With the increased availability of computational resources, the past decade has seen a rise in the use of computational fluid dynamics (CFD) for medical applications. There has been an increase in the application of CFD to attempt to predict the rupture of intracranial aneurysms, however, while many hemodynamic parameters can be obtained from these computations, to date, no consistent methodology for the prediction of the rupture has been identified. One particular challenge to CFD is that many factors contribute to its accuracy; the mesh resolution and spatial/temporal discretization can alone contribute to a variation in accuracy. This failure to identify the importance of these factors and identify a methodology for the prediction of ruptures has limited the acceptance of CFD among physicians for rupture prediction. The International CFD Rupture Challenge 2013 seeks to comment on the sensitivity of these various CFD assumptions to predict the rupture by undertaking a comparison of the rupture and blood-flow predictions from a wide range of independent participants utilizing a range of CFD approaches. Twenty-six groups from 15 countries took part in the challenge. Participants were provided with surface models of two intracranial aneurysms and asked to carry out the corresponding hemodynamics simulations, free to choose their own mesh, solver, and temporal discretization. They were requested to submit velocity and pressure predictions along the centerline and on specified planes. The first phase of the challenge, described in a separate paper, was aimed at predicting which of the two aneurysms had previously ruptured and where the rupture site was located. The second phase, described in this paper, aims to assess the variability of the solutions and the sensitivity to the modeling assumptions. Participants were free to choose boundary conditions in the first phase, whereas they were prescribed in the second phase but all other CFD modeling parameters were not prescribed. In order to compare the computational results of one representative group with experimental results, steady-flow measurements using particle image velocimetry (PIV) were carried out in a silicone model of one of the provided aneurysms. Approximately 80% of the participating groups generated similar results. Both velocity and pressure computations were in good agreement with each other for cycle-averaged and peak-systolic predictions. Most apparent “outliers” (results that stand out of the collective) were observed to have underestimated velocity levels compared to the majority of solutions, but nevertheless identified comparable flow structures. In only two cases, the results deviate by over 35% from the mean solution of all the participants. Results of steady CFD simulations of the representative group and PIV experiments were in good agreement. The study demonstrated that while a range of numerical schemes, mesh resolution, and solvers was used, similar flow predictions were observed in the majority of cases. To further validate the computational results, it is suggested that time-dependent measurements should be conducted in the future. However, it is recognized that this study does not include the biological aspects of the aneurysm, which needs to be considered to be able to more precisely identify the specific rupture risk of an intracranial aneurysm.

References

1.
Bonneville
,
F.
,
Sourour
,
N.
, and
Biondi
,
A.
,
2006
, “
Intracranial Aneurysms: An Overview
,”
Neuroimag. Clin. N. Am.
,
16
(
3
), pp.
371
382
.
2.
Curtis
,
S. L.
,
Bradley
,
M.
,
Wilde
,
P.
,
Aw
,
J.
,
Chakrabarti
,
S.
,
Hamilton
,
M.
,
Martin
,
R.
,
Turner
,
M.
, and
Stuart
,
A. G.
,
2012
, “
Results of Screening for Intracranial Aneurysms in Patients With Coarctation of the Aorta
,”
Am. J. Neuroradiol.
,
33
(
6
), pp.
1182
1186
.
3.
Teunissen
,
L. L.
,
Rinkel
,
G. J.
,
Algra
,
A.
, and
van Gijn
,
J.
,
1996
, “
Risk Factors for Subarachnoid Hemorrhage: A Systematic Review
,”
Stroke
,
27
(
3
), pp.
544
549
.
4.
Wardlaw
,
J. M.
, and
White
,
P. M.
,
2000
, “
The Detection and Management of Unruptured Intracranial Aneurysms
,”
Brain
,
123
(
Pt. 2
), pp.
205
221
.
5.
Morita
,
A.
,
Kirino
,
T.
,
Hashi
,
K.
,
Aoki
,
N.
,
Fukuhara
,
S.
,
Hashimoto
,
N.
,
Nakayama
,
T.
