Anterior cruciate ligament (ACL) injury is a common and potentially catastrophic knee joint injury, afflicting a large number of males and particularly females annually. Apart from the obvious acute injury events, it also presents with significant long-term morbidities, in which osteoarthritis (OA) is a frequent and debilitative outcome. With these facts in mind, a vast amount of research has been undertaken over the past five decades geared toward characterizing the structural and mechanical behaviors of the native ACL tissue under various external load applications. While these efforts have afforded important insights, both in terms of understanding treating and rehabilitating ACL injuries; injury rates, their well-established sex-based disparity, and long-term sequelae have endured. In reviewing the expanse of literature conducted to date in this area, this paper identifies important knowledge gaps that contribute directly to this long-standing clinical dilemma. In particular, the following limitations remain. First, minimal data exist that accurately describe native ACL mechanics under the extreme loading rates synonymous with actual injury. Second, current ACL mechanical data are typically derived from isolated and oversimplified strain estimates that fail to adequately capture the true 3D mechanical response of this anatomically complex structure. Third, graft tissues commonly chosen to reconstruct the ruptured ACL are mechanically suboptimal, being overdesigned for stiffness compared to the native tissue. The net result is an increased risk of rerupture and a modified and potentially hazardous habitual joint contact profile. These major limitations appear to warrant explicit research attention moving forward in order to successfully maintain/restore optimal knee joint function and long-term life quality in a large number of otherwise healthy individuals.

References

References
1.
Lohmander
,
L. S.
,
Ostenberg
,
A.
,
Englund
,
M.
, and
Roos
,
H. P.
,
2004
, “
High Prevalence of Knee Osteoarthritis, Pain, and Functional Limitations in Female Soccer Players Twelve Years After Anterior Cruciate Ligament Injury
,”
Arthritis Rheum.
,
50
(
10
), pp.
3145
3152
.10.1002/art.20589
2.
Csintalan
,
R. P.
,
Inacio
,
M. C. S.
, and
Funahashi
,
T. T.
,
2008
, “
Incidence Rate of Anterior Cruciate Ligament Reconstructions
,”
Perm. J.
,
12
(
3
), pp.
17
21
.
3.
Griffin
,
L. Y.
,
Albohm
,
M. J.
,
Arendt
,
E. A.
,
Bahr
,
R.
,
Beynnon
,
B. D.
,
Demaio
,
M.
,
Dick
,
R. W.
,
Engebretsen
,
L.
,
Garrett
,
W. E.
, Jr.
,
Hannafin
,
J. A.
,
Hewett
,
T. E.
,
Huston
,
L. J.
,
Ireland
,
M. L.
,
Johnson
,
R. J.
,
Lephart
,
S.
,
Mandelbaum
,
B. R.
,
Mann
,
B. J.
,
Marks
,
P. H.
,
Marshall
,
S. W.
,
Myklebust
,
G.
,
Noyes
,
F. R.
,
Powers
,
C.
,
Shields
,
C.
, Jr.
,
Shultz
,
S. J.
,
Silvers
,
H.
,
Slauterbeck
,
J.
,
Taylor
,
D. C.
,
Teitz
,
C. C.
,
Wojtys
,
E. M.
, and
Yu
,
B.
,
2006
, “
Understanding and Preventing Noncontact Anterior Cruciate Ligament Injuries: A Review of the Hunt Valley II Meeting, January 2005
,”
Am. J. Sports Med.
,
34
(
9
), pp.
1512
1532
.10.1177/0363546506286866
4.
Deneweth
,
J. M.
,
Bey
,
M. J.
,
McLean
,
S. G.
,
Lock
,
T. R.
,
Kolowich
,
P. A.
, and
Tashman
,
S.
,
2010
, “
Tibiofemoral Joint Kinematics of the Anterior Cruciate Ligament-Reconstructed Knee During a Single-Legged Hop Landing
,”
Am. J. Sports Med.
,
38
(
9
), pp.
1820
1828
.10.1177/0363546510365531
5.
Tashman
,
S.
,
Anderst
,
W.
,
Kolowich
,
P. A.
,
Havstad
,
S.
, and
Arnoczky
,
S. P.
,
2004
, “
Kinematics of the ACL-Deficient Canine Knee During Gait: Serial Changes Over Two Years
,”
J. Orthop. Res.
,
22
(
5
), pp.
931
941
.10.1016/j.orthres.2004.01.008
6.
Lohmander
,
L. S.
,
Englund
,
P. M.
,
Dahl
,
L. L.
, and
Roos
,
E. M.
,
2007
, “
The Long-Term Consequence of Anterior Cruciate Ligament and Meniscus Injuries: Osteoarthritis
,”
Am. J. Sports Med.
,
35
(
10
), pp.
1756
1769
.10.1177/0363546507307396
7.
Neuman
,
P.
,
Englund
,
M.
,
Kostogiannis
,
I.
,
Friden
,
T.
,
Roos
,
H. P.
, and
Dahlberg
,
L. E.
,
2008
, “
Prevalence of Tibiofemoral Osteoarthritis 15 Years After Nonoperative Treatment of Anterior Cruciate Ligament Injury: A Prospective Cohort Study
,”
Am. J. Sports Med.
,
36
(
9
), pp.
1717
1725
.10.1177/0363546508316770
8.
Imhauser
,
C. W.
,
Mauro
,
C.
,
Choi
,
D.
,
Rosenberg
,
E.
,
Mathew
,
S.
,
Nguyen
,
J.
,
Ma
,
Y.
, and
Wickiewicz
,
T.
,
2013
, “
Abnormal Tibiofemoral Contact Stress and Its Association With Altered Kinematics After Center-Center Anterior Cruciate Ligament Reconstruction: An In Vitro Study
,”
Am. J. Sports Med.
,
41
(
4
), pp.
815
825
.10.1177/0363546512475205
9.
Andriacchi
,
T. P.
,
Mundermann
,
A.
,
Smith
,
R. L.
,
Alexander
,
E. J.
,
Dyrby
,
C. O.
, and
Koo
,
S.
,
2004
, “
A Framework for the In Vivo Pathomechanics of Osteoarthritis at the Knee
,”
Ann. Biomed. Eng.
,
32
(
3
), pp.
447
457
.10.1023/B:ABME.0000017541.82498.37
10.
Logan
,
M. C.
,
Dunstan
,
E.
,
Robinson
,
J.
,
Williams
,
A.
,
Gedroyc
,
W.
, and
Freeman
,
M.
,
2004
, “
Tibiofemoral Kinematics of the Anterior Cruciate Ligament (ACL)-Deficient Weightbearing, Living Knee Employing Vertical Access Open ‘Interventional’ Multiple Resonance Imaging
,”
Am. J. Sports Med.
,
32
(
3
), pp.
720
726
.10.1177/0095399703258771
11.
Rupp
,
S.
,
Muller
,
B.
, and
Seil
,
R.
,
2001
, “
Knee Laxity After ACL Reconstruction With a BPTB Graft
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
9
(
2
), pp.
72
76
.10.1007/s001670000177
12.
Van Kampen
,
A.
,
Wymenga
,
A. B.
,
van der Heide
,
H. J.
, and
Bakens
,
H. J.
,
1998
, “
The Effect of Different Graft Tensioning in Anterior Cruciate Ligament Reconstruction: A Prospective Randomized Study
,”
Arthroscopy
,
14
(
8
), pp.
845
850
.10.1016/S0749-8063(98)70022-2
13.
Cuppone
,
M.
, and
Seedhom
,
B. B.
,
2001
, “
Effect of Implant Lengthening and Mode of Fixation On Knee Laxity After ACL Reconstruction With an Artificial Ligament: A Cadaveric Study
,”
J. Orthop. Sci.
,
6
(
3
), pp.
253
261
.10.1007/s007760100044
14.
Roos
,
P. J.
,
Hull
,
M. L.
, and
Howell
,
S. M.
,
2004
, “
Lengthening of Double-Looped Tendon Graft Constructs in Three Regions After Cyclic Loading: A Study Using Roentgen Stereophotogrammetric Analysis
,”
J. Orthop. Res.
,
22
(
4
), pp.
839
846
.10.1016/j.orthres.2003.11.002
15.
Smith
,
C. K.
,
Hull
,
M. L.
, and
Howell
,
S. M.
,
2006
, “
Lengthening of a Single-Loop Tibialis Tendon Graft Construct After Cyclic Loading: A Study Using Roentgen Stereophotogrammetric Analysis
,”
ASME J. Biomech. Eng.
,
128
(
3
), pp.
437
442
.10.1115/1.2187038
16.
Boorman
,
R. S.
,
Thornton
,
G. M.
,
Shrive
,
N. G.
, and
Frank
,
C. B.
,
2002
, “
Ligament Grafts Become More Susceptible to Creep Within Days After Surgery: Evidence for Early Enzymatic Degradation of a Ligament Graft in a Rabbit Model
,”
Acta Orthop. Scand.
,
73
(
5
), pp.
568
574
.10.1080/000164702321022866
17.
Ma
,
J.
,
Smietana
,
M. J.
,
Kostrominova
,
T. Y.
,
Wojtys
,
E. M.
,
Larkin
,
L. M.
, and
Arruda
,
E. M.
,
2012
, “
Three-Dimensional Engineered Bone–Ligament–Bone Constructs for Anterior Cruciate Ligament Replacement
,”
Tissue Eng.
,
18
(
1–2
), pp.
103
116
.10.1089/ten.tea.2011.0231
18.
Lu
,
H. H.
,
2012
, “
Engineering Tissue-to-Tissue Interfaces and the Formation of Complex Tissues
,”
Bridge
,
42
(
4
), pp.
40
47
.
19.
Murray
,
M. M.
, and
Fleming
,
B. C.
,
2013
, “
Biology of Anterior Cruciate Ligament Injury and Repair: Kappa Delta Ann Doner Vaughn Award Paper 2013
,”
J. Orthop. Res.
,
31
(
10
), pp.
1501
1506
.10.1002/jor.22420
20.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.10.1115/1.3138397
21.
Ramsey
,
D. K.
, and
Wretenberg
,
P. F.
,
1999
, “
Biomechanics of the Knee: Methodological Considerations in the In Vivo Kinematic Analysis of the Tibiofemoral and Patellofemoral Joint
,”
Clin. Biomech. (Bristol, Avon)
,
14
(
9
), pp.
595
611
.10.1016/S0268-0033(99)00015-7
22.
Takeda
,
Y.
,
Xerogeanes
,
J. W.
,
Livesay
,
G. A.
,
Fu
,
F. H.
, and
Woo
,
S. L.-Y.
,
1994
, “
Biomechanical Function of the Human Anterior Cruciate Ligament
,”
Arthroscopy
,
10
(
2
), pp.
140
147
.10.1016/S0749-8063(05)80081-7
23.
Woo
,
S. L.-Y.
,
Debski
,
R. E.
,
Withrow
,
J. D.
, and
Janaushek
,
M. A.
,
1999
, “
Biomechanics of Knee Ligaments
,”
Am. J. Sports Med.
,
27
(
4
), pp.
533
543
.
24.
Marans
,
H. J.
,
Jackson
,
R. W.
,
Glossop
,
N. D.
, and
Young
,
C.
,
1989
, “
Anterior Cruciate Ligament Insufficiency: A Dynamic Three-Dimensional Motion Analysis
,”
Am. J. Sports Med.
,
17
(
3
), pp.
325
332
.10.1177/036354658901700303
25.
Shiavi
,
R.
,
Limbird
,
T.
,
Frazer
,
M.
,
Stivers
,
K.
,
Strauss
,
A.
, and
Abramovitz
,
J.
,
1987
, “
Helical Motion Analysis of the Knee–II. Kinematics of Uninjured and Injured Knees During Walking and Pivoting.
,”
J. Biomech.
,
20
(
7
), pp.
653
665
.10.1016/0021-9290(87)90032-7
26.
Yu
,
B.
,
Lin
,
C. F.
, and
Garrett
,
W. E.
,
2006
, “
Lower Extremity Biomechanics During the Landing of a Stop-Jump Task
,”
Clin. Biomech.
,
21
(
3
), pp.
297
305
.10.1016/j.clinbiomech.2005.11.003
27.
Hewett
,
T. E.
,
Torg
,
J. S.
, and
Boden
,
B. P.
,
2009
, “
Video Analysis of Trunk and Knee Motion During Non-Contact Anterior Cruciate Ligament Injury in Female Athletes: Lateral Trunk and Knee Abduction Motion Are Combined Components of the Injury Mechanism
,”
Br. J. Sports Med.
,
43
(
6
), pp.
417
422
.10.1136/bjsm.2009.059162
28.
McLean
,
S. G.
,
Borotikar
,
B.
, and
Lucey
,
S. M.
,
2010
, “
Lower Limb Muscle Pre-Motor Time Measures During a Choice Reaction Task Associate With Knee Abduction Loads During Dynamic Single Leg Landings
,”
Clin. Biomech.
,
25
(
6
), pp.
563
569
.10.1016/j.clinbiomech.2010.02.013
29.
McLean
,
S. G.
, and
Beaulieu
,
M. L.
,
2010
, “
Complex Integrative Morphological and Mechanical Contributions to ACL Injury Risk
,”
Exercise Sport Sci. Rev.
,
38
(
4
), pp.
192
200
.10.1097/JES.0b013e3181f450b4
30.
Meyer
,
E. G.
, and
Haut
,
R. C.
,
2008
, “
Anterior Cruciate Ligament Injury Induced by Internal Tibial Torsion or Tibiofemoral Compression
,”
J. Biomech.
,
41
(
16
), pp.
3377
3383
.10.1016/j.jbiomech.2008.09.023
31.
Oh
,
Y. K.
,
Kreinbrink
,
J. L.
,
Wojtys
,
E. M.
, and
Ashton-Miller
,
J. A.
,
2012
, “
Effect of Axial Tibial Torque Direction on ACL Relative Strain and Strain Rate in an In Vitro Simulated Pivot Landing
,”
J. Orthop. Res.
,
30
(
4
), pp.
528
534
.10.1002/jor.21572
32.
Girgis
,
F.
,
Marshall
,
J.
, and
Al Monajem
,
A. R. S.
,
1975
, “
The Cruciate Ligaments of the Knee Joint: Anatomical, Functional and Experimental Analysis
,”
Clin. Orthop. Relat. Res.
,
106
, pp.
216
231
.10.1097/00003086-197501000-00033
33.
