The mitral valve (MV) is a bileaflet valve positioned between the left atrium and ventricle of the heart. The annulus of the MV has been observed to undergo geometric changes during the cardiac cycle, transforming from a saddle D-shape during systole to a flat (and less eccentric) D-shape during diastole. Prosthetic MV devices, including heart valves and annuloplasty rings, are designed based on these two configurations, with the circular design of some prosthetic heart valves (PHVs) being an approximation of the less eccentric, flat D-shape. Characterizing the effects of these geometrical variations on the filling efficiency of the left ventricle (LV) is required to understand why the flat D-shaped annulus is observed in the native MV during diastole in addition to optimizing the design of prosthetic devices. We hypothesize that the D-shaped annulus reduces energy loss during ventricular filling. An experimental left heart simulator (LHS) consisting of a flexible-walled LV physical model was used to characterize the filling efficiency of the two mitral annular geometries. The strength of the dominant vortical structure formed and the energy dissipation rate (EDR) of the measured fields, during the diastolic period of the cardiac cycle, were used as metrics to quantify the filling efficiency. Our results indicated that the O-shaped annulus generates a stronger (25% relative to the D-shaped annulus) vortical structure than that of the D-shaped annulus. It was also found that the O-shaped annulus resulted in higher EDR values throughout the diastolic period of the cardiac cycle. The results support the hypothesis that a D-shaped mitral annulus reduces dissipative energy losses in ventricular filling during diastole and in turn suggests that a symmetric stent design does not provide lower filling efficiency than an equivalent asymmetric design.

References

References
1.
Cenedese
,
A.
,
Del Prete
,
Z.
,
Miozzi
,
M.
, and
Querzoli
,
G.
,
2005
, “
A Laboratory Investigation of the Flow in the Left Ventricle of a Human Heart With Prosthetic, Tilting-Disk Valves
,”
Exp. Fluids
,
39
(
2
), pp.
322
335
.
2.
Gharib
,
M.
,
Rambod
,
E.
,
Kheradvar
,
A.
,
Sahn
,
D. J.
, and
Dabiri
,
J. O.
,
2006
, “
Optimal Vortex Formation as an Index of Cardiac Health
,”
Proc. Natl. Acad. Sci. U. S. A.
,
103
(
16
), pp.
6305
6308
.
3.
Krittian
,
S.
,
Schenkel
,
T.
,
Janoske
,
U.
, and
Oertel
,
H.
,
2010
, “
Partitioned Fluid-Solid Coupling for Cardiovascular Blood Flow: Validation Study of Pressure-Driven Fluid-Domain Deformation
,”
Ann. Biomed. Eng.
,
38
(
8
), pp.
2676
2689
.
4.
Pierrakos
,
O.
, and
Vlachos
,
P. P.
,
2006
, “
The Effect of Vortex Formation on Left Ventricular Filling and Mitral Valve Efficiency
,”
ASME J. Biomech. Eng.
,
128
(
4
), pp.
527
539
.
5.
Pedrizzetti
,
G.
, and
Domenichini
,
F.
,
2005
, “
Nature Optimizes the Swirling Flow in the Human Left Ventricle
,”
Phys. Rev. Lett.
,
95
(
10
), p.
108101
.
6.
Domenichini
,
F.
,
Pedrizzetti
,
G.
, and
Baccani
,
B.
,
2005
, “
Three-Dimensional Filling Flow Into a Model Left Ventricle
,”
J. Fluid Mech.
,
539
(
1
), pp.
179
198
.
7.
Le
,
T. B.
, and
Sotiropoulos
,
F.
,
2012
, “
On the Three-Dimensional Vortical Structure of Early Diastolic Flow in a Patient-Specific Left Ventricle
,”
Eur. J. Mech. B. Fluids
,
35
, pp.
20
24
.
8.
Seo
,
J. H.
, and
Mittal
,
R.
,
2013
, “
Effect of Diastolic Flow Patterns on the Function of the Left Ventricle
,”
Phys. Fluids
,
25
(
11
), p.
110801
.
9.
Eriksson
,
J.
,
Dyverfeldt
,
P.
,
Engvall
,
J.
,
Bolger
,
A. F.
,
Ebbers
,
T.
, and
Carlhäll
,
C. J.
,
2011
, “
Quantification of Presystolic Blood Flow Organization and Energetics in the Human Left Ventricle
,”
Am. J. Physiol. Heart Circ. Physiol.
,
300
(
6
), pp.
H2135
H2141
.
10.
Poh
,
K. K.
,
Lee
,
L. C.
,
Shen
,
L.
,
Chong
,
E.
,
Tan
,
Y. L.
,
Chai
,
P.