,
Sakai
,
M.
,
Teramoto
,
A.
,
Tominari
,
S.
, and
Yoshimoto
,
T.
,
2012
, “
The Natural Course of Unruptured Cerebral Aneurysms in a Japanese Cohort
,”
N. Engl. J. Med.
,
366
(
26
), pp.
2474
2482
.
6.
Nixon
,
A. M.
,
Gunel
,
M.
, and
Sumpio
,
B. E.
,
2010
, “
The Critical Role of Hemodynamics in the Development of Cerebral Vascular Disease
,”
J. Neurosurg.
,
112
(
6
), pp.
1240
1253
.
7.
Turjman
,
A. S.
,
Turjman
,
F.
, and
Edelman
,
E. R.
,
2014
, “
Role of Fluid Dynamics and Inflammation in Intracranial Aneurysm Formation
,”
Circulation
,
129
(
3
), pp.
373
382
.
8.
Wong
,
G. K.
, and
Poon
,
W. S.
,
2011
, “
Current Status of Computational Fluid Dynamics for Cerebral Aneurysms: The Clinician's Perspective
,”
J. Clin. Neurosci.
,
18
(
10
), pp.
1285
1288
.
9.
Sadasivan
,
C.
,
Fiorella
,
D. J.
,
Woo
,
H. H.
, and
Lieber
,
B. B.
,
2013
, “
Physical Factors Effecting Cerebral Aneurysm Pathophysiology
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1347
1365
.
10.
Qian
,
Y.
,
Takao
,
H.
,
Umezu
,
M.
, and
Murayama
,
Y.
,
2011
, “
Risk Analysis of Unruptured Aneurysms Using Computational Fluid Dynamics Technology: Preliminary Results
,”
Am. J. Neuroradiol.
,
32
(
10
), pp.
1948
1955
.
11.
Takao
,
H.
,
Murayama
,
Y.
,
Otsuka
,
S.
,
Qian
,
Y.
,
Mohamed
,
A.
,
Masuda
,
S.
,
Yamamoto
,
M.
, and
Abe
,
T.
,
2012
, “
Hemodynamic Differences Between Unruptured and Ruptured Intracranial Aneurysms During Observation
,”
Stroke
,
43
(
5
), pp.
1436
1439
.
12.
Goubergrits
,
L.
,
Schaller
,
J.
,
Kertzscher
,
U.
,
van den Bruck
,
N.
,
Poethkow
,
K.
,
Petz
,
C.
,
Hege
,
H. C.
, and
Spuler
,
A.
,
2012
, “
Statistical Wall Shear Stress Maps of Ruptured and Unruptured Middle Cerebral Artery Aneurysms
,”
J. R. Soc. Interface
,
9
(
69
), pp.
677
688
.
13.
Zhang
,
Y.
,
Mu
,
S.
,
Chen
,
J.
,
Wang
,
S.
,
Li
,
H.
,
Yu
,
H.
,
Jiang
,
F.
, and
Yang
,
X.
,
2011
, “
Hemodynamic Analysis of Intracranial Aneurysms With Daughter Blebs
,”
Eur. Neurol.
,
66
(
6
), pp.
359
367
.
14.
Xiang
,
J.
,
Tutino
,
V. M.
,
Snyder
,
K. V.
, and
Meng
,
H.
,
2014
, “
CFD: Computational Fluid Dynamics or Confounding Factor Dissemination? The Role of Hemodynamics in Intracranial Aneurysm Rupture Risk Assessment
,”
Am. J. Neuroradiol.
,
35
(
10
), pp.
1849
1857
.
15.
Kallmes
,
D. F.
,
2012
, “
Point: CFD-Computational Fluid Dynamics or Confounding Factor Dissemination
,”
Am. J. Neuroradiol.
,
33
(
3
), pp.
395
396
.
16.
Fiorella
,
D.
,
Sadasivan
,
C.
,
Woo
,
H. H.
, and
Lieber
,
B.
