Multiple injury-causing mechanisms, such as wave propagation, skull flexure, cavitation, and head acceleration, have been proposed to explain blast-induced traumatic brain injury (bTBI). An accurate, quantitative description of the individual contribution of each of these mechanisms may be necessary to develop preventive strategies against bTBI. However, to date, despite numerous experimental and computational studies of bTBI, this question remains elusive. In this study, using a two-dimensional (2D) rat head model, we quantified the contribution of head acceleration to the biomechanical response of brain tissues when exposed to blast waves in a shock tube. We compared brain pressure at the coup, middle, and contre-coup regions between a 2D rat head model capable of simulating all mechanisms (i.e., the all-effects model) and an acceleration-only model. From our simulations, we determined that head acceleration contributed 36–45% of the maximum brain pressure at the coup region, had a negligible effect on the pressure at the middle region, and was responsible for the low pressure at the contre-coup region. Our findings also demonstrate that the current practice of measuring rat brain pressures close to the center of the brain would record only two-thirds of the maximum pressure observed at the coup region. Therefore, to accurately capture the effects of acceleration in experiments, we recommend placing a pressure sensor near the coup region, especially when investigating the acceleration mechanism using different experimental setups.

References

References
1.
Tanielian
,
T.
, and
Jaycox
,
L. H.
, eds.,
2008
,
Invisible Wounds of War: Psychological and Cognitive Injuries, Their Consequences, and Services to Assist Recovery
,
Rand Corporation
,
Santa Monica, CA
.
2.
Ritenour
,
A. E.
,
Blackbourne
,
L. H.
,
Kelly
,
J. F.
,
McLaughlin
,
D. F.
,
Pearse
,
L. A.
,
Holcomb
,
J. B.
, and
Wade
,
C. E.
,
2010
, “
Incidence of Primary Blast Injury in U.S. Military Overseas Contingency Operations: A Retrospective Study
,”
Ann. Surg.
,
251
(
6
), pp.
1140
1144
.
3.
Owens
,
B. D.
,
Kragh
,
J. F. J.
,
Macaitis
,
J.
,
Svoboda
,
S. J.
, and
Wenke
,
J. C.
,
2007
, “
Characterization of Extremity Wounds in Operation Iraqi Freedom and Operation Enduring Freedom
,”
J. Orthop. Trauma
,
21
(
4
), pp.
254
257
.
4.
Bird
,
S. M.
, and
Fairweather
,
C. B.
,
2007
, “
Military Fatality Rates (by Cause) in Afghanistan and Iraq: A Measure of Hostilities
,”
Int. J. Epidemiol.
,
36
(
4
), pp.
841
846
.
5.
Elder
,
G. A.
, and
Cristian
,
A.
,
2009
, “
Blast-Related Mild Traumatic Brain Injury: Mechanisms of Injury and Impact on Clinical Care
,”
Mount Sinai J. Med. (New York)
,
76
(
2
), pp.
111
118
.
6.
Ling
,
G.
,
Bandak
,
F.
,
Armonda
,
R.
,
Grant
,
G.
, and
Ecklund
,
J.
,
2009
, “
Explosive Blast Neurotrauma
,”
J. Neurotrauma
,
26
(
6
), pp.
815
825
.
7.
Taber
,
K. H.
,
Warden
,
D. L.
, and
Hurley
,
R. A.
,
2006
, “
Blast-Related Traumatic Brain Injury: What is Known?
J. Neuropsychiatry Clin. Neurosci.
,
18
(
2
), pp.
141
145
.
8.
Taylor
,
P. A.
, and
Ford
,
C. C.
,
2009
, “
Simulation of Blast-Induced Early-Time Intracranial Wave Physics Leading to Traumatic Brain Injury
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061007
.
9.
Bolander
,
R.
,
Mathie
,
B.
,
Bir
,
C.
,
Ritzel
,
D.
, and
VandeVord
,
P.
,
2011
, “
Skull Flexure as a Contributing Factor in the Mechanism of Injury in the Rat When Exposed to a Shock Wave
,”
Ann. Biomed. Eng.
,
39
(
10
), pp.
2550
2559
.