Dye
,
S. F.
, and
Cannon
,
W. D. J.
,
1988
, “
Anatomy and Biomechanics of the Anterior Cruciate Ligament
,”
Clin. Sports Med.
,
7
(
4
), pp.
715
725
.
34.
Moghaddam
,
A. B.
, and
Torkaman
,
A.
,
2013
, “
A Cadaver Study of the Structures and Positions of the Anterior Cruciate Ligament in Humans
,”
Int. J. Prev. Med.
,
4
(
Suppl. 1
), pp.
S85
S91
.
35.
Odensten
,
M.
, and
Gillquist
,
J.
,
1985
, “
Functional Anatomy of the Anterior Cruciate Ligament and a Rationale for Reconstruction
,”
J. Bone Jt. Surg. Am.
,
67
(
2
), pp.
257
262
.
36.
Petersen
,
W.
, and
Zantop
,
T.
,
2007
, “
Anatomy of the Anterior Cruciate Ligament With Regard to Its Two Bundles
,”
Clin. Orthop. Relat. Res.
,
454
, pp.
35
47
.10.1097/BLO.0b013e31802b4a59
37.
Smith
,
B. A.
,
Livesay
,
G. A.
, and
Woo
,
S. L.-Y.
,
1993
, “
Biology and Biomechanics of the Anterior Cruciate Ligament
,”
Clin. Sports Med.
,
12
(
4
), pp.
637
670
.
38.
Welsh
,
R. P.
,
1980
, “
Knee Joint Structure and Function
,”
Clin. Orthop. Relat. Res.
,
147
, pp.
7
14
.10.1097/00003086-198003000-00003
39.
Fu
,
F. H.
,
Harner
,
C. D.
,
Johnson
,
D. L.
,
Miller
,
M. D.
, and
Woo
,
S. L.-Y.
,
1993
, “
Biomechanics of Knee Ligaments; Basic Concepts and Clinical Application
,”
J. Bone Jt. Surg.
,
75
(
11
), pp.
1716
1727
.
40.
Harner
,
C. D.
,
Baek
,
G. H.
,
Vogrin
,
T. M.
,
Carlin
,
G. J.
,
Kashiwaguchi
,
S.
, and
Woo
,
S. L.-Y.
,
1999
, “
Quantitative Analysis of Human Cruciate Ligament Insertions
,”
Arthroscopy
,
15
(
7
), pp.
741
749
.10.1016/S0749-8063(99)70006-X
41.
Arnoczky
,
S. P.
,
1983
, “
Anatomy of the Anterior Cruciate Ligament
,”
Clin. Orthop. Relat. Res.
,
172
, pp.
19
25
.10.1097/00003086-198301000-00006
42.
Smith
,
B. A.
,
1993
, “
Biology and Biomechanics of the Anterior Cruciate Ligament
,”
Clin. Sports Med.
,
12
(
4
), pp.
637
670
.
43.
Woo
,
S. L.-Y.
,
Gomez
,
M. A.
,
Seguchi
,
Y.
,
Endo
,
C. M.
, and
Akeson
,
W. H.
,
1983
, “
Measurement of Mechanical Properties of Ligament Substance From a Bone-Ligament-Bone Preparation
,”
J. Orthop. Res.
,
1
(
1
), pp.
22
29
.10.1002/jor.1100010104
44.
Benjamin
,
M.
,
Evans
,
E. J.
, and
Copp
,
L.
,
1986
, “
The Histology of Tendon Attachments to Bone in Man
,”
J. Anat.
,
149
, pp.
89
100
.
45.
Moffat
,
K. L.
,
Sun
,
W.-H. S.
,
Pena
,
P. E.
,
Chahine
,
N. O.
,
Doty
,
S. B.
,
Ateshian
,
G. A.
,
Hung
,
C. T.
, and
Lu
,
H. H.
,
2008
, “
Characterization of the Structure-Function Relationship at the Ligament-to-Bone Interface
,”
Proc. Natl. Acad. Sci. U. S. A.
,
105
(
23
), pp.
7947
7952
.10.1073/pnas.0712150105
46.
Andrish
,
J. T.
,
2001
, “
Anterior Cruciate Ligament Injuries in the Skeletally Immature Patient
,”
Am. J. Orthop.
,
30
(
2
), pp.
103
110
.
47.
Goulet
,
G. C.
,
Davidson
,
S.
, and
McLean
,
S. G.
,
2014
, “
The Effects of Maturation on High-Risk Posterior Tibial Slope Parameters in Females
,”
J. Sci. Med. Sport.
(in press).
48.
McLean
,
S. G.
, and
Davidson
,
S. P.
,
2013
, “
Maturation Effects on Combined ACL and Intercondylar Notch Geometries: Implications for Ligament Injury
,”
Am. J. Sports Med.
(in review).
49.
Arnoczky
,
S. P.
,
Warren
,
R. F.
, and
Ashlock
,
M. A.
,
1986
, “
Replacement of the Anterior Cruciate Ligament Using a Patellar Tendon Allograft. An Experimental Study
,”
J. Bone Jt. Surg., Am.
,
68
(
3
), pp.
376
385
.
50.
Bach
,
J. M.
,
Hull
,
M. L.
, and
Patterson
,
H. A.
,
1997
, “
Direct Measurement of Strain in the Posterolateral Bundle of the Anterior Cruciate Ligament
,”
J. Biomech.
,
30
(
3
), pp.
281
283
.10.1016/S0021-9290(96)00132-7
51.
Butler
,
D. L.
,
Kay
,
M. D.
, and
Stouffer
,
D. C.
,
1988
, “
Comparison of Material Properties in Fascicle-Bone Units From Human Patellar Tendon and Knee Ligaments
,”
J. Biomech.
,
19
(
6
), pp.
425
432
.10.1016/0021-9290(86)90019-9
52.
Hamner
,
D. L.
,
Brown
,
C. H.
,
Steiner
,
M. E.
,
Hecker
,
A. T.
, and
Hayes
,
W. C.
,
1999
, “
Hamstring Tendon Grafts for Reconstruction of the Anterior Cruciate Ligament: Biomechanical Evaluation of the Use of Multiple Strands and Tensioning Techniques
,”
J. Bone Jt. Surg. Am.
,
81
(
4
), pp.
549
557
.
53.
Butler
,
D. L.
,
1989
, “
Anterior Cruciate Ligament: Its Normal Response and Replacement
,”
J. Orthop. Res.
,
7
(
6
), pp.
910
921
.10.1002/jor.1100070618
54.
Hollis
,
J. M.
,
Marcin
,
J. P.
,
Horibe
,
S.
, and
Woo
,
S. L.-Y.
,
1988
, “
Load Determination in ACL Fibres Under Knee Loading
,”
Trans. Orthop. Res. Soc.
,
13
, p.
196
.
55.
Norwood
,
L. A.
, and
Cross
,
M. J.
,
1979
, “
Anterior Cruciate Ligament: Functional Anatomy of Its Bundles in Rotatory Instabilities
,”
Am. J. Sports Med.
,
7
(
1
), pp.
23
26
.10.1177/036354657900700106
56.
Kennedy
,
J. C.
,
Weinberg
,
H. W.
, and
Wilson
,
A. S.
,
1974
, “
The Anatomy and Function of the Anterior Cruciate Ligament. As Determined by Clinical and Morphological Studies
,”
J. Bone Jt. Surg. Am.
,
56
(
2
), pp.
223
235
.
57.
Takai
,
S.
,
Woo
,
S. L.-Y.
,
Livesay
,
G. A.
,
Adams
,
D. J.
, and
Fu
,
F. H.
,
1993
, “
Determination of the In Situ Loads on the Human Anterior Cruciate Ligament
,”
J. Orthop. Res.
,
11
(
5
), pp.
686
695
.10.1002/jor.1100110511
58.
Sidles
,
J. A.
,
Larson
,
R. V.
,
Garbini
,
J. L.
,
Downey
,
D. J.
, and
Matsen
,
F. A. D.
,
1988
, “
Ligament Length Relationships in the Moving Knee
,”
J. Orthop. Res.
,
6
(
4
), pp.
593
610
.10.1002/jor.1100060418
59.
Wang
,
C. J.
, and
Walker
,
P. S.
,
1973
, “
The Effects of Flexion and Rotation on the Length Patterns of the Ligaments of the Knee
,”
J. Biomech.
,
6
(
6
), pp.
587
596
.10.1016/0021-9290(73)90016-X
60.
Hollis
,
J. M.
,
Takai
,
S.
,
Adams
,
D. J.
,
Horibe
,
S.
, and
Woo
,
S. L.-Y.
,
1991
, “
The Effects of Knee Motion and External Loading on the Length of the Anterior Cruciate Ligament (ACL): A Kinematic Study
,”
ASME J. Biomech. Eng.
,
113
(
2
), pp.
208
214
.10.1115/1.2891236
61.
Mommersteeg
,
T. J.
,
Kooloos
,
J. G.
,
Blankevoort
,
L.
,
Kauer
,
J. M.
,
Huiskes
,
R.
, and
Roeling
,
F. Q.
,
1995
, “
The Fibre Bundle Anatomy of Human Cruciate Ligaments
,”
J. Anat.
,
187
(
Pt. 2
), pp.
461
471
.
62.
Arms
,
S. W.
,
Pope
,
M. H.
,
Johnson
,
R. J.
,
Fischer
,
R. A.
,
Arvidsson
,
I.
, and
Eriksson
,
E.
,
1984
, “
The Biomechanics of Anterior Cruciate Ligament Rehabilitation and Reconstruction
,”
Am. J. Sports Med.
,
12
(
1
), pp.
8
18
.10.1177/036354658401200102
63.
Li
,
G.
,
Papannagari
,
R.
,
DeFrate
,
L. E.
,
Yoo
,
J. D.
,
Park
,
S. E.
, and
Gill
,
T. J.
,
2006
, “
Comparison of the ACL and ACL Graft Forces Before and After ACL Reconstruction: An In-Vitro Robotic Investigation
,”
Acta Orthop.
,
77
(
2
), pp.
267
274
.10.1080/17453670610046019
64.
Tashman
,
S.
,
Kolowich
,
P. A.
,
Collon
,
D.
,
Anderson
,
K.
, and
Anderst
,
W.
,
2007
, “
Dynamic Function of the ACL-Reconstructed Knee During Running
,”
Clin. Orthop. Relat. Res.
,
454
, pp.
66
73
.10.1097/BLO.0b013e31802bab3e
65.
Chaudhari
,
A. M.
,
Briant
,
P. L.
,
Bevill
,
S. L.
,
Koo
,
S.
, and
Andriacchi
,
T. P.
,
2008
, “
Knee Kinematics, Cartilage Morphology, and Osteoarthritis After ACL Injury
,”
Med. Sci. Sports Exercise
,
40
(
2
), pp.
215
222
.10.1249/mss.0b013e31815cbb0e
66.
Kanamori
,
A.
,
Zeminski
,
J.
,
Rudy
,
T. W.
,
Li
,
G.
,
Fu
,
F. H.
, and
Woo
,
S. L.-Y.
,
2002
, “
The Effect of Axial Tibial Torque on the Function of the Anterior Cruciate Ligament: A Biomechanical Study of a Simulated Pivot Shift Test
,”
Arthroscopy
,
18
(
4
), pp.
394
398
.10.1053/jars.2002.30638
67.
Ma
,
J.
,
2012
, “
Experimental and Computational Characterizations of Native Ligaments, Tendons and Engineered 3-D Bone-Ligament-Bone Constructs in the Knee
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
68.
Noyes
,
F. R.
,
DeLucas
,
J. L.
, and
Torvik
,
P. J.
,
1974
, “
Biomechanics of Anterior Cruciate Ligament Failure: An Analysis of Strain-Rate Sensitivity and Mechanisms of Failure in Primates
,”
J. Bone Jt. Surg.
,
56
(
2
), pp.
236
253
.
69.
Noyes
,
F. R.
,
Torvik
,
P. J.
,
Hyde
,
W. B.
, and
DeLucas
,
J. L.
,
1974
, “
Biomechanics of Ligament Failure II: An Analysis of Immobilization, Exercise, and Reconditioning Effects in Primates
,”
J. Bone Jt. Surg.
,
56
(
7
), pp.
1406
1418
.
70.
Cabaud
,
H. E.
,
Rodkey
,
W. G.
, and
Feagin
,
J. A.
,
1980
, “
Experimental Studies of Acute Anterior Cruciate Ligament Injury and Repair
,”
Am. J. Sports Med.
,
7
(
1
).
71.
Cabaud
,
H. E.
,
Feagin
,
J. A.
, and
Rodkey
,
W. G.
,
1980
, “
Acute Anterior Cruciate Ligament Injury and Augmented Repair
,”
Am. Orthop. Soc. Sport. Med.
,
8
(
6
), pp.
395
401
.10.1177/036354658000800602
72.
Butler
,
D. L.
,
Noyes
,
F. R.
, and
Grood
,
E. S.
,
1980
, “
Ligamentous Restraints to Anterior-Posterior Drawer in the Human Knee. A Biomechanical Study
,”
J. Bone Jt. Surg. Am.
,
62
(
2
), pp.
259
270
.
73.
Butler
,
D. L.
,
Grood
,
E. S.
,
Noyes
,
F. R.
, and
Sodd
,
A. N.
,
1985
, “
On the Interpretation of Our Anterior Cruciate Ligament Data
,”
Clin. Orthop.
,
196
, pp.
26
34
.
74.
Fukubayashi
,
T.
,
Torzilli
,
P. A.
,
Sherman
,
M. F.
, and
Warren
,
R. F.
,
1982
, “
An In Vitro Biomechanical Evaluation of Anterior-Posterior Motion of the Knee. Tibial Displacement, Rotation, and Torque
,”
J. Bone Jt. Surg. Am.
,
64
(
2
), pp.
258
264
.
75.
Markolf
,
K. L.
,
Mensch
,
J. S.
, and
Amstutz
,
H. C.
,
1976
, “
Stiffness and Laxity of the Knee—The Contributions of the Supporting Structures. A Quantitative In Vitro Study
,”
J Bone Jt. Surg., Am.
,
58
(
5
), pp.
583
594
.
76.
Haimes
,
J. L.
,
Wroble
,
R. R.
,
Grood
,
E. S.
, and
Noyes
,
F. R.
,
1994
, “
Role of the Medial Structures in the Intact and Anterior Cruciate Ligament-Deficient Knee. Limits of Motion in the Human Knee
,”
Am. J. Sports Med.