,
Yeo
,
T. C.
, and
Wood
,
M. J.
,
2012
, “
Left Ventricular Fluid Dynamics in Heart Failure: Echocardiographic Measurement and Utilities of Vortex Formation Time
,”
Eur. Heart J. Cardiovasc. Imaging
,
13
(
5
), pp.
385
393
.
11.
Choi
,
Y. J.
,
Vedula
,
V.
, and
Mittal
,
R.
,
2014
, “
Computational Study of the Dynamics of a Bileaflet Mechanical Heart Valve in the Mitral Position
,”
Ann. Biomed. Eng.
,
42
(
8
), pp.
1668
1680
.
12.
Zheng
,
X.
,
Seo
,
J. H.
,
Vedula
,
V.
,
Abraham
,
T.
, and
Mittal
,
R.
,
2012
, “
Computational Modeling and Analysis of Intracardiac Flows in Simple Models of the Left Ventricle
,”
Eur. J. Mech.: B/Fluids
,
35
, pp.
31
39
.
13.
Pibarot
,
P.
, and
Dumesnil
,
J. G.
,
2009
, “
Prosthetic Heart Valves: Selection of the Optimal Prosthesis and Long-Term Management
,”
Circulation
,
119
(
7
), pp.
1034
1048
.
14.
Dasi
,
L. P.
,
Pekkan
,
K.
,
de Zelicourt
,
D.
,
Sundareswaran
,
K. S.
,
Krishnankutty
,
R.
,
Delnido
,
P. J.
, and
Yoganathan
,
A. P.
,
2009
, “
Hemodynamic Energy Dissipation in the Cardiovascular System: Generalized Theoretical Analysis on Disease States
,”
Ann. Biomed. Eng.
,
37
(
4
), pp.
661
673
.
15.
Sacks
,
M. S.
,
Schoen
,
F. J.
, and
Mayer
,
J. E.
,
2009
, “
Bioengineering Challenges for Heart Valve Tissue Engineering
,”
Annu. Rev. Biomed. Eng.
,
11
(
1
), pp.
289
313
.
16.
Pierrakos
,
O.
,
Vlachos
,
P. P.
, and
Telionis
,
D. P.
,
2004
, “
Time-Resolved DPIV Analysis of Vortex Dynamics in a Left Ventricular Model Through Bileaflet Mechanical and Porcine Heart Valve Prostheses
,”
ASME J. Biomech. Eng.
,
126
(
6
), pp.
714
726
.
17.
Querzoli
,
G.
,
Fortini
,
S.
, and
Cenedese
,
A.
,
2010
, “
Effect of the Prosthetic Mitral Valve on Vortex Dynamics and Turbulence of the Left Ventricular Flow
,”
Phys. Fluids
,
22
(
4
), p.
041901
.
18.
Pedrizzetti
,
G.
, and
Domenichini
,
F.
,
2006
, “
Flow-Driven Opening of a Valvular Leaflet
,”
J. Fluid Mech.
,
569
, pp.
321
330
.
19.
Romano
,
G. P.
,
Querzoli
,
G.
, and
Falchi
,
M.
,
2009
, “
Investigation of Vortex Dynamics Downstream of Moving Leaflets Using Robust Image Velocimetry
,”
Exp. Fluids
,
47
(
4–5
), pp.
827
838
.
20.
Vukićević
,
M.
,
Fortini
,
S.
,
Querzoli
,
G.
,
Espa
,
S.
, and
Pedrizzetti
,
G.
,
2012
, “
Experimental Study of an Asymmetric Heart Valve Prototype
,”
Eur. J. Mech.: B/Fluids
,
35
, pp.
54
60
.
21.
Chan
,
J. K.
,
Merrifield
,
R.
,
Wage
,
R. R.
,
Symmonds
,
K.
,
Cannell
,
T.
,
Firmin
,
D. N.
,
Pepper
,
J. R.
,
Pennell
,
D. J.
, and
Kilner
,
P. J.
,
2008
, “
2082 ‘Two-Dimensional M-Mode’ Display of the Mitral Valve From CMR Cine Acquisitions: Insights Into Normal Leaflet and Annular Motion
,”
J. Cardiovasc. Magn. Reson.
,
10
(
Suppl. 1
), p.
A351
.
22.
Ranganathan
,
N.
,
Lam
,
J. H. C.
,
Wigle
,
E. D.
, and
Silver
,
M. D.
,
1970
, “
Morphology of the Human Mitral Valve: II. The Valve Leaflets
,”
Circulation
,
41
(
3
), pp.
459
467
.
23.
Ormiston
,
J. A.
,
Shah
,
P. M.
,
Tei
,
C.
, and
Wong
,
M.
