Osteogenic lineage commitment is often evaluated by analyzing gene expression. However, many genes are transiently expressed during differentiation. The availability of genes for expression is influenced by epigenetic state, which affects the heterochromatin structure. DNA methylation, a form of epigenetic regulation, is stable and heritable. Therefore, analyzing methylation status may be less temporally dependent and more informative for evaluating lineage commitment. Here we analyzed the effect of mechanical stimulation on osteogenic differentiation by applying fluid shear stress for 24 hr to osteocytes and then applying the osteocyte-conditioned medium (CM) to progenitor cells. We analyzed gene expression and changes in DNA methylation after 24 hr of exposure to the CM using quantitative real-time polymerase chain reaction and bisulfite sequencing. With fluid shear stress stimulation, methylation decreased for both adipogenic and osteogenic markers, which typically increases availability of genes for expression. After only 24 hr of exposure to CM, we also observed increases in expression of later osteogenic markers that are typically observed to increase after seven days or more with biochemical induction. However, we observed a decrease or no change in early osteogenic markers and decreases in adipogenic gene expression. Treatment of a demethylating agent produced an increase in all genes. The results indicate that fluid shear stress stimulation rapidly promotes the availability of genes for expression, but also specifically increases gene expression of later osteogenic markers.

References

References
1.
Kato
,
Y.
,
Windle
,
J. J.
, and
Koop
,
B. A.
,
1997
, “
Establishment of an Osteocyte-Like Cell Line, MLO-Y4
,”
J. Bone Miner. Res.
,
12
(
12
), pp.
2014
2023
.
2.
Antequera
,
F.
,
2003
, “
Structure, Function and Evolution of CpG Island Promoters
,”
Cell. Mol. Life Sci.
,
60
(
8
) pp.
1647
1658
.10.1007/s00018-003-3088-6
3.
Ballestar
,
E.
, and
Wolffe
,
A. P.
,
2001
, “
Methyl-CpG-Binding Proteins. Targeting Specific Gene Repression
,”
Eur. J. Biochem.
,
268
(
1
), pp.
1
6
.10.1046/j.1432-1327.2001.01869.x
4.
El-Osta
,
A.
, and
Wolffe
,
A. P.
,
2000
, “
DNA Methylation and Histone Deacetylation in the Control of Gene Expression: Basic Biochemistry to Human Development and Disease
,”
Gene Expression
,
9
(
1–2
) pp.
63
75
.
5.
Fuks
,
F.
,
Hurd
,
P. J.
, and
Wolf
,
D.
,
2003
, “
The Methyl-CpG-Binding Protein MeCP2 Links DNA Methylation to Histone Methylation
,”
J. Biol. Chem.
,
278
(
6
) pp.
4035
4040
.10.1074/jbc.M210256200
6.
Wolffe
,
A. P.
, and
Matzke
,
M. A.
,
1999
, “
Epigenetics: Regulation Through Repression
,”
Science
,
286
(
5439
), pp.
481
486
.10.1126/science.286.5439.481
7.
Noer
,
A.
,
Sorensen
,
A. L.
, and
Boquest
,
A. C.
,
2006
, “
Stable CpG Hypomethylation of Adipogenic Promoters in Freshly Isolated, Cultured, and Differentiated Mesenchymal Stem Cells From Adipose Tissue
,”
Mol. Biol. Cell
,
17
(
8
) pp.
3543
3556
.10.1091/mbc.E06-04-0322
8.
Friedl
,
G.
,
Schmidt
,
H.
, and
Rehak
,
I.
,
2007
, “
Undifferentiated Human Mesenchymal Stem Cells (hMSCs) are Highly Sensitive to Mechanical Strain: Transcriptionally Controlled Early Osteo-Chondrogenic Response In Vitro
,”
Osteoarthritis Cartilage
,
15
(
11
) pp.
1293
1300
.10.1016/j.joca.2007.04.002
9.
Lachner
,
M.
,
2002
, “
Epigenetics: SUPERMAN Dresses Up
,”
Curr. Biol.
,
12
(
12
), pp.
R434
R436
.10.1016/S0960-9822(02)00919-3
10.
Lachner
,
M.
, and
Jenuwein
,
T.
,
2002
, “
The Many Faces of Histone Lysine Methylation
,”
Curr. Opin. Cell Biol.
,
14
(
3
) pp.
286
298
.10.1016/S0955-0674(02)00335-6
11.
Turner
,
C. H.
,
Owan
,
I.
, and
Alvey
,
T.
