shortcomings of 2D displays via improved depth cues and active movement to further appreciate the spatial localization of imaging data with temporal computational fluid dynamics (CFD) results. We present a semi-automatic workflow for the import, processing, rendering, and stereoscopic visualization of high resolution, patient-specific imaging data, and CFD results in an IVE. Versatility of the workflow is highlighted with current clinical sequelae known to be influenced by adverse hemodynamics to illustrate potential clinical utility.

References

References
1.
Hansson
,
G. K.
,
2005
, “
Inflammation, Atherosclerosis, and Coronary Artery Disease
,”
N. Engl. J. Med.
,
352
(
16
), pp.
1685
1695
.10.1056/NEJMra043430
2.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Arteriosclerosis
,
5
(
3
), pp.
293
302
.10.1161/01.ATV.5.3.293
3.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
,
1999
, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA
,
282
(
21
), pp.
2035
2042
.10.1001/jama.282.21.2035
4.
Moore
,
J. E.
, Jr.
,
Xu
,
C.
,
Glagov
,
S.
,
Zarins
,
C. K.
, and
Ku
,
D. N.
,
1994
, “
Fluid Wall Shear Stress Measurements in a Model of the Human Abdominal Aorta: Oscillatory Behavior and Relationship to Atherosclerosis
,”
Atherosclerosis
,
110
(
2
), pp.
225
240
.10.1016/0021-9150(94)90207-0
5.
Schroeder
,
W.
,
Martin
,
K.
,
Lorensen
,
B.
,
Avila
,
L. S.
,
Avila
,
R.
, and
Law
,
C. C.
,
2006
,
The Visualization Toolkit
,
Kitware, Inc
,
Clifton Park, NY
.10.1016/B978-012387582-2/50032-0
6.
Chaudhry
,
A.
,
Sutton
,
C.
,
Wood
,
J.
,
Stone
,
R.
, and
McCloy
,
R.
,
1999
, “
Learning Rate for Laparoscopic Surgical Skills on Mist Vr, a Virtual Reality Simulator: Quality of Human-Computer Interface
,”
Ann. R. Coll. Surg. Engl.
,
81
(
4
), pp.
281
286
.
7.
Jordan
,
J. A.
,
Gallagher
,
A. G.
,
McGuigan
,
J.
, and
McClure
,
N.
,
2001
, “
Virtual Reality Training Leads to Faster Adaptation to the Novel Psychomotor Restrictions Encountered by Laparoscopic Surgeons
,”
Surg. Endosc.
,
15
(
10
), pp.
1080
1084
.10.1007/s004640000374
8.
Steinman
,
D. A. H.
, and
Steinman
,
D. A.
,
2007
, “
The Art and Science of Visualizing Simulated Blood-Flow Dynamics
,”
Leonardo
,
40
(
1
), pp.
71
76
.10.1162/leon.2007.40.1.71
9.
Drascic
,
D.
,
Milgram
,
P.
, and
Grodski
,
J.
,
1989
, “
Learning Effects in Telemanipulation with Monoscopic Versus Stereoscopic Remote Viewing
,”
IEEE
International Conference on Systems, Man and Cybernetics, Cambridge, MA, Nov. 14–17, pp.
1244
1249
.10.1109/ICSMC.1989.71502
10.
Ward
,
J. W.
,
Phillips
,
R.
,
Williams
,
T.
,
Shang
,
C.
,
Page
,
L.
,
Prest
,
C.
, and
Beavis
,
A. W.
,
2007
, Immersive Visualization With Automated Collision Detection for Radiotherapy Treatment Planning, Studies in Health Technology and Informatics, IOS, Hull, UK.
11.
Chu
,
J.
,
Gong
,
X.
,
Cai
,
Y.
,
Kirk
,
M. C.
,
Zusag
,
T. W.
,
Shott
,
S.
,
Rivard
,
M. J.
,
Melhus
,
C. S.
,
Cardarelli
,
G.