,
1981
, “
Size and Motion of the Mitral Valve Annulus in Man. I. A Two-Dimensional Echocardiographic Method and Findings in Normal Subjects
,”
Circulation
,
64
(
1
), pp.
113
120
.
24.
Timek
,
T. A.
, and
Miller
,
D. C.
,
2001
, “
Experimental and Clinical Assessment of Mitral Annular Area and Dynamics: What are We Actually Measuring?
Ann. Thorac. Surg.
,
72
(
3
), pp.
966
974
.
25.
Rausch
,
M. K.
,
Bothe
,
W.
,
Kvitting
,
J.-P. E.
,
Swanson
,
J. C.
,
Ingels
,
N. B.
,
Miller
,
D. C.
, and
Kuhl
,
E.
,
2011
, “
Characterization of Mitral Valve Annular Dynamics in the Beating Heart
,”
Ann. Biomed. Eng.
,
39
(
6
), pp.
1690
1702
.
26.
Banai
,
S.
,
Jolicoeur
,
E. M.
,
Schwartz
,
M.
,
Garceau
,
P.
,
Biner
,
S.
,
Tanguay
,
J.-F.
,
Cartier
,
R.
,
Verheye
,
S.
,
White
,
C. J.
, and
Edelman
,
E.
,
2012
, “
Tiara: A Novel Catheter-Based Mitral Valve Bioprosthesis: Initial Experiments and Short-Term Pre-Clinical Results
,”
J. Am. Coll. Cardiol.
,
60
(
15
), pp.
1430
1431
.
27.
Jensen
,
M. O.
,
Jensen
,
H.
,
Smerup
,
M.
,
Levine
,
R. A.
,
Yoganathan
,
A. P.
,
Nygaard
,
H.
,
Hasenkam
,
J. M.
, and
Nielsen
,
S. L.
,
2008
, “
Saddle-Shaped Mitral Valve Annuloplasty Rings Experience Lower Forces Compared With Flat Rings
,”
Circulation
,
118
(
Suppl. 14
), pp.
S250
S255
.
28.
Daimon
,
M.
,
Fukuda
,
S.
,
Adams
,
D. H.
,
McCarthy
,
P. M.
,
Gillinov
,
A. M.
,
Carpentier
,
A.
,
Filsoufi
,
F.
,
Abascal
,
V. M.
,
Rigolin
,
V. H.
,
Salzberg
,
S.
,
Huskin
,
A.
,
Langenfeld
,
M.
, and
Shiota
,
T.
,
2006
, “
Mitral Valve Repair With Carpentier-McCarthy-Adams IMR ETlogix Annuloplasty Ring for Ischemic Mitral Regurgitation: Early Echocardiographic Results From a Multi-Center Study
,”
Circulation
,
114
(
Suppl. 1
), pp.
I588
1593
.
29.
Bothe
,
W.
,
Kvitting
,
J.-P. E.
,
Swanson
,
J. C.
,
Hartnett
,
S.
,
Ingels
,
N. B.
, and
Miller
,
D. C.
,
2010
, “
Effects of Different Annuloplasty Rings on Anterior Mitral Leaflet Dimensions
,”
J. Thorac. Cardiovasc. Surg.
,
139
(
5
), pp.
1114
1122
.
30.
Veronesi
,
F.
,
Corsi
,
C.
,
Sugeng
,
L.
,
Mor-Avi
,
V.
,
Caiani
,
E. G.
,
Weinert
,
L.
,
Lamberti
,
C.
, and
Lang
,
R. M.
,
2009
, “
A Study of Functional Anatomy of Aortic-Mitral Valve Coupling Using 3D Matrix Transesophageal Echocardiography
,”
Circ. Cardiovasc. Imaging
,
2
(
1
), pp.
24
31
.
31.
Okafor
,
I. U.
,
Santhanakrishnan
,
A.
,
Chaffins
,
B. D.
,
Mirabella
,
L.
,
Oshinski
,
J. N.
, and
Yoganathan
,
A. P.
,
2015
, “
Cardiovascular Magnetic Resonance Compatible Physical Model of the Left Ventricle for Multi-Modality Characterization of Wall Motion and Hemodynamics
,”
J. Cardiovasc. Magn. Reson.
,
17
(
1
), p.
51
.
32.
Carpentier
,
A.
,
Adams
,
D.
, and
Filsoufi
,
F.
,
2010
,
Valve Surgery
,
Saunders/Elsevier
,
Maryland Heights, MO
.
33.
Raffel
,
M.
,
Willert
,
C. E.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2007
,
Particle Image Velocimetry
,
Springer
,
Berlin
.
34.
White
,
F. M.
,
2006
,
Viscous Fluid Flow
,
McGraw-Hill Higher Education
,
New York
.