,
2011
, “
Regarding ‘Aneurysm Rupture Following Treatment With Flow-Diverting Stents: Computational Hemodynamics Analysis of Treatment’
,”
Am. J. Neuroradiol.
,
32
(
5
), pp.
E95
E97
; author reply E98–E100.
17.
Cebral
,
J. R.
, and
Meng
,
H.
,
2012
, “
Counterpoint: Realizing the Clinical Utility of Computational Fluid Dynamics—Closing the Gap
,”
Am. J. Neuroradiol.
,
33
(
3
), pp.
396
398
.
18.
Radaelli
,
A. G.
,
Augsburger
,
L.
,
Cebral
,
J. R.
,
Ohta
,
M.
,
Rüfenacht
,
D. A.
,
Balossino
,
R.
,
Benndorf
,
G.
,
Hose
,
D. R.
,
Marzo
,
A.
,
Metcalfe
,
R.
,
Mortier
,
P.
,
Mut
,
F.
,
Reymond
,
P.
,
Socci
,
L.
,
Verhegghe
,
B.
, and
Frangi
,
A. F.
,
2008
, “
Reproducibility of Haemodynamical Simulations in a Subject-Specific Stented Aneurysm Model—A Report on the Virtual Intracranial Stenting Challenge 2007
,”
J. Biomech.
,
41
(
10
), pp.
2069
2081
.
19.
Janiga
,
G.
,
Rössl
,
C.
,
Skalej
,
M.
, and
Thévenin
,
D.
,
2013
, “
Realistic Virtual Intracranial Stenting and Computational Fluid Dynamics for Treatment Analysis
,”
J. Biomech.
,
46
(
1
), pp.
7
12
.
20.
Cavazzuti
,
M.
,
Atherton
,
M.
,
Collins
,
M.
, and
Barozzi
,
G.
,
2010
, “
Beyond the Virtual Intracranial Stenting Challenge 2007: Non-Newtonian and Flow Pulsatility Effects
,”
J. Biomech.
,
43
(
13
), pp.
2645
2647
.
21.
Cito
,
S.
,
Geers
,
A. J.
,
Arroyo
,
M. P.
,
Palero
,
V. R.
,
Pallares
,
J.
,
Vernet
,
A.
,
Blasco
,
J.
,
San Roman
,
L.
,
Fu
,
W.
,
Qiao
,
A.
,
Janiga
,
G.
,
Miura
,
Y.
,
Ohta
,
M.
,
Mendina
,
M.
,
Usera
,
G.
, and
Frangi
,
A. F.
,
2015
, “
Accuracy and Reproducibility of Patient-Specific Hemodynamic Models of Stented Intracranial Aneurysms: Report on the Virtual Intracranial Stenting Challenge 2011
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
154
167
.
22.
Hariharan
,
P.
,
Giarra
,
M.
,
Reddy
,
V.
,
Day
,
S. W.
,
Manning
,
K. B.
,
Deutsch
,
S.
,
Stewart
,
S. F. C.
,
Myers
,
M. R.
,
Berman
,
M. R.
,
Burgreen
,
G. W.
,
Paterson
,
E. G.
, and
Malinauskas
,
R. A.
,
2011
, “
Multilaboratory Particle Image Velocimetry Analysis of the FDA Benchmark Nozzle Model to Support Validation of Computational Fluid Dynamics Simulations
,”
ASME J. Biomech. Eng.
,
133
(
4
), p.
041002
.
23.
Steinman
,
D. A.
,
Hoi
,
Y.
,
Fahy
,
P.
,
Morris
,
L.
,
Walsh
,
M. T.
,
Aristokleous
,
N.
,
Anayiotos
,
A. S.
,
Papaharilaou
,
Y.
,
Arzani
,
A.
,
Shadden
,
S. C.
,
Berg
,
P.
,
Janiga
,
G.
,
Bols
,
J.
,
Segers
,
P.
,
Bressloff
,
N. W.
,
Cibis
,
M.
,
Gijsen
,
F. H.
,
Cito
,
S.
,
Pallarés
,
J.