,
Hurley
,
A.
,
Hepel
,
J. T.
,
Napoli
,
J.
,
Stutsman
,
S.
, and
Abrams
,
R. A.
,
2009
, “
Application of Holographic Display in Radiotherapy Treatment Planning Ii: A Multi-Institutional Study
,”
J. Appl. Clin. Med. Phys.
,
10
(
3
), pp.
115
124
.10.1120/jacmp.v10i3.2902
12.
Boejen
,
A.
, and
Grau
,
C.
,
2011
, “
Virtual Reality in Radiation Therapy Training
,”
Surg. Oncol.
,
20
(
3
), pp.
185
188
.10.1016/j.suronc.2010.07.004
13.
Votanopoulos
,
K.
,
Brunicardi
,
F. C.
,
Thornby
,
J.
, and
Bellows
,
C. F.
,
2008
, “
Impact of Three-Dimensional Vision in Laparoscopic Training
,”
World J. Surg.
,
32
(
1
), pp.
110
118
.10.1007/s00268-007-9253-6
14.
Forsberg
,
A.
,
Laidlaw
,
D. H.
,
Van Dam
,
A.
,
Kirby
,
R. M.
,
Kafniadakis
,
G. E.
, and
Elion
,
J. L.
,
2000
, “
Immersive Virtual Reality for Visualizing Flow Through an Artery
,”
Proceedings of Visualization
, Salt Lake City, UT, Oct. 13, pp.
457
460
.10.1109/VISUAL.2000.885731
15.
LaDisa
,
J. F.
, Jr.
,
Bowers
,
M.
,
Harmann
,
L.
,
Prost
,
R.
,
Doppalapudi
,
A. V.
,
Mohyuddin
,
T.
,
Zaidat
,
O.
, and
Migrino
,
R. Q.
,
2010
, “
Time-Efficient Patient-Specific Quantification of Regional Carotid Artery Fluid Dynamics and Spatial Correlation With Plaque Burden
,”
Med. Phys.
,
37
(
2
), pp.
784
792
.10.1118/1.3292631
16.
Justice
,
J.
,
Bergerud
,
M.
,
Garrison
,
J.
,
Cafiero
,
D.
, and
Churches
,
L.
,
2009
,
eon studio 7
, EON Reality, Irvine, CA.
17.
Murata
,
A.
,
Wallace-Bradley
,
D.
,
Tellez
,
A.
,
Alviar
,
C.
,
Aboodi
,
M.
,
Sheehy
,
A.
,
Coleman
,
L.
,
Perkins
,
L.
,
Nakazawa
,
G.
,
Mintz
,
G.
,
Kaluza
,
G. L.
,
Virmani
,
R.
, and
Granada
,
J. F.
,
2010
, “
Accuracy of Optical Coherence Tomography in the Evaluation of Neointimal Coverage after Stent Implantation
,”
JACC: Cardiovasc. Imaging
,
3
(
1
), pp.
76
84
.10.1016/j.jcmg.2009.09.018
18.
Ellwein
,
L. M.
,
Otake
,
H.
,
Gundert
,
T. J.
,
Koo
,
B. K.
,
Shinke
,
T.
,
Honda
,
Y.
,
Shite
,
J.
, and
LaDisa
,
J. F.
, Jr.
,
2011
, “
Optical Coherence Tomography for Patient-Specific 3D Artery Reconstruction and Evaluation of Wall Shear Stress in a Left Circumflex Coronary Artery
,”
Cardiovasc. Eng. Technol.
,
2
(
3
), pp.
212
217
.10.1007/s13239-011-0047-5
19.
Yarnykh
,
V. L.
,
Terashima
,
M.
,
Hayes
,
C. E.
,
Shimakawa
,
A.
,
Takaya
,
N.
,
Nguyen
,
P. K.
,
Brittain
,
J. H.
,
McConnell
,
M. V.
, and
Yuan
,
C.