35.
Zhou
,
J.
,
Adrian
,
R. J.
,
Balachandar
,
S.
, and
Kendall
,
T. M.
,
1999
, “
Mechanisms for Generating Coherent Packets of Hairpin Vortices in Channel Flow
,”
J. Fluid Mech.
,
387
, pp.
353
396
.
36.
Adrian
,
R. J.
,
Christensen
,
K. T.
, and
Liu
,
Z.
,
2000
, “
Analysis and Interpretation of Instantaneous Turbulent Velocity Fields
,”
Exp. Fluids
,
29
(
35
), pp. 275–290.
37.
Cui
,
W.
,
Roberson
,
D. A.
,
Chen
,
Z.
,
Madronero
,
L. F.
, and
Cuneo
,
B. F.
,
2008
, “
Systolic and Diastolic Time Intervals Measured From Doppler Tissue Imaging: Normal Values and Z-Score Tables, and Effects of Age, Heart Rate, and Body Surface Area
,”
J. Am. Soc. Echocardiogr.
,
21
(
4
), pp.
361
370
.
38.
Pedrizzetti
,
G.
,
Domenichini
,
F.
, and
Tonti
,
G.
,
2010
, “
On the Left Ventricular Vortex Reversal After Mitral Valve Replacement
,”
Ann. Biomed. Eng.
,
38
(
3
), pp.
769
773
.
39.
Faludi
,
R.
,
Szulik
,
M.
,
D'hooge
,
J.
,
Herijgers
,
P.
,
Rademakers
,
F.
,
Pedrizzetti
,
G.
, and
Voigt
,
J.-U.
,
2010
, “
Left Ventricular Flow Patterns in Healthy Subjects and Patients With Prosthetic Mitral Valves: An In Vivo Study Using Echocardiographic Particle Image Velocimetry
,”
J. Thorac. Cardiovasc. Surg.
,
139
(
6
), pp.
1501
1510
.
40.
Siefert
,
A. W.
,
Jimenez
,
J. H.
,
Koomalsingh
,
K. J.
,
West
,
D. S.
,
Aguel
,
F.
,
Shuto
,
T.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, and
Yoganathan
,
A. P.
,
2012
, “
Dynamic Assessment of Mitral Annular Force Profile in an Ovine Model
,”
Ann. Thorac. Surg.
,
94
(
1
), pp.
59
65
.
41.
Kheradvar
,
A.
, and
Gharib
,
M.
,
2009
, “
On Mitral Valve Dynamics and Its Connection to Early Diastolic Flow
,”
Ann. Biomed. Eng.
,
37
(
1
), pp.
1
13
.
42.
Bolger
,
A. F.
,
Heiberg
,
E.
,
Karlsson
,
M.
,
Wigstr
,
L.
,
Watt
,
W.
, and
Medicine
,
C.
,
2007
, “
Transit of Blood Flow Through the Human Left Ventricle Mapped by Cardiovascular Magnetic Resonance
,”
J. Cardiovasc. Magn. Reson.
,
9
(
5
) pp.
741
747
.
43.
Rodevand
,
O.
,
Bjornerheim
,
R.
,
Edvardsen
,
T.
,
Smiseth
,
O. A.
, and
Ihlen
,
H.
,
1999
, “
Diastolic Flow Pattern in the Normal Left Ventricle
,”
J. Am. Soc. Echocardiogr.
,
12
(
6
), pp.
500
507
.
44.
Blondeaux
,
P.
, and
De Bernardinis
,
B.
,
2006
, “
On the Formation of Vortex Pairs Near Orifices
,”
J. Fluid Mech.
,
135
(
1983
), pp.
111
122
.
45.
Pedrizzetti
,
G.
,
2010
, “
Vortex Formation Out of Two-Dimensional Orifices
,”
J. Fluid Mech.
,
655
, pp.
198
216
.
46.
Levine
,
R. A.
,
Triulzi
,
M. O.
,
Harrigan
,
P.
, and
Weyman
,
A. E.
,
1987
, “
The Relationship of Mitral Annular Shape to the Diagnosis of Mitral Valve Prolapse
,”
Circulation
,
75
(
4
), pp.
756
767
.
47.
Timek
,
T. A.
,
Glasson
,
J. R.
,
Lai
,
D. T.
,
Liang
,
D.
,
Daughters
,
G. T.
,
Ingels
,
N. B.
, and
Miller
,
D. C.
,
2005
, “
Annular Height-to-Commissural Width Ratio of Annulolasty Rings In Vivo
,”
Circulation
,
112
(
Suppl. 9
), pp.
I423
I428
.
You do not currently have access to this content.