,
Browne
,
L. D.
,
Costelloe
,
J. A.
,
Lynch
,
A. G.
,
Degroote
,
J.
,
Vierendeels
,
J.
,
Fu
,
W.
,
Qiao
,
A.
,
Hodis
,
S.
,
Kallmes
,
D. F.
,
Kalsi
,
H.
,
Long
,
Q.
,
Kheyfets
,
V. O.
,
Finol
,
E. A.
,
Kono
,
K.
,
Malek
,
A. M.
,
Lauric
,
A.
,
Menon
,
P. G.
,
Pekkan
,
K.
,
Moghadam
,
E. M.
,
Marsden
,
A. L.
,
Oshima
,
M.
,
Katagiri
,
K.
,
Peiffer
,
V.
,
Mohamied
,
Y.
,
Sherwin
,
S. J.
,
Schaller
,
J.
,
Goubergrits
,
L.
,
Usera
,
G.
,
Mendina
,
M.
,
Valen-Sendstad
,
K.
,
Habets
,
D. F.
,
Xiang
,
J.
,
Meng
,
H.
,
Yu
,
Y.
,
Karniadakis
,
G. E.
,
Shaffer
,
N.
, and
Loth
,
F.
,
2013
, “
Variability of Computational Fluid Dynamics Solutions for Pressure and Flow in a Giant Aneurysm: The ASME 2012 Summer Bioengineering Conference CFD Challenge
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021016
.
24.
Cebral
,
J. R.
,
Mut
,
F.
,
Raschi
,
M.
,
Scrivano
,
E.
,
Ceratto
,
R.
,
Lylyk
,
P.
, and
Putman
,
C. M.
,
2011
, “
Aneurysm Rupture Following Treatment With Flow-Diverting Stents: Computational Hemodynamics Analysis of Treatment
,”
Am. J. Neuroradiol.
,
32
(
1
), pp.
27
33
.
25.
Janiga
,
G.
,
Berg
,
P.
,
Sugiyama
,
S.
,
Kono
,
K.
, and
Steinman
,
D. A.
,
2015
, “
The Computational Fluid Dynamics Rupture Challenge 2013—Phase I: Prediction of Rupture Status in Intracranial Aneurysms
,”
Am. J. Neuroradiol.
,
36
(
3
), pp.
530
536
.
26.
Frösen
,
J.
,
Piippo
,
A.
,
Paetau
,
A.
,
Kangasniemi
,
M.
,
Niemelä
,
M.
,
Hernesniemi
,
J.
, and
Jääskeläinen
,
J.
,
2004
, “
Remodeling of Saccular Cerebral Artery Aneurysm Wall is Associated With Rupture: Histological Analysis of 24 Unruptured and 42 Ruptured Cases
,”
Stroke
,
35
(
10
), pp.
2287
2293
.
27.
Humphrey
,
J. D.
, and
Holzapfel
,
G. A.
,
2012
, “
Mechanics, Mechanobiology, and Modeling of Human Abdominal Aorta and Aneurysms
,”
J. Biomech.
,
45
(
5
), pp.
805
814
.
28.
Robertson
,
A. M.
,
Duan
,
X.
,
Aziz
,
K. M.
,
Hill
,
M. R.
,
Watkins
,
S. C.
, and
Cebral
,
J. R.
,
2015
, “
Diversity in the Strength and Structure of Unruptured Cerebral Aneurysms
,”
Ann. Biomed. Eng.
,
43
(
7
), pp.
1502
1515
.
29.
Mönch
,
T.
,
Gasteiger
,
R.
,
Janiga
,
G.
,
Theisel
,
H.
, and
Preim
,
B.
,
2011
, “
Context-Aware Mesh Smoothing for Biomedical Applications
,”
Comput. Graphics
,
35
(
4
), pp.
755
767
.
30.
Neugebauer
,
M.
,
Lawonn
,
K.
,
Beuing
,
O.
, and
Preim
,
B.