10.
Goeller
,
J.
,
Wardlaw
,
A.
,
Treichler
,
D.
,
O'Bruba
,
J.
, and
Weiss
,
G.
,
2012
, “
Investigation of Cavitation as a Possible Damage Mechanism in Blast-Induced Traumatic Brain Injury
,”
J. Neurotrauma
,
29
(
10
), pp.
1970
1981
.
11.
Panzer
,
M. B.
,
Myers
,
B. S.
, and
Bass
,
C. R.
,
2013
, “
Mesh Considerations for Finite Element Blast Modelling in Biomechanics
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
6
), pp.
612
621
.
12.
Gullotti
,
D. M.
,
Beamer
,
M.
,
Panzer
,
M. B.
,
Chen
,
Y. C.
,
Patel
,
T. P.
,
Yu
,
A.
,
Jaumard
,
N.
,
Winkelstein
,
B.
,
Bass
,
C. R.
,
Morrison
,
B.
, and
Meaney
,
D. F.
,
2014
, “
Significant Head Accelerations Can Influence Immediate Neurological Impairments in a Murine Model of Blast-Induced Traumatic Brain Injury
,”
ASME J. Biomech. Eng.
,
136
(
9
), p.
091004
.
13.
Shridharani
,
J. K.
,
Wood
,
G. W.
,
Panzer
,
M. B.
,
Capehart
,
B. P.
,
Nyein
,
M. K.
,
Radovitzky
,
R. A.
, and
Bass
,
C. R.
,
2012
, “
Porcine Head Response to Blast
,”
Front. Neurol.
,
3
, p.
70
.
14.
Goldstein
,
L. E.
,
Fisher
,
A. M.
,
Tagge
,
C. A.
,
Zhang
,
X. L.
,
Velisek
,
L.
,
Sullivan
,
J. A.
,
Upreti
,
C.
,
Kracht
,
J. M.
,
Ericsson
,
M.
,
Wojnarowicz
,
M. W.
,
Goletiani
,
C. J.
,
Maglakelidze
,
G. M.
,
Casey
,
N.
,
Moncaster
,
J. A.
,
Minaeva
,
O.
,
Moir
,
R. D.
,
Nowinski
,
C. J.
,
Stern
,
R. A.
,
Cantu
,
R. C.
,
Geiling
,
J.
,
Blusztajn
,
J. K.
,
Wolozin
,
B. L.
,
Ikezu
,
T.
,
Stein
,
T. D.
,
Budson
,
A. E.
,
Kowall
,
N. W.
,
Chargin
,
D.
,
Sharon
,
A.
,
Saman
,
S.
,
Hall
,
G. F.
,
Moss
,
W. C.
,
Cleveland
,
R. O.
,
Tanzi
,
R. E.
,
Stanton
,
P. K.
, and
McKee
,
A. C.
,
2012
, “
Chronic Traumatic Encephalopathy in Blast-Exposed Military Veterans and a Blast Neurotrauma Mouse Model
,”
Sci. Transl. Med.
,
4
(
134
), pp.
134
160
.
15.
Leggieri
,
M. J.
,
2011
, “
Computational Modeling of Non-Impact, Blast-Induced Mild Traumatic Brain Injury (mTBI)
,”
NATO Symposium, A Survey of Blast Injury Across the Full Landscape of Military Science
, Halifax, NS.
16.
Chavko
,
M.
,
Watanabe
,
T.
,
Adeeb
,
S.
,
Lankasky
,
J.
,
Ahlers
,
S.
, and
McCarron
,
R.
,
2011
, “
Transfer of the Pressure Wave Through the Body and Its Impact on the Brain
,”
NATO Symposium: A Survey of Blast Injury across the Full Landscape of Military Science
, Halifax, NS.
17.
Hua
,
Y.
,
Kumar Akula
,
P.
,
Gu
,
L.
,
Berg
,
J.
, and
Nelson
,
C. A.
,
2014
, “
Experimental and Numerical Investigation of the Mechanism of Blast Wave Transmission Through a Surrogate Head
,”
J. Comput. Nonlinear Dyn.
,
9
(
3
), p.
031010
.
18.