,
2006
, “
Multicontrast Black-Blood MRI of Carotid Arteries: Comparison Between 1.5 and 3 Tesla Magnetic Field Strengths
,”
J. Magn. Reson. Imaging
,
23
(
5
), pp.
691
698
.10.1002/jmri.20562
20.
Kerwin
,
W. S.
,
Liu
,
F.
,
Yarnykh
,
V.
,
Underhill
,
H.
,
Oikawa
,
M.
,
Yu
,
W.
,
Hatsukami
,
T. S.
, and
Yuan
,
C.
,
2008
, “
Signal Features of the Atherosclerotic Plaque at 3.0 Tesla Versus 1.5 Tesla: Impact on Automatic Classification
,”
J. Magn. Reson. Imaging
,
28
(
4
), pp.
987
995
.10.1002/jmri.21529
21.
Gundert
,
T. J.
,
Shadden
,
S. C.
,
Williams
,
A. R.
,
Koo
,
B. K.
,
Feinstein
,
J. A.
, and
LaDisa
,
J. F.
, Jr.
,
2011
, “
A Rapid and Computationally Inexpensive Method to Virtually Implant Current and Next-Generation Stents Into Subject-Specific Computational Fluid Dynamics Models
,”
Annu. Biomed. Eng.
,
39
(
5
), pp.
1423
1437
.10.1007/s10439-010-0238-5
22.
Muller
,
J.
,
Sahni
,
O.
,
Li
,
X.
,
Jansen
,
K. E.
,
Shephard
,
M. S.
, and
Taylor
,
C. A.
,
2005
, “
Anisotropic Adaptive Finite Element Method for Modelling Blood Flow
,”
Comput. Methods Biomech. Biomed. Eng.
,
8
(
5
), pp.
295
305
.10.1080/10255840500264742
23.
Sahni
,
O.
,
Muller
,
J.
,
Jansen
,
K. E.
,
Shephard
,
M. S.
, and
Taylor
,
C. A.
,
2006
, “
Efficient Anisotropic Adaptive Discretization of the Cardiovascular System
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
41–43
), pp.
5634
5655
.10.1016/j.cma.2005.10.018
24.
Gundert
,
T. J.
,
Dholakia
,
R. J.
,
McMahon
,
D.
, and
LaDisa
,
J. F.
,
2013
, “
Computational Fluid Dynamics Evaluation of Equivalency in Hemodynamic Alterations Between Driver, Integrity, and Similar Stents Implanted Into an Idealized Coronary Artery
,”
J. Med. Dev.
,
7
(
1
), p.
011004
.10.1115/1.4023413
25.
Williams
,
A. R.
,
Koo
,
B. K.
,
Gundert
,
T. J.
,
Fitzgerald
,
P. J.
, and
LaDisa
,
J. F.
, Jr.
,
2010
, “
Local Hemodynamic Changes Caused by Main Branch Stent Implantation and Subsequent Virtual Side Branch Balloon Angioplasty in a Representative Coronary Bifurcation
,”
J. Appl. Physiol. (1985)
,
109
(
2
), pp.
532
540
.10.1152/japplphysiol.00086.2010
26.
Wendell
,
D. C.
,
Samyn
,
M. M.
,
Cava
,
J. R.
,
Ellwein
,
L. M.
,
Krolikowski
,
M. M.
,
Gandy
,
K. L.
,
Pelech
,
A. N.
,
Shadden
,
S. C.
, and
LaDisa
,
J. F.
, Jr.
,
2013
, “
Including Aortic Valve Morphology in Computational Fluid Dynamics Simulations: Initial Findings and Application to Aortic Coarctation
,”
Med. Eng. Phys.
,
35
(
6
), pp.
723
735
.10.1016/j.medengphy.2012.07.015
27.
Holdsworth
,
D. W.
,
Norley
,
C. J.
,
Frayne
,
R.
,
Steinman
,
D. A.
, and
Rutt
,
B. K.
,
1999
, “
Characterization of Common Carotid Artery Blood-Flow Waveforms in Normal Human Subjects
,”
Physiol. Meas.