,
22
(
3
), pp.
402
409
.10.1177/036354659402200317
77.
Gollehon
,
D. L.
,
Torzilli
,
P. A.
, and
Warren
,
R. F.
,
1987
, “
The Role of the Posterolateral and Cruciate Ligaments in the Stability of the Human Knee
,”
J. Bone Jt. Surg.
,
69-A
(
2
), pp.
233
242
.
78.
Piziali
,
R. L.
,
Seering
,
W. P.
,
Nagel
,
D. A.
, and
Schurman
,
D. J.
,
1980
, “
The Function of the Primary Ligaments of the Knee in Anterior-Posterior and Medial-Lateral Motions
,”
J. Biomech.
,
13
(
9
), pp.
777
784
.10.1016/0021-9290(80)90239-0
79.
Noyes
,
F. R.
, and
Grood
,
E. S.
,
1976
, “
The Strength of the Anterior Cruciate Ligament in Humans and Rhesus Monkeys
,”
J. Bone Jt. Surg. Am.
,
58
(
8
), pp.
1074
1082
.
80.
DeMorat
,
G.
,
Weinhold
,
P.
,
Blackburn
,
T.
,
Chudik
,
S.
, and
Garrett
,
W.
,
2004
, “
Aggressive Quadriceps Loading Can Induce Noncontact Anterior Cruciate Ligament Injury
,”
Am. J. Sports Med.
,
32
(
2
), pp.
477
483
.10.1177/0363546503258928
81.
Cappozzo
,
A.
,
Catani
,
F.
,
Leardini
,
A.
,
Benedetti
,
M. G.
, and
Della Croce
,
U.
,
1996
, “
Position and Orientation in Space of Bones During Movement: Experimental Artifacts
,”
Clin. Biomech.
,
11
(
2
), pp.
90
100
.10.1016/0268-0033(95)00046-1
82.
Chao
,
E. Y.
,
Laughman
,
R. K.
,
Schneider
,
E.
, and
Stauffer
,
R. N.
,
1983
, “
Normative Data of Knee Joint Motion and Ground Reaction Forces in Adult Level Walking
,”
J. Biomech.
,
16
(
3
), pp.
219
233
.10.1016/0021-9290(83)90129-X
83.
Lafortune
,
M. A.
,
Cavanagh
,
P. R.
,
Sommer
,
H. J. D.
, and
Kalenak
,
A.
,
1992
, “
Three-Dimensional Kinematics of the Human Knee During Walking
,”
J. Biomech.
,
25
(
4
), pp.
347
357
.10.1016/0021-9290(92)90254-X
84.
McLean
,
S. G.
, and
Samorezov
,
J. E.
,
2009
, “
Fatigue-Induced ACL Injury Risk Stems From a Degradation in Central Control
,”
Med. Sci. Sports Exercise
,
41
(
8
), pp.
1661
1672
.10.1249/MSS.0b013e31819ca07b
85.
Ramakrishnan
,
H. K.
, and
Kadaba
,
M. P.
,
1991
, “
On the Estimation of Joint Kinematics During Gait
,”
J. Biomech.
,
24
(
10
), pp.
969
977
.10.1016/0021-9290(91)90175-M
86.
Kettelkamp
,
D. B.
,
Johnson
,
R. J.
,
Smidt
,
G. L.
,
Chao
,
E. Y.
, and
Walker
,
M.
,
1970
, “
An Electrogoniometric Motion in Normal of Knee Gait
,”
J. Bone Jt. Surg.
,
52-A
(
4
), pp.
775
790
.
87.
Brantigan
,
O. C.
, and
Voshell
,
A. F.
,
1941
, “
The Mechanics of the Ligaments and Menisci of the Knee Joint
,”
J. Bone Jt. Surg.
,
23
, pp.
44
66
.
88.
Lane
,
J. G.
,
Irby
,
S. E.
,
Kaufman
,
K.
,
Rangger
,
C.
, and
Daniel
,
D. M.
,
1994
, “
The Anterior Cruciate Ligament in Controlling Axial Rotation. An Evaluation of its Effect
,”
Am. J. Sports Med.
,
22
(
2
), pp.
289
293
.10.1177/036354659402200222
89.
Reuben
,
J. D.
,
Rovick
,
J. S.
,
Schrager
,
R. J.
,
Walker
,
P. S.
, and
Boland
,
A. L.
,
1989
, “
Three-Dimensional Dynamic Motion Analysis of the Anterior Cruciate Ligament Deficient Knee Joint
,”
Am. J. Sports Med.
,
17
(
4
), pp.
463
471
.10.1177/036354658901700403
90.
Andersen
,
H. N.
, and
Dyhre-Poulsen
,
P.
,
1997
, “
The Anterior Cruciate Ligament Does Play a Role in Controlling Axial Rotation in the Knee
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
5
(
3
), pp.
145
149
.10.1007/s001670050042
91.
Lipke
,
J. M.
,
Janecki
,
C. J.
,
Nelson
,
C. L.
,
McLeod
,
P.
,
Thompson
,
C.
,
Thompson
,
J.
, and
Haynes
,
D. W.
,
1981
, “
The Role of Incompetence of the Anterior Cruciate and Lateral Ligaments in Anterolateral and Anteromedial Instability. A Biomechanical Study of Cadaver Knees
,”
J. Bone Jt. Surg., Am.
,
63
(
6
), pp.
954
960
.
92.
Markolf
,
K. L.
,
Bargar
,
W. L.
,
Shoemaker
,
S. C.
, and
Amstutz
,
H. C.
,
1981
, “
The Role of Joint Load in Knee Stability
,”
J. Bone Jt. Surg., Am.
,
63
(
4
), pp.
570
585
.
93.
Norwood
,
L. A.
,
Andrews
,
J. R.
,
Meisterling
,
R. C.
, and
Glancy
,
G. L.
,
1979
, “
Acute Anterolateral Rotatory Instability of the Knee
,”
J. Bone Jt. Surg. Am.
,
61
(
5
), pp.
704
709
.
94.
Seering
,
W. P.
,
Piziali
,
R. L.
,
Nagel
,
D. A.
, and
Schurman
,
D. J.
,
1980
, “
The Function of the Primary Ligaments of the Knee in Varus-Valgus and Axial Rotation
,”
J. Biomech.
,
13
(
9
), pp.
785
794
.10.1016/0021-9290(80)90240-7
95.
Shoemaker
,
S. C.
, and
Markolf
,
K. L.
,
1985
, “
Effects of Joint Load on the Stiffness and Laxity of Ligament-Deficient Knees. An In Vitro Study of the Anterior Cruciate and Medial Collateral Ligaments
,”
J. Bone Jt. Surg., Am.
,
67
(
1
), pp.
136
146
.
96.
Wroble
,
R. R.
,
Grood
,
E. S.
,
Cummings
,
J. S.
,
Henderson
,
J. M.
, and
Noyes
,
F. R.
,
1993
, “
The Role of the Lateral Extraarticular Restraints in the Anterior Cruciate Ligament-Deficient Knee
,”
Am. J. Sports Med.
,
21
(
2
), pp.
257
262
; discussion 263.10.1177/036354659302100216
97.
Grood
,
E. S.
,
Noyes
,
F. R.
,
Butler
,
D. L.
, and
Suntay
,
W. J.
,
1981
, “
Ligamentous and Capsular Restraints Preventing Straight Medial and Lateral Laxity in Intact Human Cadaver Knees
,”
J. Bone Jt. Surg. Am.
,
63
(
8
), pp.
1257
1269
.
98.
Nielsen
,
S.
,
Ovesen
,
J.
, and
Rasmussen
,
O.
,
1984
, “
The Anterior Cruciate Ligament of the Knee: An Experimental Study of Its Importance in Rotatory Knee Instability
,”
Arch. Orthop. Trauma Surg.
,
103
(
3
), pp.
170
174
.10.1007/BF00435549
99.
Inoue
,
M.
,
McGurk Burleson
,
E.
,
Hollis
,
J. M.
, and
Woo
,
S. L.-Y.
,
1987
, “
Treatment of the Medial Collateral Ligament Injury. I: The Importance of Anterior Cruciate Ligament on the Varus-Valgus Knee Laxity
,”
Am. J. Sports Med.
,
15
(
1
), pp.
15
21
.10.1177/036354658701500103
100.
Woo
,
S. L.-Y.
,
Kanamori
,
A.
,
Zeminski
,
J.
,
Yagi
,
M.
,
Papageorgiou
,
C.
, and
Fu
,
F. H.
,
2002
, “
The Effectiveness of Reconstruction of the Anterior Cruciate Ligament With Hamstrings and Patellar Tendon. A Cadaveric Study Comparing Anterior Tibial and Rotational Loads
,”
J. Bone Jt. Surg. Am.
,
84-A
(
6
), pp.
907
914
.
101.
Fujie
,
H.
,
Mabuchi
,
K.
,
Woo
,
S. L.-Y.
,
Livesay
,
G. A.
,
Arai
,
S.
, and
Tsukamoto
,
Y.
,
1993
, “
The Use of Robotics Technology to Study Human Joint Kinematics: A New Methodology
,”
ASME J. Biomech. Eng.
,
115
(
3
), pp.
211
217
.10.1115/1.2895477
102.
Rudy
,
T. W.
,
Livesay
,
G. A.
,
Woo
,
S. L.-Y.
, and
Fu
,
F. H.
,
1996
, “
A Combined Robotic/Universal Force Sensor Approach to Determine In Situ Forces of Knee Ligaments
,”
J. Biomech.
,
29
(
10
), pp.
1357
1360
.10.1016/0021-9290(96)00056-5
103.
Galway
,
H. R.
,
Beaupre
,
A.
, and
MacIntosh
,
D. L.
,
1972
, “
Pivot Shift: A Clinical Sign of Symptomatic Anterior Cruciate in Suffiency
,”
J. Bone Jt. Surg.
,
54
, pp.
763
764
.
104.
Fujie
,
H.
,
Livesay
,
G. A.
,
Woo
,
S. L.-Y.
,
Kashiwaguchi
,
S.
, and
Blomstrom
,
G.
,
1995
, “
The Use of a Universal Force-Moment Sensor to Determine In-Situ Forces in Ligaments: A New Methodology
,”
ASME J. Biomech. Eng.
,
117
(
1
), pp.
1
7
.10.1115/1.2792266
105.
Livesay
,
G. A.
,
Rudy
,
T. W.
,
Woo
,
S. L.-Y.
,
Runco
,
T. J.
,
Sakane
,
M.
,
Li
,
G.
, and
Fu
,
F. H.
,
1997
, “
Evaluation of the Effect of Joint Constraints on the In Situ Force Distribution in the Anterior Cruciate Ligament
,”
J. Orthop. Res.
,
15
(
2
), pp.
278
284
.10.1002/jor.1100150218
106.
Sakane
,
M.
,
Fox
,
R. J.
,
Woo
,
S. L.-Y.
,
Livesay
,
G. A.
,
Li
,
G.
, and
Fu
,
F. H.
,
1997
, “
In Situ Forces in the Anterior Cruciate Ligament and Its Bundles in Response to Anterior Tibial Loads
,”
J. Orthop. Res.
,
15
(
2
), pp.
285
293
.10.1002/jor.1100150219
107.
Gabriel
,
M. T.
,
Wong
,
E. K.
,
Woo
,
S. L.-Y.
,
Yagi
,
M.
, and
Debski
,
R. E.
,
2004
, “
Distribution of In Situ Forces in the Anterior Cruciate Ligament in Response to Rotatory Loads
,”
J. Orthop. Res.
,
22
(
1
), pp.
85
89
.10.1016/S0736-0266(03)00133-5
108.
Kanamori
,
A.
,
Woo
,
S. L.-Y.
,
Ma
,
C. B.
,
Zeminski
,
J.
,
Rudy
,
T. W.
,
Li
,
G.
, and
Livesay
,
G. A.
,
2000
, “
The Forces in the Anterior Cruciate Ligament and Knee Kinematics During a Simulated Pivot Shift Test: A Human Cadaveric Study Using Robotic Technology
,”
Arthroscopy
,
16
(
6
), pp.
633
639
.10.1053/jars.2000.7682
109.
Wineman
,
A.
,
2000
,
Mechanical Response of Polymers: An Introduction
,
Cambridge University
,
Cambridge, UK
.
110.
Markolf
,
K. L.
,
Burchfield
,
D. M.
,
Shapiro
,
M. M.
,
Shepard
,
M. F.
,
Finerman
,
G. A.
, and
Slauterbeck
,
J. L.
,
1995
, “
Combined Knee Loading States That Generate High Anterior Cruciate Ligament Forces
,”
J. Orthop. Res.
,
13
(
6
), pp.
930
935
.10.1002/jor.1100130618
111.
Renstrom
,
P.
,
Arms
,
S. W.
,
Stanwyck
,
T. S.
,
Johnson
,
R. J.
, and
Pope
,
M. H.
,
1986
, “
Strain Within the Anterior Cruciate Ligament During Hamstring and Quadriceps Activity
,”
Am. J. Sports Med.
,
14
(
1
), pp.
83
87
.10.1177/036354658601400114
112.
Mizuno
,
K.
,
Andrish
,
J. T.
,
van den Bogert
,
A. J.
, and
McLean
,
S. G.
,
2009
, “
Gender Dimorphic ACL Strain in Response to Combined Dynamic 3D Knee Joint Loading: Implications for ACL Injury Risk
,”
Knee
,
16
(
6
), pp.
432
440
.10.1016/j.knee.2009.04.008
113.
Maletsky
,
L. P.
, and
Hillberry
,
B. M.
,
2005
, “
Simulating Dynamic Activities Using a Five-Axis Knee Simulator
,”
ASME J. Biomech. Eng.
,
127
(
1
), pp.
123
133
.10.1115/1.1846070
114.
Withrow
,
T. J.
,
Huston
,
L. J.
,
Wojtys
,
E. M.
, and
Ashton-Miller
,
J. A.
,
2006
, “
The Relationship Between Quadriceps Muscle Force, Knee Flexion, and Anterior Cruciate Ligament Strain in an In Vitro Simulated Jump Landing
,”
Am. J. Sports Med.
,
34
(
2
), pp.
269
274
.10.1177/0363546505280906
115.
Withrow
,
T. J.
,
Huston
,
L. J.
,
Wojtys
,
E. M.
, and
Ashton-Miller
,
J. A.
,
2008
, “
Effect of Varying Hamstring Tension on Anterior Cruciate Ligament Strain During In Vitro Impulsive Knee Flexion and Compression Loading
,”
J. Bone Jt. Surg. Am.
,
90
(
4
), pp.