,
2013
, “
Automatic Generation of Anatomic Characteristics From Cerebral Aneurysm Surface Models
,”
Int. J. Comput. Assist. Radiol. Surg.
,
8
(
2
), pp.
279
289
.
31.
Antiga
,
L.
,
Piccinelli
,
M.
,
Botti
,
L.
,
Ene-Iordache
,
B.
,
Remuzzi
,
A.
, and
Steinman
,
D. A.
,
2008
, “
An Image-Based Modeling Framework for Patient-Specific Computational Hemodynamics
,”
Med. Biol. Eng. Comput.
,
46
(
11
), pp.
1097
1112
.
32.
Bordás
,
R.
,
Seshadhri
,
S.
,
Janiga
,
G.
,
Skalej
,
M.
, and
Thévenin
,
D.
,
2012
, “
Experimental Validation of Numerical Simulations on a Cerebral Aneurysm Phantom Model
,”
Interv. Med. Appl. Sci.
,
4
(
4
), pp.
193
205
.
33.
Liou
,
T. M.
,
Chang
,
W. C.
, and
Liao
,
C. C.
,
1997
, “
LDV Measurements in Lateral Model Aneurysms of Various Sizes
,”
Exp. Fluids
,
23
(
4
), pp.
317
324
.
34.
Tateshima
,
S.
,
Tanishita
,
K.
,
Omura
,
H.
,
Villablanca
,
J. P.
, and
Vinuela
,
F.
,
2007
, “
Intra-Aneurysmal Hemodynamics During the Growth of an Unruptured Aneurysm: In Vitro Study Using Longitudinal CT Angiogram Database
,”
Am. J. Neuroradiol.
,
28
(
4
), pp.
622
627
.
35.
Ford
,
M. D.
,
Nikolov
,
H. N.
,
Milner
,
J. S.
,
Lownie
,
S. P.
,
Demont
,
E. M.
,
Kalata
,
W.
,
Loth
,
F.
,
Holdsworth
,
D. W.
, and
Steinman
,
D. A.
,
2008
, “
PIV-Measured Versus CFD-Predicted Flow Dynamics in Anatomically Realistic Cerebral Aneurysm Models
,”
ASME J. Biomech. Eng.
,
130
(
2
), p.
021015
.
36.
Okada
,
K.
, and
Yamaguchi
,
R.
,
2011
, “
Structure of Pulsatile Flow in a Model of Elastic Cerebral Aneurysm
,”
J. Biorheol.
,
25
(
1–2
), pp.
1
7
.
37.
Yagi
,
T.
,
Sato
,
A.
,
Shinke
,
M.
,
Takahashi
,
S.
,
Tobe
,
Y.
,
Takao
,
H.
,
Murayama
,
Y.
, and
Umezu
,
M.
,
2013
, “
Experimental Insights Into Flow Impingement in Cerebral Aneurysm by Stereoscopic Particle Image Velocimetry: Transition From a Laminar Regime
,”
J. R. Soc. Interface
,
10
(
82
), p.
20121031
.
38.
Roloff
,
C.
,
Bordás
,
R.
,
Nickl
,
R.
,
Mátrai
,
Z.
,
Szaszák
,
N.
,
Szabó
,
S.
, and
Thévenin
,
D.
,
2013
, “
Investigation of the Velocity Field in a Full-Scale Model of a Cerebral Aneurysm
,”
Int. J. Heat Fluid Flow
,
43
, pp.
212
219
.
39.
Stamatopoulos
,
C.
,
Mathioulakis
,
D. S.
,
Papaharilaou
,
Y.
, and
Katsamouris
,
A.
,
2011
, “
Experimental Unsteady Flow Study in a Patient-Specific Abdominal Aortic Aneurysm Model
,”
Exp. Fluids
,
50
(
6
), pp.
1695
1709
.
40.
Liou
,
T. M.
, and
Liou
,
S. N.
,
2004
, “
Pulsatile Flows in a Lateral Aneurysm Anchored on a Stented and Curved Parent Vessel
,”
Exp. Mech.
,
44
(
3
), pp.
253
260
.