,
1998
, “
Recruitment and Proliferative Responses of Osteoblasts After Mechanical Loading In Vivo Determined Using Sustained-Release Bromodeoxyuridine
,”
Bone
,
22
(
5
), pp.
463
469
.10.1016/S8756-3282(98)00041-6
12.
David
,
V.
,
Martin
,
A.
, and
Lafage-Proust
,
M. H.
,
2007
, “
Mechanical Loading Down-Regulates Peroxisome Proliferator-Activated Receptor Gamma in Bone Marrow Stromal Cells and Favors Osteoblastogenesis at the Expense of Adipogenesis
,”
Endocrinology
,
148
(
5
) pp.
2553
2562
.10.1210/en.2006-1704
13.
McBeath
,
R.
,
Pirone
,
D. M.
, and
Nelson
,
C. M.
,
2004
, “
Cell Shape, Cytoskeletal Tension, and RhoA Regulate Stem Cell Lineage Commitment
,”
Dev. Cell
,
6
(
4
), pp.
483
495
.10.1016/S1534-5807(04)00075-9
14.
Estes
,
B. T.
,
Gimble
,
J. M.
, and
Guilak
,
F.
,
2004
, “
Mechanical Signals as Regulators of Stem Cell Fate
,”
Curr. Topics Dev. Biol.
,
60
, pp.
91
126
.10.1016/S0070-2153(04)60004-4
15.
Hoey
,
D. A.
,
Tormey
,
S.
, and
Ramcharan
,
S.
,
2012
, “
Primary Cilia-Mediated Mechanotransduction in Human Mesenchymal Stem Cells
,”
Stem Cells (Dayton, Ohio)
,
30
(
11
), pp.
2561
2570
.10.1002/stem.1235
16.
Li
,
Y. J.
,
Batra
,
N. N.
, and
You
,
L.
,
2004
, “
Oscillatory Fluid Flow Affects Human Marrow Stromal Cell Proliferation and Differentiation
,”
J. Orthop. Res.
,
22
(
6
), pp.
1283
1289
.10.1016/j.orthres.2004.04.002
17.
Kreke
,
M. R.
,
Huckle
,
W. R.
, and
Goldstein
,
A. S.
,
2005
, “
Fluid Flow Stimulates Expression of Osteopontin and Bone Sialoprotein by Bone Marrow Stromal Cells in a Temporally Dependent Manner
,”
Bone
,
36
(
6
), pp.
1047
1055
.10.1016/j.bone.2005.03.008
18.
Kreke
,
M. R.
,
Sharp
,
L. A.
, and
Lee
,
Y. W.
,
2008
, “
Effect of Intermittent Shear Stress on Mechanotransductive Signaling and Osteoblastic Differentiation of Bone Marrow Stromal Cells
,”
Tissue Eng. Part A
,
14
(
4
), pp.
529
537
.10.1089/tea.2007.0068
19.
Arnsdorf
,
E. J.
,
Tummala
,
P.
, and
Castillo
,
A. B.
,
2010
, “
The Epigenetic Mechanism of Mechanically Induced Osteogenic Differentiation
,”
J. Biomech.
,
43
(
15
), pp.
2881
2886
.10.1016/j.jbiomech.2010.07.033
20.
Tatsumi
,
S.
,
Ishii
,
K.
, and
Amizuka
,
N.
,
2007
, “
Targeted Ablation of Osteocytes Induces Osteoporosis With Defective Mechanotransduction
,”
Cell Metab.
,
5
(
6
), pp.
464
475
.10.1016/j.cmet.2007.05.001
21.
Batra
,
N. N.
,
Li
,
Y. J.
, and
Yellowley
,
C. E.
,
2005
, “
Effects of Short-Term Recovery Periods on Fluid-Induced Signaling in Osteoblastic Cells
,”
J. Biomech.
,
38
(
9
), pp.
1909
1917
.10.1016/j.jbiomech.2004.08.009
22.
Malone
,
A. M.
,
Anderson
,
C. T.
, and
Tummala
,
P.
,
2007
, “
Primary Cilia Mediate Mechanosensing in Bone Cells by a Calcium-Independent Mechanism
,”
Proc. Natl. Acad. Sci. USA
,
104
(
33
), pp.
13325
13330
.10.1073/pnas.0700636104
23.
You
,
J.
,
Reilly
,
G. C.
, and
Zhen
,
X.
,
2001
, “
Osteopontin Gene Regulation by Oscillatory Fluid Flow Via Intracellular Calcium Mobilization and Activation of Mitogen-Activated Protein Kinase in MC3T3-E1 Osteoblasts
,”
J. Biol. Chem.
,
276
(
16
), pp.
13365
13371
.10.1074/jbc.M009846200
24.