815
823
.10.2106/JBJS.F.01352
116.
Oh
,
Y. K.
,
Lipps
,
D. B.
,
Ashton-Miller
,
J. A.
, and
Wojtys
,
E. M.
,
2012
, “
What Strains the Anterior Cruciate Ligament During a Pivot Landing?
,”
Am. J. Sports Med.
,
40
(
3
), pp.
574
583
.10.1177/0363546511432544
117.
McLean
,
S. G.
,
Oh
,
Y. K.
,
Palmer
,
M. L.
,
Lucey
,
S. M.
,
Lucarelli
,
D. G.
,
Ashton-Miller
,
J. A.
, and
Wojtys
,
E. M.
,
2011
, “
The Relationship Between Anterior Tibial Acceleration, Tibial Slope, and ACL Strain During a Simulated Jump Landing Task
,”
J. Bone Jt. Surg. Am.
,
93
(
14
), pp.
1310
1317
.10.2106/JBJS.J.00259
118.
Lipps
,
D. B.
,
Oh
,
Y. K.
,
Ashton-Miller
,
J. A.
, and
Wojtys
,
E. M.
,
2012
, “
Morphologic Characteristics Help Explain the Gender Difference in Peak Anterior Cruciate Ligament Strain During a Simulated Pivot Landing
,”
Am. J. Sports Med.
,
40
(
1
), pp.
32
40
.10.1177/0363546511422325
119.
Hashemi
,
J.
,
Breighner
,
R.
,
Jang
,
T. H.
,
Chandrashekar
,
N.
,
Ekwaro-Osire
,
S.
, and
Slauterbeck
,
J. R.
,
2010
, “
Increasing Preactivation of the Quadriceps Muscle Protects the Anterior Cruciate Ligament During the Landing Phase of a Jump: An In Vitro Simulation
,”
Knee
,
17
(
3
), pp.
235
241
.10.1016/j.knee.2009.09.010
120.
Domire
,
Z. J.
,
Boros
,
R. L.
, and
Hashemi
,
J.
,
2011
, “
An Examination of Possible Quadriceps Force at the Time of Anterior Cruciate Ligament Injury During Landing: A Simulation Study
,”
J. Biomech.
,
44
(
8
), pp.
1630
1632
.10.1016/j.jbiomech.2011.03.001
121.
Lipps
,
D. B.
,
Wojtys
,
E. M.
, and
Ashton-Miller
,
J. A.
,
2013
, “
Anterior Cruciate Ligament Fatigue Failures in Knees Subjected to Repeated Simulated Pivot Landings
,”
Am. J. Sports Med.
,
41
(
5
), pp.
1058
1066
.10.1177/0363546513477836
122.
McLean
,
S. G.
,
Su
,
A.
, and
van den Bogert
,
A. J.
,
2003
, “
Development and Validation of a 3-D Model to Predict Knee Joint Loading During Dynamic Movement
,”
ASME J. Biomech. Eng.
,
125
(
6
), pp.
864
874
.10.1115/1.1634282
123.
Pflum
,
M. A.
,
Shelburne
,
K. B.
,
Torry
,
M. R.
,
Decker
,
M. J.
, and
Pandy
,
M. G.
,
2004
, “
Model Prediction of Anterior Cruciate Ligament Force During Drop-Landings
,”
Med. Sci. Sports Exercise
,
36
(
11
), pp.
1949
1958
.10.1249/01.MSS.0000145467.79916.46
124.
McLean
,
S. G.
,
Huang
,
X.
,
Su
,
A.
, and
Van Den Bogert
,
A. J.
,
2004
, “
Sagittal Plane Biomechanics Cannot Injure the ACL During Sidestep Cutting
,”
Clin. Biomech. (Bristol, Avon)
,
19
(
8
), pp.
828
838
.10.1016/j.clinbiomech.2004.06.006
125.
Shelburne
,
K. B.
,
Pandy
,
M. G.
,
Anderson
,
F. C.
, and
Torry
,
M. R.
,
2004
, “
Pattern of Anterior Cruciate Ligament Force in Normal Walking
,”
J. Biomech.
,
37
(
6
), pp.
797
805
.10.1016/j.jbiomech.2003.10.010
126.
Halloran
,
J. P.
,
Erdemir
,
A.
, and
van den Bogert
,
A. J.
,
2009
, “
Adaptive Surrogate Modeling for Efficient Coupling of Musculoskeletal Control and Tissue Deformation Models
,”
ASME J. Biomech. Eng.
,
131
(
1
), p.
11014
.10.1115/1.3005333
127.
Cerulli
,
G.
,
Benoit
,
D. L.
,
Lamontagne
,
M.
,
Caraffa
,
A.
, and
Liti
,
A.
,
2003
, “
In Vivo Anterior Cruciate Ligament Strain Behaviour During a Rapid Deceleration Movement: Case Report
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
11
(
5
), pp.
307
311
.10.1007/s00167-003-0403-6
128.
Torry
,
M. R.
,
Shelburne
,
K. B.
,
Peterson
,
D. S.
,
Giphart
,
J. E.
,
Krong
,
J. P.
,
Myers
,
C.
,
Steadman
,
J. R.
, and
Woo
,
S. L.-Y.
,
2011
, “
Knee Kinematic Profiles During Drop Landings: A Biplane Fluoroscopy Study
,”
Med. Sci. Sports Exercise
,
43
(
3
), pp.
533
541
.10.1249/MSS.0b013e3181f1e491
129.
Torry
,
M. R.
,
Myers
,
C.
,
Shelburne
,
K. B.
,
Peterson
,
D.
,
Giphart
,
J. E.
,
Pennington
,
W. W.
,
Krong
,
J. P.
,
Woo
,
S. L.-Y.
, and
Steadman
,
J. R.
,
2011
, “
Relationship of Knee Shear Force and Extensor Moment on Knee Translations in Females Performing Drop Landings: A Biplane Fluoroscopy Study
,”
Clin. Biomech.
,
26
(
10
), pp.
1019
1024
.10.1016/j.clinbiomech.2011.06.010
130.
Torry
,
M. R.
,
Myers
,
C.
,
Pennington
,
W. W.
,
Shelburne
,
K. B.
,
Krong
,
J. P.
,
Giphart
,
J. E.
,
Steadman
,
J. R.
, and
Woo
,
S. L.-Y.
,
2011
, “
Relationship of Anterior Knee Laxity to Knee Translations During Drop Landings: A Bi-Plane Fluoroscopy Study
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
19
(
4
), pp.
653
662
.10.1007/s00167-010-1327-6
131.
Berns
,
G. S.
,
Hull
,
M. L.
, and
Patterson
,
H. A.
,
1992
, “
Strain in the Anteromedial Bundle of the Anterior Cruciate Ligament Under Combination Loading
,”
J. Orthop. Res.
,
10
(
2
), pp.
167
176
.10.1002/jor.1100100203
132.
Woo
,
S. L.-Y.
,
1982
, “
Mechanical Properties of Tendons and Ligaments. I. Quasi-Static and Nonlinear Viscoelastic Properties
,”
Biorheology
,
19
(
3
), pp.
385
396
.
133.
Butler
,
D. L.
,
Guan
,
Y.
,
Kay
,
M. D.
,
Cummings
,
J. F.
,
Feder
,
S. M.
, and
Levy
,
M. S.
,
1992
, “
Location-Dependent Variations in the Material Properties of the Anterior Cruciate Ligament
,”
J. Biomech.
,
25
(
5
), pp.
511
518
.10.1016/0021-9290(92)90091-E
134.
Chandrashekar
,
N.
,
Mansouri
,
H.
,
Slauterbeck
,
J.
, and
Hashemi
,
J.
,
2006
, “
Sex-Based Differences in the Tensile Properties of the Human Anterior Cruciate Ligament
,”
J. Biomech.
,
39
(
16
), pp.
2943
2950
.10.1016/j.jbiomech.2005.10.031
135.
Kennedy
,
J. C.
,
Hawkins
,
R. J.
,
Willis
,
R. B.
, and
Danylchuck
,
K. D.
,
1976
, “
Tension Studies of Human Knee Ligaments. Yield Point, Ultimate Failure, and Disruption of the Cruciate and Tibial Collateral Ligaments
,”
J. Bone Jt. Surg. Am.
,
58
(
3
), pp.
350
355
.
136.
Noyes
,
F. R.
,
Butler
,
D. L.
,
Grood
,
E. S.
,
Zernicke
,
R. F.
, and
Hefzy
,
M. S.
,
1984
, “
Biomechanical Analysis of Human Ligament Grafts Used in Knee-Ligament Repairs and Reconstructions
,”
J Bone Jt. Surg., Am.
,
66
(
3
), pp.
344
352
.
137.
Woo
,
S. L.-Y.
,
Gomez
,
M. A.
, and
Akeson
,
W. H.
,
1981
, “
The Time and History-Dependent Viscoelastic Properties of the Canine Medical Collateral Ligament
,”
ASME J. Biomech. Eng.
,
103
(
4
), pp.
293
298
.10.1115/1.3138295
138.
Beynnon
,
B. D.
, and
Johnson
,
R. J.
,
1996
, “
Anterior Cruciate Ligament Injury Rehabilitation in Athletes. Biomechanical Considerations
,”
Sport. Med.
,
22
(
1
), pp.
54
64
.10.2165/00007256-199622010-00005
139.
Hefzy
,
M. S.
, and
Grood
,
E. S.
,
1986
, “
Sensitivity of Insertion Locations on Length Patterns of Anterior Cruciate Ligament Fibers
,”
ASME J. Biomech. Eng.
,
108
(
1
), pp.
73
82
.10.1115/1.3138583
140.
Jones
,
R. S.
,
Nawana
,
N. S.
,
Pearcy
,
M. J.
,
Learmonth
,
D. J. A.
,
Bickerstaff
,
D. R.
,
Costi
,
J. J.
, and
Paterson
,
R. S.
,
1995
, “
Mechanical Properties of the Human Anterior Cruciate Ligament
,”
Clin. Biomech. (Bristol, Avon)
,
10
(
7
), pp.
339
344
.10.1016/0268-0033(95)98193-X
141.
Woo
,
S. L.-Y.
,
Hollis
,
J. M.
,
Adams
,
D. J.
,
Lyon
,
R. M.
, and
Takai
,
S.
,
1991
, “
Tensile Properties of the Human Femur-Anterior Cruciate Ligament-Tibia Complex: The Effects of Specimen Age and Orientation
,”
Am. J. Sports Med.
,
19
(
3
), pp.
217
225
.10.1177/036354659101900303
142.
Mommersteeg
,
T. J.
,
Blankevoort
,
L.
,
Huiskes
,
R.
,
Kooloos
,
J. G.
, and
Kauer
,
J. M.
,
1996
, “
Characterization of the Mechanical Behavior of Human Knee Ligaments: A Numerical-Experimental Approach
,”
J. Biomech.
,
29
(
2
), pp.
151
160
.10.1016/0021-9290(95)00040-2
143.
Butler
,
D. L.
,
Kay
,
M. D.
, and
Stouffer
,
D. C.
,
1986
, “
Comparison of Material Properties in Fascicle-Bone Units From Human Patellar Tendon and Knee Ligaments
,”
J. Biomech.
,
19
(
6
), pp.
425
432
.10.1016/0021-9290(86)90019-9
144.
Furman
,
W.
,
Marshall
,
J. L.
, and
Girgis
,
F.
,
1976
, “
The Anterior Cruciate Ligament: A Functional Analysis Based on Postmortem Studies
,”
J. Bone Jt. Surg.
,
58-A
(
2
), pp.
179
185
.
145.
Amis
,
A. A.
, and
Dawkins
,
G. P. C.
,
1991
, “
Functional Anatomy of the Anterior Cruciate Ligament
,”
J. Bone Jt. Surg.
, pp.
260
267
.
146.
Kwan
,
M. K.
,
Lin
,
T. W.
, and
Woo
,
S. L.-Y.
,
1993
, “
On the Viscoelastic Properties of the Anteromedial Bundle of the Anterior Cruciate Ligament
,”
J. Biomech.
,
26
(
4–5
), pp.
447
452
.10.1016/0021-9290(93)90008-3
147.
Beynnon
,
B. D.
,
Fleming
,
B. C.
,
Johnson
,
R. J.
,
Nichols
,
C. E.
,
Renstrom
,
P. A.
, and
Pope
,
M. H.
,
1995
, “
Anterior Cruciate Ligament Strain Behavior During Rehabilitation Exercises In Vivo
,”
Am. J. Sports Med.
,
23
(
1
), pp.
24
34
.10.1177/036354659502300105
148.
Beynnon
,
B. D.
,
Johnson
,
R. J.
,
Fleming
,
B. C.
,
Stankewich
,
C. J.
,
Renstrom
,
P. A.
, and
Nichols
,
C. E.
,
1997
, “
The Strain Behavior of the Anterior Cruciate Ligament During Squatting and Active Flexion-Extension. A Comparison of an Open and a Closed Kinetic Chain Exercise
,”
Am. J. Sports Med.
,
25
(
6
), pp.
823
829
.10.1177/036354659702500616
149.
Beynnon
,
B. D.
,
Johnson
,
R. J.
,
Fleming
,
B. C.
,
Peura
,
G. D.
,
Renstrom
,
P. A.
,
Nichols
,
C. E.
, and
Pope
,
M. H.
,
1997
, “
The Effect of Functional Knee Bracing on the Anterior Cruciate Ligament in the Weightbearing and Nonweightbearing Knee
,”
Am. J. Sports Med.
,
25
(
3
), pp.
353
359
.10.1177/036354659702500314
150.
Beynnon
,
B. D.
, and
Fleming
,
B. C.
,
1998
, “
Anterior Cruciate Ligament Strain In-Vivo: A Review of Previous Work
,”
J. Biomech.
,
31
(
6
), pp.
519
525
.10.1016/S0021-9290(98)00044-X
151.
Yamamoto
,
E.
,
Hayashi
,
K.
, and
Yamamoto
,
N.
,
1999
, “
Mechanical Properties of Collagen Fascicles From the Rabbit Patellar Tendon
,”
ASME J. Biomech. Eng.
,
121
(
1
), pp.
124
131
.10.1115/1.2798033
152.