,
20
(
3
), pp.
219
240
.10.1088/0967-3334/20/3/301
28.
Gow
,
B. S.
,
Schonfeld
,
D.
, and
Patel
,
D. J.
,
1974
, “
The Dynamic Elastic Properties of the Canine Left Circumflex Coronary Artery
,”
J. Biomech.
,
7
(
5
), pp.
389
395
.10.1016/0021-9290(74)90001-3
29.
Stergiopulos
,
N.
,
Meister
,
J. J.
, and
Westerhof
,
N.
,
1994
, “
Simple and Accurate Way for Estimating Total and Segmental Arterial Compliance: The Pulse Pressure Method
,”
Annu. Biomed. Eng.
,
22
(
4
), pp.
392
397
.10.1007/BF02368245
30.
Stergiopulos
,
N.
,
Segers
,
P.
, and
Westerhof
,
N.
,
1999
, “
Use of Pulse Pressure Method for Estimating Total Arterial Compliance In Vivo
,”
Am. J. Physiol.
,
276
(
2 Pt 2
), pp.
H424
H428
.
31.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
,
2006
, “
Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
29–32
), pp.
3776
3796
.10.1016/j.cma.2005.04.014
32.
Van Huis
,
G. A.
,
Sipkema
,
P.
, and
Westerhof
,
N.
,
1987
, “
Coronary Input Impedance During Cardiac Cycle as Determined by Impulse Response Method
,”
Am. J. Physiol.
,
253
(
2 Pt 2
), pp.
H317
H324
.
33.
Esmaily-Moghadam
,
M.
,
Bazilevs
,
Y.
, and
Marsden
,
A. L.
,
2013
, “
A New Preconditioning Technique for Implicitly Coupled Multidomain Simulations With Applications to Hemodynamics
,”
Comput. Mech.
,
52
(
5
), pp.
1141
1152
.10.1007/s00466-013-0868-1
34.
Quam
,
D. J.
,
2012
, “
Advanced Visualization and Intuitive User Interface Systems for Biomedical Applications
,” Master's thesis, Marquette University, Milwaukee, WI.
35.
Cruz-Neira
,
C.
,
Sandin
,
D. J.
,
Defanti
,
T. A.
,
Kenyon
,
R. V.
, and
Hart
,
J. C.
,
1992
, “
The Cave: Audio Visual Experience Automatic Virtual Environment
,”
Commun. ACM
,
35
(
6
), pp.
64
72
.10.1145/129888.129892
36.
Slater
,
M.
, and
Wilbur
,
S.
,
1997
, “
A Framework for Immersive Virtual Environments (Five): Speculations on the Role of Presence in Virtual Environments
,”
Presence Teleoperators Virtual Environ.
,
6
(
6
), pp.
603
616
.
37.
Van Dam
,
A.
,
Forsberg
,
A.
,
Laidlaw
,
D. H.
,
Laviola
,
J. J.
, and
Simpson
,
R. M.
,
2000
, “
Immersive VR for Scientific Visualization: A Progress Report
,”
IEEE Comput. Graphics Appl.
,
20
(
6
), pp.
26
52
.10.1109/38.814559
38.
Presson
,
C. C.
,
Delange
,
N.
, and
Hazelrigg
,
M. D.
,
1987
, “
Orientation-Specificity in Kinesthetic Spatial Learning: The Role of Multiple Orientations
,”
Mem. Cogn.
,
15
(
3
), pp.
225
229
.10.3758/BF03197720
39.
Dede
,
C.
,
2009
, “
Immersive Interfaces for Engagement and Learning
,”
Science
,
323
(
5910
), pp.
66
69
.10.1126/science.1167311
40.
Gnasso
,
A.
,
Irace
,
C.
,
Carallo
,
C.
,
De Franceschi
,
M. S.
,
Motti
,
C.