Ganpule
,
S.
,
Alai
,
A.
,
Plougonven
,
E.
, and
Chandra
,
N.
,
2013
, “
Mechanics of Blast Loading on the Head Models in the Study of Traumatic Brain Injury Using Experimental and Computational Approaches
,”
Biomech. Model. Mechanobiol.
,
12
(
3
), pp.
511
531
.
19.
Skotak
,
M.
,
Wang
,
F.
,
Alai
,
A.
,
Holmberg
,
A.
,
Harris
,
S.
,
Switzer
,
R. C.
, and
Chandra
,
N.
,
2013
, “
Rat Injury Model Under Controlled Field-Relevant Primary Blast Conditions: Acute Response to a Wide Range of Peak Overpressures
,”
J. Neurotrauma
,
30
(
13
), pp.
1147
1160
.
20.
Long
,
J. B.
,
Bentley
,
T. L.
,
Wessner
,
K. A.
,
Cerone
,
C.
,
Sweeney
,
S.
, and
Bauman
,
R. A.
,
2009
, “
Blast Overpressure in Rats: Recreating a Battlefield Injury in the Laboratory
,”
J. Neurotrauma
,
26
(
6
), pp.
827
840
.
21.
Meaney
,
D. F.
,
Morrison
,
B.
, and
Dale Bass
,
C.
,
2014
, “
The Mechanics of Traumatic Brain Injury: A Review of What We Know and What We Need to Know for Reducing Its Societal Burden
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021008
.
22.
Morrison
,
B.
, III
,
Elkin
,
B. S.
,
Dollé
,
J. P.
, and
Yarmush
,
M. L.
,
2011
, “
In Vitro Models of Traumatic Brain Injury
,”
Annu. Rev. Biomed. Eng.
,
13
(
1
), pp.
91
126
.
23.
Johnson
,
G. A.
,
Calabrese
,
E.
,
Badea
,
A.
,
Paxinos
,
G.
, and
Watson
,
C.
,
2012
, “
A Multidimensional Magnetic Resonance Histology Atlas of the Wistar Rat Brain
,”
NeuroImage
,
62
(
3
), pp.
1848
1856
.
24.
Abdullah
,
O.
, and
Hsu
,
E.
,
2014
, Personal Communication.
25.
Bailey
,
S. A.
,
Zidell
,
R. H.
, and
Perry
,
R. W.
,
2004
, “
Relationships Between Organ Weight and Body/Brain Weight in the Rat: What is the Best Analytical Endpoint?
Toxicol. Pathol.
,
32
(
4
), pp.
448
466
.
26.
Mao
,
H.
,
Jin
,
X.
,
Zhang
,
L.
,
Yang
,
K. H.
,
Igarashi
,
T.
,
Noble-Haeusslein
,
L. J.
, and
King
,
A. I.
,
2010
, “
Finite Element Analysis of Controlled Cortical Impact-Induced Cell Loss
,”
J. Neurotrauma
,
27
(
5
), pp.
877
888
.
27.
Zhu
,
F.
,
Mao
,
H.
,
Dal Cengio Leonardi
,
A.
,
Wagner
,
C.
,
Chou
,
C.
,
Jin
,
X.
,
Bir
,
C.
,
Vandevord
,
P.
,
Yang
,
K. H.
, and
King
,
A. I.
,
2010
, “
Development of an FE Model of the Rat Head Subjected to Air Shock Loading
,”
Stapp Car Crash J.
,
54
, pp.
211
225
.
28.
Mao
,
H.
,
Wagner
,
C.
,
Guan
,
F.
,
Yeni
,
Y. N.
, and
Yang
,
K. H.
,
2011
, “
Material Properties of adult Rat Skull
,”
J. Mech. Med. Biol.
,
11
(
5
), pp.
1199
1212
.
29.
Sundaramurthy
,
A.
,
Alai
,
A.
,
Ganpule
,
S.
,
Holmberg
,
A.
,
Plougonven
,
E.
, and
Chandra
,
N.
,
2012
, “
Blast-Induced Biomechanical Loading of the Rat: An Experimental and Anatomically Accurate Computational Blast Injury Model
,”
J. Neurotrauma
,
29
(
13
), pp.