Johnson
,
G. A.
,
Tramaglini
,
D. M.
,
Levine
,
R. E.
,
Ohno
,
K.
,
Choi
,
N. Y.
, and
Woo
,
S. L.-Y.
,
1994
, “
Tensile and Viscoelastic Properties of Human Patellar Tendon
,”
J. Orthop. Res.
,
12
(
6
), pp.
796
803
.10.1002/jor.1100120607
153.
Thornton
,
G. M.
,
Oliynyk
,
A.
,
Frank
,
C. B.
, and
Shrive
,
N. G.
,
1997
, “
Ligament Creep Cannot be Predicted From Stress Relaxation at Low Stress: A Biomechanical Study of the Rabbit Medial Collateral Ligament
,”
J. Orthop. Res.
,
15
(
5
), pp.
652
656
.10.1002/jor.1100150504
154.
Pioletti
,
D. P.
,
Rakotomanana
,
L. R.
, and
Leyvraz
,
P. F.
,
1999
, “
Strain Rate Effect on the Mechanical Behavior of the Anterior Cruciate Ligament-Bone Complex
,”
Med. Eng. Phys.
,
21
(
2
), pp.
95
100
.10.1016/S1350-4533(99)00028-4
155.
Smith
,
C. K.
,
Hull
,
M. L.
, and
Howell
,
S. M.
,
2010
, “
Does Graft Construct Lengthening at the Fixations Cause an Increase in Anterior Laxity Following Anterior Cruciate Ligament Reconstruction In Vivo?
,”
ASME J. Biomech. Eng.
,
132
(
8
), p.
081001
.10.1115/1.4001027
156.
Elliott
,
D. M.
,
Robinson
,
P. S.
,
Gimbel
,
J. A.
,
Sarver
,
J. J.
,
Abboud
,
J. A.
,
Iozzo
,
R. V.
, and
Soslowsky
,
L. J.
,
2003
, “
Effect of Altered Matrix Proteins on Quasilinear Viscoelastic Properties in Transgenic Mouse Tail Tendons
,”
Ann. Biomed. Eng.
,
31
(
5
), pp.
599
605
.10.1114/1.1567282
157.
Martelli
,
S.
,
Joukhadar
,
A.
,
Zaffagnini
,
S.
,
Marcacci
,
M.
,
Lavallee
,
S.
, and
Champleboux
,
G.
,
1998
, “
Fiber-Based Anterior Cruciate Ligament Model for Biomechanical Simulations
,”
J. Orthop. Res.
,
16
(
3
), pp.
379
385
.10.1002/jor.1100160315
158.
Provenzano
,
P. P.
,
Lakes
,
R. S.
,
Keenan
,
T.
, and
Vanderby
,
J. R.
,
2001
, “
Nonlinear Ligament Viscoelasticity
,”
Ann. Biomed. Eng.
,
29
(
10
), pp.
908
914
.10.1114/1.1408926
159.
Arruda
,
E. M.
,
Calve
,
S.
,
Dennis
,
R. G.
,
Mundy
,
K.
, and
Baar
,
K.
,
2006
, “
Regional Variation of Tibialis Anterior Tendon Mechanics Is Lost Following Denervation
,”
J. Appl. Physiol.
,
101
(
4
), pp.
1113
1117
.10.1152/japplphysiol.00612.2005
160.
Arendt
,
E. A.
, and
Dick
,
R.
,
1995
, “
Knee Injury Patterns Among Men and Women in Collegiate Basketball and Soccer. NCAA Data and Review of Literature
,”
Am. J. Sports Med.
,
23
(
6
), pp.
694
701
.10.1177/036354659502300611
161.
McLean
,
S. G.
,
Lipfert
,
S. W.
, and
van den Bogert
,
A. J.
,
2004
, “
Effect of Gender and Defensive Opponent on the Biomechanics of Sidestep Cutting
,”
Med. Sci. Sports Exercise
,
36
(
6
), pp.
1008
1016
.10.1249/01.MSS.0000128180.51443.83
162.
McLean
,
S. G.
,
Neal
,
R. J.
,
Myers
,
P. T.
, and
Walters
,
M. R.
,
1999
, “
Knee Joint Kinematics During the Sidestep Cutting Maneuver: Potential for Injury in Women
,”
Med. Sci. Sports Exercise
,
31
(
7
), pp.
959
968
.10.1097/00005768-199907000-00007
163.
Hewett
,
T. E.
,
Myer
,
G. D.
, and
Ford
,
K. R.
,
2006
, “
Anterior Cruciate Ligament Injuries in Female Athletes: Part 1, Mechanisms and Risk Factors
,”
Am. J. Sports Med.
,
34
(
2
), pp.
299
311
.10.1177/0363546505284183
164.
Myer
,
G. D.
,
Ford
,
K. R.
, and
Hewett
,
T. E.
,
2005
, “
The Effects of Gender on Quadriceps Muscle Activation Strategies During a Maneuver That Mimics a High ACL Injury Risk Position
,”
J. Electromyogr. Kinesiol.
,
15
(
2
), pp.
181
189
.10.1016/j.jelekin.2004.08.006
165.
Huston
,
L. J.
, and
Wojtys
,
E. M.
,
1996
, “
Neuromuscular Performance Characteristics in Elite Female Athletes
,”
Am. J. Sports Med.
,
24
(
4
), pp.
427
436
.10.1177/036354659602400405
166.
Gwinn
,
D. E.
,
Wilckens
,
J. H.
,
McDevitt
,
E. R.
,
Ross
,
G.
, and
Kao
,
T. C.
,
2000
, “
The Relative Incidence of Anterior Cruciate Ligament Injury in Men and Women at the United States Naval Academy
,”
Am. J. Sports Med.
,
28
(
1
), pp.
98
102
.
167.
Yu
,
B.
,
Herman
,
D.
,
Preston
,
J.
,
Lu
,
W.
,
Kirkendall
,
D. T.
, and
Garrett
,
W. E.
,
2004
, “
Immediate Effects of a Knee Brace With a Constraint to Knee Extension on Knee Kinematics and Ground Reaction Forces in a Stop-Jump Task
,”
Am. J. Sports Med.
,
32
(
5
), pp.
1136
1143
.10.1177/0363546503262204
168.
Hewett
,
T. E.
,
Ford
,
K. R.
, and
Myer
,
G. D.
,
2006
, “
Anterior Cruciate Ligament Injuries in Female Athletes: Part 2, A Meta-Analysis of Neuromuscular Interventions Aimed at Injury Prevention
,”
Am. J. Sports Med.
,
34
(
3
), pp.
490
498
.10.1177/0363546505282619
169.
McLean
,
S. G.
,
Walker
,
K. B.
, and
van den Bogert
,
A. J.
,
2005
, “
Effect of Gender on Lower Extremity Kinematics During Rapid Direction Changes: An Integrated Analysis of Three Sports Movements
,”
J. Sci. Med. Sport
,
8
(
4
), pp.
411
422
.10.1016/S1440-2440(05)80056-8
170.
Anderson
,
A. F.
,
Dome
,
D. C.
,
Gautam
,
S.
,
Awh
,
M. H.
, and
Rennirt
,
G. W.
,
2001
, “
Correlation of Anthropometric Measurements, Strength, Anterior Cruciate Ligament Size, and Intercondylar Notch Characteristics to Sex Differences in Anterior Cruciate Ligament Tear Rates
,”
Am. J. Sports Med.
,
29
(
1
), pp.
58
66
.
171.
Chandrashekar
,
N.
,
Slauterbeck
,
J.
, and
Hashemi
,
J.
,
2005
, “
Sex-Based Differences in the Anthropometric Characteristics of the Anterior Cruciate Ligament and its Relation to Intercondylar Notch Geometry: A Cadaveric Study
,”
Am. J. Sports Med.
,
33
(
10
), pp.
1492
1498
.10.1177/0363546504274149
172.
Hashemi
,
J.
,
Breighner
,
R.
,
Chandrashekar
,
N.
,
Hardy
,
D. M.
,
Chaudhari
,
A. M.
,
Shultz
,
S. J.
,
Slauterbeck
,
J. R.
, and
Beynnon
,
B. D.
,
2011
, “
Hip Extension, Knee Flexion Paradox: A New Mechanism for Non-Contact ACL Injury
,”
J. Biomech.
,
44
(
4
), pp.
577
585
.10.1016/j.jbiomech.2010.11.013
173.
Muneta
,
T.
,
Takakuda
,
K.
, and
Yamamoto
,
H.
,
1997
, “
Intercondylar Notch Width and Its Relation to the Configuration and Cross-Sectional Area of the Anterior Cruciate Ligament. A Cadaveric Knee Study
,”
Am. J. Sports Med.
,
25
(
1
), pp.
69
72
.10.1177/036354659702500113
174.
Hashemi
,
J.
,
Chandrashekar
,
N.
,
Mansouri
,
H.
,
Slauterbeck
,
J. R.
, and
Hardy
,
D. M.
,
2008
, “
The Human Anterior Cruciate Ligament: Sex Differences in Ultrastructure and Correlation With Biomechanical Properties
,”
J. Orthop. Res.
,
26
(
7
), pp.
945
950
.10.1002/jor.20621
175.
Shultz
,
S. J.
,
Kirk
,
S. E.
,
Johnson
,
M. L.
,
Sander
,
T. C.
, and
Perrin
,
D. H.
,
2004
, “
Relationship Between Sex Hormones and Anterior Knee Laxity Across the Menstrual Cycle
,”
Med. Sci. Sports Exercise
,
36
(
7
), pp.
1165
1174
.10.1249/01.MSS.0000132270.43579.1A
176.
Shultz
,
S. J.
,
Schmitz
,
R. J.
,
Nguyen
,
A. D.
,
Chaudhari
,
A. M.
,
Padua
,
D. A.
,
McLean
,
S. G.
, and
Sigward
,
S. M.
,
2010
, “
ACL Research Retreat V: An Update on ACL Injury Risk and Prevention, March 25-27, 2010, Greensboro, NC
,”
J. Athl. Train.
,
45
(
5
), pp.
499
508
.10.4085/1062-6050-45.5.499
177.
McLean
,
S. G.
,
Huang
,
X.
, and
van den Bogert
,
A. J.
,
2008
, “
Investigating Isolated Neuromuscular Control Contributions to Non-Contact Anterior Cruciate Ligament Injury Risk via Computer Simulation Methods
,”
Clin. Biomech.
,
23
(
7
), pp.
926
936
.10.1016/j.clinbiomech.2008.03.072
178.
Pomeroy
,
S. M.
,
Davidson
,
S. P.
,
Williams
,
C. J.
, and
McLean
,
S. G.
,
2013
, “
Effects of Maturation on Knee Morpho-Mechanics During High Risk Landings
,”
Med. Sci. Sports Exercise
(to be published).
179.
Chandrashekar
,
N.
,
Hashemi
,
J.
,
Slauterbeck
,
J.
, and
Beynnon
,
B. D.
,
2008
, “
Low-Load Behaviour of the Patellar Tendon Graft and Its Relevance to the Biomechanics of the Reconstructed Knee
,”
Clin. Biomech. (Bristol, Avon)
,
23
(
7
), pp.
918
925
.10.1016/j.clinbiomech.2008.03.070
180.
Yoshioka
,
Y.
,
Siu
,
D.
, and
Cooke
,
T. D.
,
1987
, “
The Anatomy and Functional Axes of the Femur
,”
J. Bone Jt. Surg. Am.
,
69
(
6
), pp.
873
880
.
181.
Yoshioka
,
Y.
,
Siu
,
D. W.
,
Scudamore
,
R. A.
, and
Cooke
,
T. D.
,
1989
, “
Tibial Anatomy and Functional Axes
,”
J. Orthop. Res.
,
7
(
1
), pp.
132
137
.10.1002/jor.1100070118
182.
Simon
,
R. A.
,
Everhart
,
J. S.
,
Nagaraja
,
H. N.
, and
Chaudhari
,
A. M.
,
2010
, “
A Case-Control Study of Anterior Cruciate Ligament Volume, Tibial Plateau Slopes and Intercondylar Notch Dimensions in ACL-Injured Knees
,”
J. Biomech.
,
43
(
9
), pp.
1702
1707
.10.1016/j.jbiomech.2010.02.033
183.
Stein
,
V.
,
Li
,
L.
,
Guermazi
,
A.
,
Zhang
,
Y.
,
Kent Kwoh
,
C.
,
Eaton
,
C. B.
, and
Hunter
,
D. J.
,
2010
, “
The Relation of Femoral Notch Stenosis to ACL Tears in Persons With Knee Osteoarthritis
,”
Osteoarthritis Cartilage
,
18
(
2
), pp.
192
199
.10.1016/j.joca.2009.09.006
184.
Uhorchak
,
J. M.
,
Scoville
,
C. R.
,
Williams
,
G. N.
,
Arciero
,
R. A.
,
St Pierre
,
P.
, and
Taylor
,
D. C.
,
2003
, “
Risk Factors Associated With Noncontact Injury of the Anterior Cruciate Ligament: A Prospective Four-Year Evaluation of 859 West Point Cadets
,”
Am. J. Sports Med.
,
31
(
6
), pp.
831
842
.
185.
Davis
,
T. J.
,
Shelbourne
,
K. D.
, and
Klootwyk
,
T. E.
,
1999
, “
Correlation of the Intercondylar Notch Width of the Femur to the Width of the Anterior and Posterior Cruciate Ligaments
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
7
(
4
), pp.
209
214
.10.1007/s001670050150
186.
Dienst
,
M.
,
Schneider
,
G.
,
Altmeyer
,
K.
,
Voelkering
,
K.
,
Georg
,
T.
,
Kramann
,
B.
, and
Kohn
,
D.
,
2007
, “
Correlation of Intercondylar Notch Cross Sections to the ACL Size: A High Resolution MR Tomographic In Vivo Analysis
,”
Arch. Orthop. Trauma Surg.
,
127
(
4
), pp.
253
260
.10.1007/s00402-006-0177-7
187.
Charlton
,
W. P.
,
St John
,
T. A.
,
Ciccotti
,
M. G.
,
Harrison
,
N.
, and
Schweitzer
,
M.
,
2002
, “
Differences in Femoral Notch Anatomy Between Men and Women: A Magnetic Resonance Imaging Study
,”
Am. J. Sports Med.
,
30
(
3
), pp.
329
333
.
188.
Stijak
,
L.
,
Radonjic
,
V.
,
Nikolic
,
V.
,
Blagojevic
,
Z.