,
Mattioli
,
P. L.
, and
Pujia
,
A.
,
1997
, “
In Vivo Association between Low Wall Shear Stress and Plaque in Subjects With Asymmetrical Carotid Atherosclerosis
,”
Stroke
,
28
(
5
), pp.
993
998
.10.1161/01.STR.28.5.993
41.
Marshall
,
I.
,
Zhao
,
S.
,
Papathanasopoulou
,
P.
,
Hoskins
,
P.
, and
Xu
,
Y.
,
2004
, “
Mri and Cfd Studies of Pulsatile Flow in Healthy and Stenosed Carotid Bifurcation Models
,”
J. Biomech.
,
37
(
5
), pp.
679
687
.10.1016/j.jbiomech.2003.09.032
42.
Zhao
,
S. Z.
,
Xu
,
X. Y.
,
Hughes
,
A. D.
,
Thom
,
S. A.
,
Stanton
,
A. V.
,
Ariff
,
B.
, and
Long
,
Q.
,
2000
, “
Blood Flow and Vessel Mechanics in a Physiologically Realistic Model of a Human Carotid Arterial Bifurcation
,”
J. Biomech.
,
33
(
8
), pp.
975
984
.10.1016/S0021-9290(00)00043-9
43.
Phillips
,
D. J.
,
Greene
,
F. M.
, Jr.
,
Langlois
,
Y.
,
Roederer
,
G. O.
, and
Strandness
,
D. E.
, Jr.
,
1983
, “
Flow Velocity Patterns in the Carotid Bifurcations of Young, Presumed Normal Subjects
,”
Ultrasound Med. Biol.
,
9
(
1
), pp.
39
49
.10.1016/0301-5629(83)90108-4
44.
Nicholls
,
S. C.
,
Phillips
,
D. J.
,
Primozich
,
J. F.
,
Lawrence
,
R. L.
,
Kohler
,
T. R.
,
Rudd
,
T. G.
, and
Strandness
,
D. E.
, Jr.
,
1989
, “
Diagnostic Significance of Flow Separation in the Carotid Bulb
,”
Stroke
,
20
(
2
), pp.
175
182
.10.1161/01.STR.20.2.175
45.
Steinke
,
W.
,
Kloetzsch
,
C.
, and
Hennerici
,
M.
,
1990
, “
Variability of Flow Patterns in the Normal Carotid Bifurcation
,”
Atherosclerosis
,
84
(
2–3
), pp.
121
127
.10.1016/0021-9150(90)90081-S
46.
Stone
,
P. H.
,
Coskun
,
A. U.
,
Yeghiazarians
,
Y.
,
Kinlay
,
S.
,
Popma
,
J. J.
,
Kuntz
,
R. E.
, and
Feldman
,
C. L.
,
2003
, “
Prediction of Sites of Coronary Atherosclerosis Progression: In Vivo Profiling of Endothelial Shear Stress, Lumen, and Outer Vessel Wall Characteristics to Predict Vascular Behavior
,”
Curr. Opin. Cardiol.
,
18
(
6
), pp.
458
470
.10.1097/00001573-200311000-00007
47.
Papafaklis
,
M. I.
,
Bourantas
,
C. V.
,
Theodorakis
,
P. E.
,
Katsouras
,
C. S.
,
Naka
,
K. K.
,
Fotiadis
,
D. I.
, and
Michalis
,
L. K.
,
2010
, “
The Effect of Shear Stress on Neointimal Response Following Sirolimus- and Paclitaxel-Eluting Stent Implantation Compared With Bare-Metal Stents in Humans
,”
JACC Cardiovasc. Interventions
,
3
(
11
), pp.
1181
1189
.10.1016/j.jcin.2010.08.018
48.
LaDisa
,
J. F.
, Jr.