41.
Boutsianis
,
E.
,
Guala
,
M.
,
Olgac
,
U.
,
Wildermuth
,
S.
,
Hoyer
,
K.
,
Ventikos
,
Y.
, and
Poulikakos
,
D.
,
2009
, “
CFD and PTV Steady Flow Investigation in an Anatomically Accurate Abdominal Aortic Aneurysm
,”
ASME J. Biomech. Eng.
,
131
(
1
), p.
011008
.
42.
Marzo
,
A.
,
Singh
,
P.
,
Reymond
,
P.
,
Stergiopulos
,
N.
,
Patel
,
U.
, and
Hose
,
R.
,
2009
, “
Influence of Inlet Boundary Conditions on the Local Haemodynamics of Intracranial Aneurysms
,”
Comput. Method Biomech. Biomed. Eng.
,
12
(
4
), pp.
431
444
.
43.
Moyle
,
K. R.
,
Antiga
,
L.
, and
Steinman
,
D. A.
,
2006
, “
Inlet Conditions for Image-Based CFD Models of the Carotid Bifurcation: Is it Reasonable to Assume Fully Developed Flow?
ASME J. Biomech. Eng.
,
128
(
3
), pp.
371
379
.
44.
Berg
,
P.
,
Janiga
,
G.
, and
Thévenin
,
D.
,
2012
, “
Detailed Comparison of Numerical Flow Predictions in Cerebral Aneurysms Using Different CFD Software
,”
15th Conference on Modelling Fluid Flow
, Budapest, Hungary, Sept. 4–7, pp.
128
135
.
45.
Geers
,
A. J.
,
Larrabide
,
I.
,
Morales
,
H. G.
, and
Frangi
,
A. F.
,
2014
, “
Approximating Hemodynamics of Cerebral Aneurysms With Steady Flow Simulations
,”
J. Biomech.
,
47
(
1
), pp.
178
185
.
46.
Hoi
,
Y.
,
Woodward
,
S. H.
,
Kim
,
M.
,
Taulbee
,
D. B.
, and
Meng
,
H.
,
2006
, “
Validation of CFD Simulations of Cerebral Aneurysms With Implication of Geometric Variations
,”
ASME J. Biomech. Eng.
,
128
(
6
), pp.
844
851
.
47.
Prasad
,
A. K.
,
2000
, “
Stereoscopic Particle Image Velocimetry
,”
Exp. Fluids
,
29
(
2
), pp.
103
116
.
48.
Valen-Sendstad
,
K.
, and
Steinman
,
D. A.
,
2014
, “
Mind the Gap: Impact of Computational Fluid Dynamics Solution Strategy on Prediction of Intracranial Aneurysm Hemodynamics and Rupture Status Indicators
,”
Am. J. Neuroradiol.
,
35
(
3
), pp.
536
543
.
49.
Jansen
,
I. G.
,
Schneiders
,
J. J.
,
Potters
,
W. V.
,
van Ooij
,
P.
,
van den Berg
,
R.
,
van Bavel
,
E.
,
Marquering
,
H. A.
, and
Majoie
,
C. B.
,
2014
, “
Generalized Versus Patient-Specific Inflow Boundary Conditions in Computational Fluid Dynamics Simulations of Cerebral Aneurysmal Hemodynamics
,”
Am. J. Neuroradiol.
,
35
(
8
), pp.
1543
1548
.
50.
Marzo
,
A.
,
Singh
,
P.
,
Larrabide
,
I.
,
Radaelli
,
A.
,
Coley
,
S.
,
Gwilliam
,
M.
,
Wilkinson
,
I. D.
,
Lawford
,
P.
,
Reymond
,
P.
,
Patel
,
U.
,
Frangi
,
A.
, and
Hose
,
D. R.
,
2011
, “
Computational Hemodynamics in Cerebral Aneurysms: The Effects of Modeled Versus Measured Boundary Conditions
,”
Ann. Biomed. Eng.
,
39
(
2
), pp.
884
896
.
You do not currently have access to this content.