,
Aksic
,
M.
, and
Filipovic
,
B.
,
2009
, “
Correlation Between the Morphometric Parameters of the Anterior Cruciate Ligament and the Intercondylar Width: Gender and Age Differences
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
17
(
7
), pp.
812
817
.10.1007/s00167-009-0807-z
189.
Teitz
,
C. C.
,
Lind
,
B. K.
, and
Sacks
,
B. M.
,
1997
, “
Symmetry of the Femoral Notch Width Index
,”
Am. J. Sports Med.
,
25
(
5
), pp.
687
690
.10.1177/036354659702500517
190.
Ireland
,
M. L.
,
Ballantyne
,
B. T.
,
Little
,
K.
, and
McClay
,
I. S.
,
2001
, “
A Radiographic Analysis of the Relationship Between the Size and Shape of the Intercondylar Notch and Anterior Cruciate Ligament Injury
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
9
(
4
), pp.
200
205
.10.1007/s001670100197
191.
Stijak
,
L.
,
Nikolic
,
V.
,
Blagojevic
,
Z.
,
Radonjic
,
V.
,
Santrac-Stijak
,
G.
,
Stankovic
,
G.
, and
Popovic
,
N.
,
2006
, “
Influence of Morphometric Intercondylar Notch Parameters in ACL Ruptures
,”
Acta Chir Iugosl.
,
53
(
4
), pp.
79
83
.10.2298/ACI0604079S
192.
Souryal
,
T. O.
, and
Freeman
,
T. R.
,
1993
, “
Intercondylar Notch Size and Anterior Cruciate Ligament Injuries in Athletes. A Prospective Study [Published Erratum Appears in 1993, Am. J. Sports Med., 21(5), p. 723]
,”
Am. J. Sports Med.
,
21
(
4
), pp.
535
539
.10.1177/036354659302100410
193.
Stijak
,
L.
,
Herzog
,
R. F.
, and
Schai
,
P.
,
2008
, “
Is There an Influence of the Tibial Slope of the Lateral Condyle on the ACL Lesion? A Case-Control Study
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
16
(
2
), pp.
112
117
.10.1007/s00167-007-0438-1
194.
Fung
,
D. T.
, and
Zhang
,
L. Q.
,
2003
, “
Modeling of ACL Impingement Against the Intercondylar Notch
,”
Clin. Biomech.
,
18
(
10
), pp.
933
941
.10.1016/S0268-0033(03)00174-8
195.
Fung
,
D. T.
,
Hendrix
,
R. W.
,
Koh
,
J. L.
, and
Zhang
,
L. Q.
,
2007
, “
ACL Impingement Prediction Based on MRI Scans of Individual Knees
,”
Clin. Orthop. Relat. Res.
,
460
, pp.
210
218
.
196.
Park
,
H. S.
,
Ahn
,
C.
,
Fung
,
D. T.
,
Ren
,
Y.
, and
Zhang
,
L. Q.
,
2010
, “
A Knee-Specific Finite Element Analysis of the Human Anterior Cruciate Ligament Impingement Against the Femoral Intercondylar Notch
,”
J. Biomech.
,
43
(
10
), pp.
2039
2042
.10.1016/j.jbiomech.2010.03.015
197.
Everhart
,
J. S.
,
Flanigan
,
D. C.
,
Simon
,
R. A.
, and
Chaudhari
,
A. M.
,
2010
, “
Association of Noncontact Anterior Cruciate Ligament Injury With Presence and Thickness of a Bony Ridge on the Anteromedial Aspect of the Femoral Intercondylar Notch
,”
Am. J. Sports Med.
,
38
(
8
), pp.
1667
1673
.10.1177/0363546510367424
198.
Shin
,
C. S.
,
Chaudhari
,
A. M.
,
Dyrby
,
C. O.
, and
Andriacchi
,
T. P.
,
2009
, “
Influence of Patellar Ligament Insertion Angle on Quadriceps Usage During Walking in Anterior Cruciate Ligament Reconstructed Subjects
,”
J. Orthop. Res.
,
27
(
6
), pp.
730
735
.10.1002/jor.20806
199.
Van Eck
,
C. F.
,
Martins
,
C. A.
,
Vyas
,
S. M.
,
Celentano
,
U.
,
van Dijk
,
C. N.
, and
Fu
,
F. H.
,
2010
, “
Femoral Intercondylar Notch Shape and Dimensions in ACL-Injured Patients
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
18
(
9
), pp.
1257
1262
.10.1007/s00167-010-1135-z
200.
Brandon
,
M. L.
,
Haynes
,
P. T.
,
Bonamo
,
J. R.
,
Flynn
,
M. I.
,
Barrett
,
G. R.
, and
Sherman
,
M. F.
,
2006
, “
The Association Between Posterior-Inferior Tibial Slope and Anterior Cruciate Ligament Insufficiency
,”
Arthroscopy
,
22
(
8
), pp.
894
899
.10.1016/j.arthro.2006.04.098
201.
Todd
,
M. S.
,
Lalliss
,
S.
,
Garcia
,
E.
,
DeBerardino
,
T. M.
, and
Cameron
,
K. L.
,
2010
, “
The Relationship Between Posterior Tibial Slope and Anterior Cruciate Ligament Injuries
,”
Am. J. Sports Med.
,
38
(
1
), pp.
63
67
.10.1177/0363546509343198
202.
Hashemi
,
J.
,
Chandrashekar
,
N.
,
Mansouri
,
H.
,
Gill
,
B.
,
Slauterbeck
,
J. R.
,
Schutt
,
R. C.
, Jr.
,
Dabezies
,
E.
, and
Beynnon
,
B. D.
,
2010
, “
Shallow Medial Tibial Plateau and Steep Medial and Lateral Tibial Slopes: New Risk Factors for Anterior Cruciate Ligament Injuries
,”
Am. J. Sports Med.
,
38
(
1
), pp.
54
62
.10.1177/0363546509349055
203.
McLean
,
S. G.
,
Lucey
,
S. M.
,
Rohrer
,
S.
, and
Brandon
,
C.
,
2010
, “
Knee Joint Anatomy Predicts High-Risk In Vivo Dynamic Landing Knee Biomechanics
,”
Clin. Biomech. (Bristol, Avon)
,
25
(
8
), pp.
781
788
.10.1016/j.clinbiomech.2010.06.002
204.
Lewis
,
J. L.
,
Lew
,
W. D.
,
Hill
,
J. A.
,
Hanley
,
P.
,
Ohland
,
K.
,
Kirstukas
,
S.
, and
Hunter
,
R. E.
,
1989
, “
Knee Joint Motion and Ligamental Forces Before and After ACL Reconstruction
,”
ASME J. Biomech. Eng.
,
111
(
2
), pp.
97
106
.10.1115/1.3168361
205.
Dye
,
S. F.
,
Wojtys
,
E. M.
,
Fu
,
F. H.
,
Fithian
,
D. C.
, and
Gillquist
,
I.
,
1999
, “
Factors Contributing to Function of the Knee Joint After Injury or Reconstruction of the Anterior Cruciate Ligament
,”
Instr. Course Lect.
,
48
, pp.
185
198
.
206.
Harner
,
C. D.
,
Giffin
,
J. R.
,
Dunteman
,
R. C.
,
Annunziata
,
C. C.
, and
Friedman
,
M. J.
,
2001
, “
Evaluation and Treatment of Recurrent Instability After Anterior Cruciate Ligament Reconstruction
,”
Instr. Course Lect.
,
50
, pp.
463
474
.
207.
Moffat
,
K. L.
,
Sun
,
W.-H. S.
,
Chahine
,
N. O.
,
Pena
,
P. E.
,
Doty
,
S. B.
,
Hung
,
C. T.
,
Ateshian
,
G. A.
, and
Lu
,
H. H.
,
2006
, “
Characterization of the Mechanical Properties and Mineral Distribution of the Anterior Cruciate Ligament-To-Bone Insertion Site
,”
Conf. Proc. IEEE Eng. Med. Biol. Soc.
,
1
, pp.
2366
2369
.
208.
Scheffler
,
S. U.
,
Unterhauser
,
F. N.
, and
Weiler
,
A.
,
2008
, “
Graft Remodeling and Ligamentization After Cruciate Ligament Reconstruction
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
16
(
9
), pp.
834
842
.10.1007/s00167-008-0560-8
209.
Keays
,
S. L.
,
Bullock-Saxton
,
J. E.
,
Keays
,
A. C.
,
Newcombe
,
P. A.
, and
Bullock
,
M. I.
,
2007
, “
A 6-Year Follow-Up of the Effect of Graft Site on Strength, Stability, Range of Motion, Function, and Joint Degeneration After Anterior Cruciate Ligament Reconstruction: Patellar Tendon Versus Semitendinosus and Gracilis Tendon Graft
,”
Am. J. Sports Med.
,
35
(
5
), pp.
729
739
.10.1177/0363546506298277
210.
Anders
,
J. O.
,
Venbrocks
,
R. A.
, and
Weinberg
,
M.
,
2008
, “
Proprioceptive Skills and Functional Outcome After Anterior Cruciate Ligament Reconstruction With a Bone-Tendon-Bone Graft
,”
Int. Orthop.
,
32
(
5
), pp.
627
633
.10.1007/s00264-007-0381-2
211.
Hopper
,
D. M.
,
Strauss
,
G. R.
,
Boyle
,
J. J.
, and
Bell
,
J.
,
2008
, “
Functional Recovery After Anterior Cruciate Ligament Reconstruction: A Longitudinal Perspective
,”
Arch. Phys. Med. Rehabil.
,
89
(
8
), pp.
1535
1541
.10.1016/j.apmr.2007.11.057
212.
Smith
,
F. W.
,
2004
, “
Subjective Functional Assessments and the Return to Competitive Sport After Anterior Cruciate Ligament Reconstruction
,”
Br. J. Sports Med.
,
38
(
3
), pp.
279
284
.10.1136/bjsm.2002.001982
213.
Ageberg
,
E.
,
Pettersson
,
A.
, and
Fridén
,
T.
,
2007
, “
15-Year Follow-Up of Neuromuscular Function in Patients With Unilateral Nonreconstructed Anterior Cruciate Ligament Injury Initially Treated With Rehabilitation and Activity Modification: a Longitudinal Prospective Study
,”
Am. J. Sports Med.
,
35
(
12
), pp.
2109
2117
.10.1177/0363546507305018
214.
Kessler
,
M. A.
,
Behrend
,
H.
,
Henz
,
S.
,
Stutz
,
G.
,
Rukavina
,
A.
, and
Kuster
,
M. S.
,
2008
, “
Function, Osteoarthritis and Activity After ACL-Rupture: 11 Years Follow-Up Results of Conservative Versus Reconstructive Treatment
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
16
(
5
), pp.
442
448
.10.1007/s00167-008-0498-x
215.
Drogset
,
J. O.
,
Grontvedt
,
T.
,
Robak
,
O. R.
,
Molster
,
A.
,
Viset
,
A. T.
, and
Engebretsen
,
L.
,
2006
, “
A Sixteen-Year Follow-Up of Three Operative Techniques for the Treatment of Acute Ruptures of the Anterior Cruciate Ligament
,”
J. Bone Jt. Surg. Am.
,
88
(
5
), pp.
944
952
.10.2106/JBJS.D.02876
216.
Marcacci
,
M.
,
Zaffagnini
,
S.
,
Giordano
,
G.
,
Iacono
,
F.
, and
Lo
,
P. M.
,
2009
, “
Anterior Cruciate Ligament Reconstruction Associated With Extra-Articular Tenodesis: A Prospective Clinical and Radiographic Evaluation With 10- to 13-Year Follow-Up
,”
Am. J. Sports Med.
,
37
(
4
), pp.
707
714
.10.1177/0363546508328114
217.
Von Porat
,
A.
,
2004
, “
High Prevalence of Osteoarthritis 14 Years After an Anterior Cruciate Ligament Tear in Male Soccer Players: A Study of Radiographic and Patient Relevant Outcomes
,”
Ann. Rheum. Dis.
,
63
(
3
), pp.
269
273
.10.1136/ard.2003.008136
218.
Shelbourne
,
K. D.
,
Gray
,
T.
, and
Haro
,
M.
,
2009
, “
Incidence of Subsequent Injury to Either Knee Within 5 Years After Anterior Cruciate Ligament Reconstruction With Patellar Tendon Autograft
,”
Am. J. Sports Med.
,
37
(
2
), pp.
246
251
.10.1177/0363546508325665
219.
Kaeding
,
C. C.
,
Aros
,
B.
,
Pedroza
,
A.
,
Pifel
,
E.
,
Amendola
,
A.
,
Andrish
,
J. T.
,
Dunn
,
W. R.
,
Marx
,
R. G.
,
McCarty
,
E. C.
,
Parker
,
R. D.
,
Wright
,
R. W.
, and
Spindler
,
K. P.
,
2011
, “
Allograft Versus Autograft Anterior Cruciate Ligament Reconstruction: Predictors of Failure From a MOON Prospective Longitudinal Cohort
,”
Sports Health
,
3
(
1
), pp.
73
81
.10.1177/1941738110386185
220.
Spindler
,
K. P.
, and
Wright
,
R. W.
,
2008
, “
Clinical Practice. Anterior Cruciate Ligament Tear
,”
N. Engl. J. Med.
,
359
(
20
), pp.
2135
2142
.10.1056/NEJMcp0804745
221.
Aït Si Selmi
,
T.
,
Fithian
,
D.
, and
Neyret
,
P.
,
2006
, “
The Evolution of Osteoarthritis in 103 Patients With ACL Reconstruction at 17 Years Follow-Up
,”
Knee
,
13
(
5
), pp.
353
358
.10.1016/j.knee.2006.02.014
222.
Salmon
,
L. J.
,
Russell
,
V. J.
,
Refshauge
,
K.
,
Kader
,
D.
,
Connolly
,
C.
,
Linklater
,
J.
, and
Pinczewski
,
L. A.
,
2006
, “
Long-Term Outcome of Endoscopic Anterior Cruciate Ligament Reconstruction With Patellar Tendon Autograft: Minimum 13-Year Review
,”
Am. J. Sports Med.
,
34
(
5
), pp.
721
732
.10.1177/0363546505282626
223.
Ballock
,
R. T.
,
Woo
,
S. L.-Y.
,
Lyon
,
R. M.
,
Hollis
,
J. M.
, and
Akeson
,
W. H.
,
1989
, “
Use of Patellar Tendon Autograft for Anterior Cruciate Ligament Reconstruction in the Rabbit: A Long-Term Histologic and Biomechanical Study
,”
J. Orthop. Res.
,
7
(
4
), pp.