,
Olson
,
L. E.
,
Hettrick
,
D. A.
,
Warltier
,
D. C.
,
Kersten
,
J. R.
, and
Pagel
,
P. S.
,
2005
, “
Axial Stent Strut Angle Influences Wall Shear Stress After Stent Implantation: Analysis Using 3D Computational Fluid Dynamics Models of Stent Foreshortening
,”
Biomed. Eng. Online
,
4
, p.
59
.10.1186/1475-925X-4-59
49.
Farooq
,
V.
,
Gogas
,
B. D.
, and
Serruys
,
P. W.
,
2011
, “
Restenosis: Delineating the Numerous Causes of Drug-Eluting Stent Restenosis
,”
Circ. Cardiovasc. Interventions
,
4
(
2
), pp.
195
205
.10.1161/CIRCINTERVENTIONS.110.959882
50.
Quam
,
D. J.
,
Ellwein
,
L. M.
,
Otake
,
H.
,
Migrino
,
R. Q.
, and
Ladisa
,
J. F.
,
2011
, “
Mobile Virtual Reality System for Cardiovascular Cfd Analysis
,”
Biomedical Engineering Society (BMES) Annual Meeting
, Hartford, CT, Oct. 12–15, p. 56.
51.
Aumüller
,
M.
,
Lang
,
R.
,
Rainer
,
D.
,
Schulze
,
J. P.
,
Werner
,
A.
,
Wolf
,
P.
, and
Wössner
,
U.
,
2008
, COVISE (COllaborative VIsualization and Simulation Environment), Ver. 6.5, High Performance Computing Center Stuttgart, Universität Stuttgart, Stuttgart, DE.
52.
Leigh
,
J.
,
Renambot
,
L.
,
Johnson
,
A.
,
Jeong
,
B.
,
Jagodic
,
R.
,
Schwarz
,
N.
,
Svistula
,
D.
,
Singh
,
R.
,
Aguilera
,
J.
,
Wang
,
X.
,
Vishwanath
,
V.
,
Lopez
,
B.
,
Sandin
,
D.
,
Peterka
,
T.
,
Girado
,
J.
,
Kooima
,
R.
,
Ge
,
J.
,
Long
,
L.
,
Verlo
,
A.
,
Defanti
,
T. A.
,
Brown
,
M.
,
Cox
,
D.
,
Patterson
,
R.
,
Dorn
,
P.
,
Wefel
,
P.
,
Levy
,
S.
,
Talandis
,
J.
,
Reitzer
,
J.
,
Prudhomme
,
T.
,
Coffin
,
T.
,
Davis
,
B.
,
Wielinga
,
P.
,
Stolk
,
B.
,
Bum Koo
,
G.
,
Kim
,
J.
,
Han
,
S.
,
Kim
,
J.
,
Corrie
,
B.
,
Zimmerman
,
T.
,
Boulanger
,
P.
, and
Garcia
,
M.
,
2006
, “
The Global Lambda Visualization Facility: An International Ultra-High-Definition Wide-Area Visualization Collaboratory
,”
Future Gener. Comput. Syst.
,
22
(
8
), pp.
964
971
.10.1016/j.future.2006.03.009
53.
Reda
,
K.
,
Knoll
,
A.
,
Nomura
,
K. I.
,
Papka
,
M. E.
,
Johnson
,
A. E.
, and
Leigh
,
J.
,
2013
, “
Visualizing Large-Scale Atomistic Simulations in Ultra-Resolution Immersive Environments
,” Proceedings of the
IEEE
Symposium on Large-Scale Data Analysis and Visualization (LDAV’13), Atlanta, GA, Oct. 13–14, pp.
59
65
.10.1109/LDAV.2013.6675159
54.
Gascon
,
J.
,
Bayona
,
J. M.
,
Espadero
,
J. M.
, and
Otaduy
,
M.
,
2011
, “
Blendercave: Easy Vr Authoring for Multi-Screen Displays
,”
SIACG 2011: Ibero-American Symposium in Computer Graphics
, Faro, Portugal, June 1–3.
55.
Kitware, Inc.
,
2012
,
paraview
.
You do not currently have access to this content.