2352
2364
.
30.
Panzer
,
M. B.
,
Myers
,
B. S.
,
Capehart
,
B. P.
, and
Bass
,
C. R.
,
2012
, “
Development of a Finite Element Model for Blast Brain Injury and the Effects of CSF Cavitation
,”
Ann. Biomed. Eng.
,
40
(
7
), pp.
1530
1544
.
31.
Mao
,
H.
,
Zhang
,
L.
,
Jiang
,
B.
,
Genthikatti
,
V. V.
,
Jin
,
X.
,
Zhu
,
F.
,
Makwana
,
R.
,
Gill
,
A.
,
Jandir
,
G.
,
Singh
,
A.
, and
Yang
,
K. H.
,
2013
, “
Development of a Finite Element Human Head Model Partially Validated With Thirty Five Experimental Cases
,”
ASME J. Biomech. Eng.
,
135
(
11
), p.
111002
.
32.
Takhounts
,
E. G.
,
Ridella
,
S. A.
,
Hasija
,
V.
,
Tannous
,
R. E.
,
Campbell
,
J. Q.
,
Malone
,
D.
,
Danelson
,
K.
,
Stitzel
,
J.
,
Rowson
,
S.
, and
Duma
,
S.
,
2008
, “
Investigation of Traumatic Brain Injuries Using the Next Generation of Simulated Injury Monitor (SIMon) Finite Element Head Model
,”
Stapp Car Crash J.
,
52
, pp.
1
31
.
33.
Zhang
,
L.
,
Yang
,
K. H.
,
Dwarampudi
,
R.
,
Omori
,
K.
,
Li
,
T.
,
Chang
,
K.
,
Hardy
,
W. N.
,
Khalil
,
T. B.
, and
King
,
A. I.
,
2001
, “
Recent Advances in Brain Injury Research: A New Human Head Model Development and Validation
,”
Stapp Car Crash J.
,
45
, pp.
369
394
.
34.
Zhao
,
W.
,
Ruan
,
S.
, and
Ji
,
S.
,
2015
, “
Brain Pressure Responses in Translational Head Impact: A Dimensional Analysis and a Further Computational Study
,”
Biomech. Model. Mechanobiol.
,
14
(4), pp. 753–766.
35.
Singh
,
D.
,
Cronin
,
D. S.
, and
Haladuick
,
T. N.
,
2014
, “
Head and Brain Response to Blast Using Sagittal and Transverse Finite Element Models
,”
Int. J. Numer. Methods Biomed. Eng.
,
30
(
4
), pp.
470
489
.
36.
Effgen
,
G. B.
,
Hue
,
C. D.
,
Vogel
,
E.
, 3rd
,
Panzer
,
M. B.
,
Meaney
,
D. F.
,
Bass
,
C. R.
, and
Morrison
,
B.
, III
,
2012
, “
A Multiscale Approach to Blast Neurotrauma Modeling: Part II: Methodology for Inducing Blast Injury to In Vitro Models
,”
Front. Neurol.
,
3
, p.
23
.
37.
Yeoh
,
S.
,
Bell
,
E. D.
, and
Monson
,
K. L.
,
2013
, “
Distribution of Blood-Brain Barrier Disruption in Primary Blast Injury
,”
Ann. Biomed. Eng.
,
41
(
10
), pp.
2206
2214
.
38.
Chavko
,
M.
,
Watanabe
,
T.
,
Adeeb
,
S.
,
Lankasky
,
J.
,
Ahlers
,
S. T.
, and
McCarron
,
R. M.
,
2011
, “
Relationship Between Orientation to a Blast and Pressure Wave Propagation Inside the Rat Brain
,”
J. Neurosci. Methods
,
195
(
1
), pp.
61
66
.
39.
Leonardi
,
A. D.
,
Bir
,
C. A.
,
Ritzel
,
D. V.
, and
VandeVord
,
P. J.
,
2011
, “
Intracranial Pressure Increases During Exposure to a Shock Wave
,”
J. Neurotrauma
,
28
(
1
), pp.
85
94
.
You do not currently have access to this content.