474
485
.10.1002/jor.1100070404
224.
Bosch
,
U.
,
Decker
,
B.
,
Kasperczyk
,
W.
,
Nerlich
,
A.
,
Oestern
,
H. J.
, and
Tscherne
,
H.
,
1992
, “
The Relationship of Mechanical Properties to Morphology in Patellar Tendon Autografts After Posterior Cruciate Ligament Replacement in Sheep
,”
J. Biomech.
,
25
(
8
), pp.
821
830
.10.1016/0021-9290(92)90222-M
225.
Jackson
,
D. W.
,
Grood
,
E. S.
,
Goldstein
,
J. D.
,
Rosen
,
M. A.
,
Kurzweil
,
P. R.
,
Cummings
,
J. F.
, and
Simon
,
T. M.
,
1992
, “
A Comparison of Patellar Tendon Autograft and Allograft Used for Anterior Cruciate Ligament Reconstruction in the Goat Model
,”
Am. J. Sports Med.
,
21
(
2
), pp.
176
185
.10.1177/036354659302100203
226.
Haraldsson
,
B. T.
,
Aagaard
,
P.
,
Krogsgaard
,
M.
,
Alkjaer
,
T.
,
Kjaer
,
M.
, and
Magnusson
,
S. P.
,
2005
, “
Region-Specific Mechanical Properties of the Human Patella Tendon
,”
J. Appl. Physiol.
,
98
(
3
), pp.
1006
1012
.10.1152/japplphysiol.00482.2004
227.
Chouliaras
,
V.
,
Ristanis
,
S.
,
Moraiti
,
C.
,
Stergiou
,
N.
, and
Georgoulis
,
A. D.
,
2007
, “
Effectiveness of Reconstruction of the Anterior Cruciate Ligament With Quadrupled Hamstrings and Bone-Patellar Tendon-Bone Autografts: An In Vivo Study Comparing Tibial Internal-External Rotation
,”
Am. J. Sports Med.
,
35
(
2
), pp.
189
196
.10.1177/0363546506296040
228.
Haut Donahue
,
T. L.
,
Gregersen
,
C.
,
Hull
,
M. L.
, and
Howell
,
S. M.
,
2001
, “
Comparison of Viscoelastic, Structural, and Material Properties of Double-Looped Anterior Cruciate Ligament Grafts Made From Bovine Digital Extensor and Human Hamstring Tendons
,”
ASME J. Biomech. Eng.
,
123
(
2
), pp.
162
169
.10.1115/1.1351889
229.
Hashemi
,
J.
,
Chandrashekar
,
N.
, and
Slauterbeck
,
J.
,
2005
, “
The Mechanical Properties of the Human Patellar Tendon Are Correlated to Its Mass Density and Are Independent of Sex
,”
Clin. Biomech. (Bristol, Avon)
,
20
(
6
), pp.
645
652
.10.1016/j.clinbiomech.2005.02.008
230.
Clancy
,
W. G.
,
Narechania
,
R. G.
,
Rosenberg
,
T. D.
,
Gmeiner
,
J. G.
,
Wisnefske
,
D. D.
, and
Lange
,
T. A.
,
1981
, “
Anterior and Posterior Cruciate Ligament Reconstruction in Rhesus Monkeys
,”
J. Bone Jt. Surg.
,
63-A
(
8
), pp.
1270
1284
.
231.
Woo
,
S. L.-Y.
,
Peterson
,
R. H.
,
Ohland
,
K. J.
,
Sites
,
T. J.
, and
Danto
,
M. I.
,
1990
, “
The Effects of Strain Rate on the Properties of the Medial Collateral Ligament in Skeletally Immature and Mature Rabbits: A Biomechanical and Histological Study
,”
J. Orthop. Res.
,
8
(
5
), pp.
712
721
.10.1002/jor.1100080513
232.
Hart
,
R. A.
,
Woo
,
S. L.-Y.
, and
Newton
,
P. O.
,
1992
, “
Ultrastructural Morphometry of Anterior Cruciate and Medial Collateral Ligaments: An Experimental Study in Rabbits
,”
J. Orthop. Res.
,
10
(
1
), pp.
96
103
.10.1002/jor.1100100112
233.
Roemhildt
,
M. L.
,
Coughlin
,
K. M.
,
Peura
,
G. D.
,
Badger
,
G. J.
,
Churchill
,
D.
,
Fleming
,
B. C.
, and
Beynnon
,
B. D.
,
2010
, “
Effects of Increased Chronic Loading on Articular Cartilage Material Properties in the Lapine Tibio-Femoral Joint
,”
J. Biomech.
,
43
(
12
), pp.
2301
2308
.10.1016/j.jbiomech.2010.04.035
234.
Amiel
,
D.
,
Frank
,
C.
,
Harwood
,
F.
,
Fronek
,
J.
, and
Akeson
,
W.
,
1984
, “
Tendons and Ligaments: A Morphological and Biochemical Comparison
,”
J. Orthop. Res.
,
1
(
3
), pp.
257
265
.10.1002/jor.1100010305
235.
Zec
,
M. L.
,
Thistlethwaite
,
P.
,
Frank
,
C. B.
, and
Shrive
,
N. G.
,
2010
, “
Characterization of the Fatigue Behavior of the Medial Collateral Ligament Utilizing Traditional and Novel Mechanical Variables for the Assessment of Damage
,”
ASME J. Biomech. Eng.
,
132
(
1
), p.
011001
.10.1115/1.4000108
236.
Thomopoulos
,
S.
,
Williams
,
G. R.
,
Gimbel
,
J. A.
,
Favata
,
M.
, and
Soslowsky
,
L. J.
,
2003
, “
Variation of Biomechanical, Structural, and Compositional Properties Along the Tendon to Bone Insertion Site
,”
J. Orthop. Res.
,
21
(
3
), pp.
413
419
.10.1016/S0736-0266(03)0057-3
237.
Calve
,
S.
,
Lytle
,
I. F.
,
Grosh
,
K.
,
Brown
,
D. L.
, and
Arruda
,
E. M.
,
2010
, “
Implantation Increases Tensile Strength and Collagen Content of Self-Assembled Tendon Constructs
,”
J. Appl. Physiol.
,
108
(
4
), pp.
875
881
.10.1152/japplphysiol.00921.2009
238.
Stasiak
,
M. E.
,
Wiznia
,
D.
,
Alzoobaee
,
S.
,
Ciccotti
,
M. C.
,
Imhauser
,
C. W.
,
Voigt
,
C.
,
Torzilli
,
P. A.
,
Deng
,
X.-H.
, and
Rodeo
,
S. A.
,
2012
, “
A Novel Device to Apply Controlled Flexion and Extension to the Rat Knee Following Anterior Cruciate Ligament Reconstruction
,”
ASME J. Biomech. Eng.
,
134
(
4
), p.
041008
.10.1115/1.4006341
239.
Ma
,
J.
,
Goble
,
K.
,
Smietana
,
M. J.
,
Kostrominova
,
T. Y.
,
Larkin
,
L. M.
, and
Arruda
,
E. M.
,
2009
, “
Morphological and Functional Characteristics of Three-Dimensional Engineered Bone-Ligament-Bone Constructs Following Implantation
,”
ASME J. Biomech. Eng.
,
131
(
10
), pp.
1010171
1010179
.10.1115/1.4000151
240.
Setton
,
L. A.
,
Mow
,
V. C.
,
Muller
,
F. J.
,
Pita
,
J. C.
, and
Howell
,
D. S.
,
1994
, “
Mechanical Properties of Canine Articular Cartilage Are Significantly Altered Following Transection of the Anterior Cruciate Ligament
,”
J. Orthop. Res.
,
12
(
4
), pp.
451
463
.10.1002/jor.1100120402
241.
Figgie
,
H. E.
,
Bahniuk
,
E. H.
,
Heiple
,
K. G.
, and
Davy
,
D. T.
,
1986
, “
The Effects of Tibial-Femoral Angle on the Failure Mechanics of the Canine Anterior Cruciate Ligament
,”
J. Biomech.
,
19
(
2
), pp.
89
91
.10.1016/0021-9290(86)90139-9
242.
Therin
,
M.
,
Christel
,
P.
,
Crespeau
,
F.
,
Dürselen
,
L.
, and
Claes
,
L.
,
1994
, “
Functional Evaluation of Polyarylamide Fibers for Use in a Prosthesis for Anterior Cruciate Ligament Replacement in Sheep
,”
Clin. Mater.
,
15
(
1
), pp.
69
75
.10.1016/0267-6605(94)90011-6
243.
Claes
,
L.
,
Dürselen
,
L.
, and
Rübenacker
,
S.
,
1994
, “
Comparative Investigation on the Biomechanical Properties of Ligament Replacement in the Sheep Knee Using Six Different Ligament Prostheses
,”
Clin. Mater.
,
15
(
1
), pp.
15
22
.10.1016/0267-6605(94)90004-3
244.
Meller
,
R.
,
Willbold
,
E.
,
Hesse
,
E.
,
Dreymann
,
B.
,
Fehr
,
M.
,
Haasper
,
C.
,
Hurschler
,
C.
,
Krettek
,
C.
, and
Witte
,
F.
,
2008
, “
Histologic and Biomechanical Analysis of Anterior Cruciate Ligament Graft to Bone Healing in Skeletally Immature Sheep
,”
Arthroscopy
,
24
(
11
), pp.
1221
1231
.10.1016/j.arthro.2008.06.021
245.
Dustmann
,
M.
,
Schmidt
,
T.
,
Gangey
,
I.
,
Unterhauser
,
F. N.
,
Weiler
,
A.
, and
Scheffler
,
S. U.
,
2008
, “
The Extracellular Remodeling of Free-Soft-Tissue Autografts and Allografts for Reconstruction of the Anterior Cruciate Ligament: A Comparison Study in a Sheep Model
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
16
(
4
), pp.
360
369
.10.1007/s00167-007-0471-0
246.
Papachristou
,
G.
,
Kalliakmanis
,
A.
,
Papachristou
,
K.
,
Magnissalis
,
E.
,
Sourlas
,
J.
, and
Plessas
,
S.
,
2008
, “
Comparison of Fixation Methods of Double-Bundle Double-Tibial Tunnel ACL Reconstruction and Double-Bundle Single-Tunnel Technique
,”
Int. Orthop.
,
32
(
4
), pp.
483
488
.10.1007/s00264-007-0343-8
247.
Fuss
,
F. K.
,
1991
, “
Anatomy and Function of the Cruciate Ligaments of the Domestic Pig (Sus scrofa domestica): A Comparison With Human Cruciates
,”
J. Anat.
,
178
, pp.
11
20
.
248.
Martel
,
O.
,
Cárdenes
,
J. F.
,
Garcés
,
G.
, and
Carta
,
J. A.
,
2009
, “
Influence of the Crosshead Rate on the Mechanical Properties of Fixation Systems of ACL Tendon Grafts
,”
J. Appl. Biomech.
,
25
(
4
), pp.
313
321
.
249.
Duenwald
,
S. E.
,
Vanderby
,
J. R.
, and
Lakes
,
R. S.
,
2010
, “
Stress Relaxation and Recovery in Tendon and Ligament: Experiment and Modeling
,”
Biorheology
,
47
(
1
), pp.
1
14
.
250.
Maes
,
J. A.
, and
Haut Donahue
,
T. L.
,
2006
, “
Time Dependent Properties of Bovine Meniscal Attachments: Stress Relaxation and Creep
,”
J. Biomech.
,
39
(
16
), pp.
3055
3061
.10.1016/j.jbiomech.2005.09.025
251.
Amiel
,
D.
,
Kleiner
,
J. B.
,
Roux
,
R. D.
,
Harwood
,
F. L.
, and
Akeson
,
W. H.
,
1986
, “
The Phenomenon of ‘Ligamentization’: Anterior Cruciate Ligament Reconstruction With Autogenous Patellar Tendon
,”
J. Orthop. Res.
,
4
(
2
), pp.
162
172
.10.1002/jor.1100040204
252.
Blickenstaff
,
K.
,
Grana
,
W. A.
, and
Egle
,
D.
,
1997
, “
Analysis of a Semitendinosus Autograft in a Rabbit Model
,”
Am. J. Sports Med.
,
25
(
4
), pp.
554
559
.10.1177/036354659702500420
253.
Grana
,
W. A.
,
Egle
,
D. M.
,
Mahnken
,
R.
, and
Goodhart
,
C. W.
,
1994
, “
An Analysis of Autograft Fixation After Anterior Cruciate Ligament Reconstruction in a Rabbit Model
,”
Am. J. Sports Med.
,
22
(
3
), pp.
344
351
.10.1177/036354659402200309
254.
Labs
,
K.
,
Perka
,
C.
, and
Schneider
,
F.
,
2002
, “
The Biological and Biomechanical Effect of Different Graft Tensioning in Anterior Cruciate Ligament Reconstruction: An Experimental Study
,”
Arch. Orthop. Trauma Surg.
,
122
(
4
), pp.
193
199
.10.1007/s00402-002-0409-4
255.
Sakai
,
H.
,
Fukui
,
N.
,
Kawakami
,
A.
, and
Kurosawa
,
H.
,
2000
, “
Biological Fixation of the Graft Within Bone After Anterior Cruciate Ligament Reconstruction in Rabbits: Effects of the Duration of Postoperative Immobilization
,”
J. Orthop. Sci.
,
5
(
1
), pp.
43
51
.10.1007/s007760050007
256.
Aune
,
A. K.
,
Hukkanen
,
M.
,
Madsen
,
J. E.
,
Polak
,
J. M.
, and
Nordsletten
,
L.
,
1996
, “
Nerve Regeneration During Patellar Tendon Autograft Remodelling After Anterior Cruciate Ligament Reconstruction: An Experimental and Clinical Study
,”
J. Orthop. Res.
,
14
(
2
), pp.
193
199
.10.1002/jor.1100140205
257.
Yamazaki
,
S.
,
Yasuda
,
K.
,
Tomita
,
F.
,
Minami
,
A.
, and
Tohyama
,
H.
,
2002
, “
The Effect of Graft-Tunnel Diameter Disparity on Intraosseous Healing of the Flexor Tendon Graft in Anterior Cruciate Ligament Reconstruction
,”
Am. J. Sports Med.