You
,
J.
,
Yellowley
,
C. E.
, and
Donahue
,
H. J.
,
2000
, “
Substrate Deformation Levels Associated With Routine Physical Activity are Less Stimulatory to Bone Cells Relative to Loading-Induced Oscillatory Fluid Flow
,”
ASME J. Biomech. Eng.
,
122
(
4
), pp.
387
393
.10.1115/1.1287161
25.
Hoey
,
D. A.
,
Kelly
,
D. J.
, and
Jacobs
,
C. R.
,
2011
, “
A Role for the Primary Cilium in Paracrine Signaling Between Mechanically Stimulated Osteocytes and Mesenchymal Stem Cells
,”
Biochem. Biophys. Res. Commun.
,
412
(
1
), pp.
182
187
.10.1016/j.bbrc.2011.07.072
26.
Zhou
,
X.
,
Liu
,
D.
, and
You
,
L.
,
2010
, “
Quantifying Fluid Shear Stress in a Rocking Culture Dish
,”
J. Biomech.
,
43
(
8
), pp.
1598
1602
.10.1016/j.jbiomech.2009.12.028
27.
Li
,
L. C.
, and
Dahiya
,
R.
,
2002
, “
MethPrimer: Designing Primers for Methylation PCRs
,”
Bioinformatics
,
18
(
11
), pp.
1427
1431
.10.1093/bioinformatics/18.11.1427
28.
Jaiswal
,
N.
,
Haynesworth
,
S. E.
, and
Caplan
,
A. I.
,
1997
, “
Osteogenic Differentiation of Purified, Culture-Expanded Human Mesenchymal Stem Cells In Vitro
,”
J. Cell. Biochem.
,
64
(
2
), pp.
295
312
.10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I
29.
Bourne
,
S.
,
Polak
,
J. M.
, and
Hughes
,
S. P.
,
2004
, “
Osteogenic Differentiation of Mouse Embryonic Stem Cells: Differential Gene Expression Analysis by cDNA Microarray and Purification of Osteoblasts by Cadherin-11 Magnetically Activated Cell Sorting
,”
Tissue Eng.
,
10
(
5–6
), pp.
796
806
.10.1089/1076327041348293
30.
Sorensen
,
A. L.
,
Jacobsen
,
B. M.
, and
Reiner
,
A. H.
,
2010
, “
Promoter DNA Methylation Patterns of Differentiated Cells are Largely Programmed at the Progenitor Stage
,”
Mol. Biol. Cell
,
21
(
12
), pp.
2066
2077
.10.1091/mbc.E10-01-0018
31.
Tontonoz
,
P.
,
Hu
,
E.
, and
Spiegelman
,
B. M.
,
1994
, “
Stimulation of Adipogenesis in Fibroblasts by PPAR Gamma 2, a Lipid-Activated Transcription Factor
,”
Cell
,
79
(
7
), pp.
1147
1156
.10.1016/0092-8674(94)90006-X
32.
Hill
,
M. R.
,
Young
,
M. D.
, and
McCurdy
,
C. M.
,
1997
, “
Decreased Expression of Murine PPARgamma in Adipose Tissue During Endotoxemia
,”
Endocrinology
,
138
(
7
), pp.
3073
3076
.
33.
Schoonjans
,
K.
,
Peinado-Onsurbe
,
J.
, and
Lefebvre
,
A. M.
,
1996
, “
PPARalpha and PPARgamma Activators Direct a Distinct Tissue-Specific Transcriptional Response Via a PPRE in the Lipoprotein Lipase Gene
,”
EMBO J.
,
15
(
19
), pp.
5336
5348
.
34.
Meissner
,
A.
,
Mikkelsen
,
T. S.
, and
Gu
,
H.
,
2008
, “
Genome-Scale DNA Methylation Maps of Pluripotent and Differentiated Cells
,”
Nature
,
454
(
7205
), pp.
766
770
.
35.
Wu
,
H.
,
Whitfield
,
T. W.
, and
Gordon
,
J. A.
,
2014
, “
Genomic Occupancy of Runx2 With Global Expression Profiling Identifies a Novel Dimension to Control of Osteoblastogenesis
,”
Genome Biol.
,
15
(
3
), p.
R52
.10.1186/gb-2014-15-3-r52
36.
Chahrour
,
M.
,
Jung
,
S. Y.
, and
Shaw
,
C.
,
2008
, “
MeCP2, a Key Contributor to Neurological Disease, Activates and Represses Transcription
,”
Science
,
320
(
5880
), pp.
1224
1229
.10.1126/science.1153252
You do not currently have access to this content.