,
30
(
4
), pp.
498
505
.
258.
Hunt
,
P.
,
Scheffler
,
S. U.
,
Unterhauser
,
F. N.
, and
Weiler
,
A.
,
2005
, “
A Model of Soft-Tissue Graft Anterior Cruciate Ligament Reconstruction in Sheep.
,”
Arch. Orthop. Trauma Surg.
,
125
(
4
), pp.
238
248
.10.1007/s00402-004-0643-z
259.
Seitz
,
H.
,
Hausner
,
T.
,
Schlenz
,
I.
,
Lang
,
S.
, and
Eschberger
,
J.
,
1997
, “
Vascular Anatomy of the Ovine Anterior Cruciate Ligament. A Macroscopic, Histological and Radiographic Study
,”
Arch. Orthop. Trauma Surg.
,
116
(
1–2
), pp.
19
21
.10.1007/BF00434094
260.
Danto
,
M. I.
, and
Woo
,
S. L.-Y.
,
1993
, “
The Mechanical Properties of Skeletally Mature Rabbit Anterior Cruciate Ligament and Patellar Tendon Over a Range of Strain Rates
,”
J. Orthop. Res.
,
11
(
1
), pp.
58
67
.10.1002/jor.1100110108
261.
Radford
,
W. J. P.
,
Amis
,
A. A.
, and
Stead
,
A. C.
,
1996
, “
The Ovine Stifle as a Model for Human Cruciate Ligament Surgery
,”
Vet. Comp. Orthop. Traumatol.
, (3), pp. 4
4
49
.
262.
Allen
,
M. J.
,
Houlton
,
J. E.
,
Adams
,
S. B.
, and
Rushton
,
N.
,
1998
, “
The Surgical Anatomy of the Stifle Joint in Sheep
,”
Vet. Surg.
,
27
(
6
), pp.
596
605
.10.1111/j.1532-950X.1998.tb00536.x
263.
Tapper
,
J. E.
,
Ronsky
,
J. L.
,
Powers
,
M. J.
,
Sutherland
,
C.
,
Majima
,
T.
,
Frank
,
C. B.
, and
Shrive
,
N. G.
,
2004
, “
In Vivo Measurement of the Dynamic 3-D Kinematics of the Ovine Stifle Joint
,”
ASME J. Biomech. Eng.
,
126
(
2
), pp.
301
318
.10.1115/1.1695576
264.
Murray
,
M. M.
,
Weiler
,
A.
, and
Spindler
,
K. P.
,
2004
, “
Interspecies Variation in the Fibroblast Distribution of the Anterior Cruciate Ligament
,”
Am. J. Sports Med.
,
32
(
6
), pp.
1484
1491
.10.1177/0363546504263700
265.
Dürselen
,
L.
,
Claes
,
L.
,
Ignatius
,
A.
, and
Rübenacker
,
S.
,
1996
, “
Comparative Animal Study of Three Ligament Prostheses for the Replacement of the Anterior Cruciate and Medial Collateral Ligament
,”
Biomaterials
,
17
(
10
), pp.
977
982
.10.1016/0142-9612(96)84671-0
266.
Xerogeanes
,
J. W.
,
Fox
,
R. J.
,
Takeda
,
Y.
,
Kim
,
H. S.
,
Ishibashi
,
Y.
,
Carlin
,
G. J.
, and
Woo
,
S. L.-Y.
,
1998
, “
A Functional Comparison of Animal Anterior Cruciate Ligament Models to the Human Anterior Cruciate Ligament
,”
Ann. Biomed. Eng.
,
26
(
3
), pp.
345
352
.10.1114/1.91
267.
Li
,
G.
,
Gil
,
J.
,
Kanamori
,
A.
, and
Woo
,
S. L.-Y.
,
1999
, “
A Validated Three-Dimensional Computational Model of a Human Knee Joint
,”
ASME J. Biomech. Eng.
,
121
(
6
), pp.
657
662
.10.1115/1.2800871
268.
Li
,
G.
,
Suggs
,
J.
, and
Gill
,
T.
,
2002
, “
The Effect of Anterior Cruciate Ligament Injury on Knee Joint Function Under a Simulated Muscle Load: A Three-Dimensional Computational Simulation
,”
Ann. Biomed. Eng.
,
30
(
5
), pp.
713
720
.10.1114/1.1484219
269.
Shin
,
C. S.
,
Chaudhari
,
A. M.
, and
Andriacchi
,
T. P.
,
2007
, “
The Influence of Deceleration Forces on ACL Strain During Single-Leg Landing: A Simulation Study
,”
J. Biomech.
,
40
(
5
), pp.
1145
1152
.10.1016/j.jbiomech.2006.05.004
270.
Yao
,
J.
,
Kuang
,
G.-M.
,
Wong
,
D. W.-C.
,
Niu
,
W.-X.
,
Zhang
,
M.
, and
Fan
,
Y.-B.
,
2014
, “
Influence of Screw Length and Diameter on Tibial Strain Energy Density Distribution After Anterior Cruciate Ligament Reconstruction
,”
Acta Mech. Sin.
,
30
(
2
), pp.
241
249
.10.1007/s10409-014-0027-8
271.
Peña
,
E.
,
Calvo
,
B.
,
Martínez
,
M. A.
,
Palanca
,
D.
, and
Doblaré
,
M.
,
2005
, “
Finite Element Analysis of the Effect of Meniscal Tears and Meniscectomies on Human Knee Biomechanics
,”
Clin. Biomech. (Bristol, Avon)
,
20
(
5
), pp.
498
507
.10.1016/j.clinbiomech.2005.01.009
272.
Song
,
Y.
,
Debski
,
R. E.
,
Musahl
,
V.
,
Thomas
,
M.
, and
Woo
,
S. L.-Y.
,
2004
, “
A Three-Dimensional Finite Element Model of the Human Anterior Cruciate Ligament: A Computational Analysis With Experimental Validation
,”
J. Biomech.
,
37
(
3
), pp.
383
390
.10.1016/S0021-9290(03)00261-6
273.
Wang
,
Y.
,
Fan
,
Y.
, and
Zhang
,
M.
,
2014
, “
Comparison of Stress on Knee Cartilage During Kneeling and Standing Using Finite Element Models
,”
Med. Eng. Phys.
,
36
(
4
), pp.
439
447
.10.1016/j.medengphy.2014.01.004
274.
Zhang
,
X.
,
Jiang
,
G.
,
Wu
,
C.
, and
Woo
,
S. L.-Y.
,
2008
, “
A Subject-Specific Finite Element Model of the Anterior Cruciate Ligament
,”
Conf Proc. IEEE Eng. Med. Biol. Soc.
,
2008
, pp.
891
894
.
275.
Park
,
H.-S.
,
Ahn
,
C.
,
Fung
,
D. T.
,
Ren
,
Y.
, and
Zhang
,
L.-Q.
,
2010
, “
A Knee-Specific Finite Element Analysis of the Human Anterior Cruciate Ligament Impingement Against the Femoral Intercondylar Notch
,”
J. Biomech.
,
43
(
10
), pp.
2039
2042
.10.1016/j.jbiomech.2010.03.015
276.
Limbert
,
G.
,
Taylor
,
M.
, and
Middleton
,
J.
,
2004
, “
Three-Dimensional Finite Element Modelling of the Human ACL: Simulation of Passive Knee Flexion With a Stressed and Stress-Free ACL
,”
J. Biomech.
,
37
(
11
), pp.
1723
1731
.10.1016/j.jbiomech.2004.01.030
277.
Hirokawa
,
S.
, and
Tsuruno
,
R.
,
2000
, “
Three-Dimensional Deformation and Stress Distribution in an Analytical/Computational Model of the Anterior Cruciate Ligament
,”
J. Biomech.
,
33
(
9
), pp.
1069
1077
.10.1016/S0021-9290(00)00073-7
278.
Li
,
G.
,
Defrate
,
L. E.
,
Rubash
,
H. E.
, and
Gill
,
T. J.
,
2005
, “
In Vivo Kinematics of the ACL During Weight-Bearing Knee Flexion
,”
J. Orthop. Res.
,
23
(
2
), pp.
340
344
.10.1016/j.orthres.2004.08.006
279.
Beillas
,
P.
,
Papaioannou
,
G.
,
Tashman
,
S.
, and
Yang
,
K. H.
,
2004
, “
A New Method to Investigate In Vivo Knee Behavior Using a Finite Element Model of the Lower Limb
,”
J. Biomech.
,
37
(
7
), pp.
1019
1030
.10.1016/j.jbiomech.2003.11.022
280.
Peña
,
E.
,
Calvo
,
B.
,
Martínez
,
M. A.
, and
Doblaré
,
M.
,
2006
, “
A Three-Dimensional Finite Element Analysis of the Combined Behavior of Ligaments and Menisci in the Healthy Human Knee Joint
,”
J. Biomech.
,
39
(
9
), pp.
1686
1701
.10.1016/j.jbiomech.2005.04.030
281.
Dhaher
,
Y. Y.
,
Kwon
,
T.-H.
, and
Barry
,
M.
,
2010
, “
The Effect of Connective Tissue Material Uncertainties on Knee Joint Mechanics Under Isolated Loading Conditions
,”
J. Biomech.
,
43
(
16
), pp.
3118
3125
.10.1016/j.jbiomech.2010.08.005
282.
Kiapour
,
A.
,
Kiapour
,
A. M.
,
Kaul
,
V.
,
Quatman
,
C. E.
,
Wordeman
,
S. C.
,
Hewett
,
T. E.
,
Demetropoulos
,
C. K.
, and
Grati
,
F.
,
2014
, “
Finite Element Model of the Knee for Investigation of Injury Mechanisms: Development and Validation
,”
ASME J. Biomech. Eng.
,
136
(
1
), p.
011002
.10.1115/1.4025692
283.
Holzapfel
,
G. A.
,
2000
,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
Chichester
.
284.
Haut Donahue
,
T. L.
,
Hull
,
M. L.
,
Rashid
,
M. M.
, and
Jacobs
,
C. R.
,
2002
, “
A Finite Element Model of the Human Knee Joint for the Study of Tibio-Femoral Contact
,”
ASME J. Biomech. Eng.
,
124
(
3
), pp.
273
280
.10.1115/1.1470171
285.
Bendjaballah
,
M. Z.
,
Shirazi-Adl
,
A.
, and
Zukor
,
D. J.
,
1997
, “
Finite Element in Varus-Valgus Analysis of Human Knee Joint
,”
Clin. Biomech.
,
12
(
3
), pp.
139
148
.10.1016/S0268-0033(97)00072-7
286.
Xie
,
F.
,
Yang
,
L.
,
Guo
,
L.
,
Wang
,
Z.
, and
Dai
,
G.
,
2009
, “
A Study on Construction Three-Dimensional Nonlinear Finite Element Model and Stress Distribution Analysis of Anterior Cruciate Ligament
,”
ASME J. Biomech. Eng.
,
131
(
12
), p.
121007
.10.1115/1.4000167
287.
Butler
,
D. L.
,
Sheh
,
M. Y.
,
Stouffer
,
D. C.
,
Samaranayake
,
V. A.
, and
Levy
,
M. S.
,
1990
, “
Surface Strain Variation in Human Patellar Tendon and Knee Cruciate Ligaments
,”
ASME J. Biomech. Eng.
,
112
(
1
), pp.
38
45
.10.1115/1.2891124
288.
Oh
,
Y. K.
,
Kreinbrink
,
J. L.
,
Ashton-Miller
,
J. A.
, and
Wojtys
,
E. M.
,
2011
, “
Effect of ACL Transection on Internal Tibial Rotation in an In Vitro Simulated Pivot Landing
,”
J. Bone Jt. Surg. Am.
,
93
(
4
), pp.
372
380
.10.2106/JBJS.J.00262
289.
Deneweth
,
J. M.
,
Newman
,
K. E.
,
Sylvia
,
S. M.
,
McLean
,
S. G.
, and
Arruda
,
E. M.
,
2013
, “
Heterogeneity of Tibial Plateau Cartilage in Response to a Physiological Compressive Strain Rate
,”
J. Orthop. Res.
,
31
(
3
), pp.
370
375
.10.1002/jor.22226
290.
Shen
,
Z. L.
,
Kahn
,
H.
,
Ballarini
,
R.
, and
Eppell
,
S. J.
,
2011
, “
Viscoelastic Properties of Isolated Collagen Fibrils
,”
Biophys. J.
,
100
(
12
), pp.
3008
3015
.10.1016/j.bpj.2011.04.052
291.
Sutton
,
M. A.
,
Ke
,
X.
,
Lessner
,
S. M.
,
Goldbach
,
M.
,
Yost
,
M.
,
Zhao
,
F.
, and
Schreier
,
H. W.
,
2007
, “
Strain Field Measurements on Mouse Carotid Arteries Using Microscopic Three-Dimensional Digital Image Correlation
,”
J. Biomed. Mater. Res. Part A
,
86A
(
2
), p.
569
.10.1002/jbm.a.32102
292.
Zhang
,
D.
, and
Arola
,
D. D.
,
2004
, “
Applications of Digital Image Correlation to Biological Tissues
,”
J. Biomed. Opt.
,
9
(
4
), pp.
691
699
.10.1117/1.1753270
293.
Tonge
,
T. K.
,
Atlan
,
L. S.
,
Voo
,
L. M.
, and
Nguyen
,
T. D.
,
2013
, “
Full-Field Bulge Test for Planar Anisotropic Tissues: Part I—Experimental Methods Applied to Human Skin Tissue
,”
Acta Biomater.
,
9
(
4
), pp.
5913
5925
.10.1016/j.actbio.2012.11.035
294.
Tonge
,
T. K.
,
Voo
,
L. M.
, and
Nguyen
,
T. D.
,
2013
, “
Full-Field Bulge Test for Planar Anisotropic Tissues: Part II—A Thin Shell Method for Determining Material Parameters and Comparison of Two Distributed Fiber Modeling Approaches
,”
Acta Biomater.
,
9
(
4
), pp.
5926
5942
.10.1016/j.actbio.2012.11.034
295.
Grediac
,
M.
,
Pierront
,
F.
,
Avrilt
,
S.
, and
Toussaint
,
E.
,
2006
, “
The Virtual Fields Method for Extracting Constitutive Parameters From Full-Field Measurements: A Review
,”
Strain
,
42
, pp.
233
253
.10.1111/j.1475-1305.2006.00283.x
You do not currently have access to this content.