The Arrhenius formulation for single-step irreversible unimolecular reactions has been used for many decades to describe the thermal damage and cell death processes. Arrhenius predictions are acceptably accurate for structural proteins, for some cell death assays, and for cell death at higher temperatures in most cell lines, above about 55 °C. However, in many cases—and particularly at hyperthermic temperatures, between about 43 and 55 °C—the particular intrinsic cell death or damage process under study exhibits a significant “shoulder” region that constant-rate Arrhenius models are unable to represent with acceptable accuracy. The primary limitation is that Arrhenius calculations always overestimate the cell death fraction, which leads to severely overoptimistic predictions of heating effectiveness in tumor treatment. Several more sophisticated mathematical model approaches have been suggested and show much-improved performance. But simpler models that have adequate accuracy would provide useful and practical alternatives to intricate biochemical analyses. Typical transient intrinsic cell death processes at hyperthermic temperatures consist of a slowly developing shoulder region followed by an essentially constant-rate region. The shoulder regions have been demonstrated to arise chiefly from complex functional protein signaling cascades that generate delays in the onset of the constant-rate region, but may involve heat shock protein activity as well. This paper shows that acceptably accurate and much-improved predictions in the simpler Arrhenius models can be obtained by adding a temperature-dependent time delay. Kinetic coefficients and the appropriate time delay are obtained from the constant-rate regions of the measured survival curves. The resulting predictions are seen to provide acceptably accurate results while not overestimating cell death. The method can be relatively easily incorporated into numerical models. Additionally, evidence is presented to support the application of compensation law behavior to the cell death processes—that is, the strong correlation between the kinetic coefficients, ln{A} and Ea, is confirmed.

References

References
1.
Henriques
,
F. C.
,
1947
, “
Studies of Thermal Injury V. The Predictability and Significance of Thermally Induced Rate Processes Leading to Irreversible Epidermal Injury
,”
Arch. Pathol.
,
43
(
5
), pp.
489
502
.
2.
Henriques
,
F. C.
, and
Moritz
,
A. R.
,
1947
, “
Studies of Thermal Injury in the Conduction of Heat to and Through Skin and the Temperatures Attained Therein: A Theoretical and Experimental Investigation
,”
Am. J. Pathol.
,
23
(4), pp.
530
549
.
3.
Moritz
,
A. R.
,
1947
, “
Studies of Thermal Injury III. The Pathology and Pathogenesis of Cutaneous Burns: An Experimental Study
,”
Am. J. Pathol.
,
23
(6), pp.
915
941
.
4.
Moritz
,
A. R.
, and
Henriques
,
F. C.
,
1947
, “
Studies in Thermal Injury II: The Relative Importance of Time and Surface Temperature in the Causation of Cutaneous Burns
,”
Am. J. Pathol.
,
23
(5), pp.
695
720
.
5.
He
,
X.
,
Bhowmick
,
S.
, and
Bischof
,
J. C.
,
2009
, “
Thermal Therapy in Urologic Systems: A Comparison of Arrhenius and Thermal Isoeffective Dose Models in Predicting Hyperthermic Injury
,”
ASME J. Biomech. Eng.
,
131
(1), p.
745071
.
6.
Pearce
,
J. A.
,
2013
, “
Comparative Analysis of Mathematical Models of Cell Death and Thermal Damage Processes
,”
Int. J. Hyperthermia
,
29
(
4
), pp.
262
280
.
7.
He
,
X.
, and
Bischof
,
J. C.
,
2005
, “
The Kinetics of Thermal Injury in Human Renal Carcinoma Cells
,”
Ann. Biomed. Eng.
,
33
(
4
), pp.
502
510
.
8.
Bhowmick
,
S.
,
Swanlund
,
D. J.
, and
Bischof
,
J. C.
,
2000
, “
Supraphysiological Thermal Injury in Dunning AT-1 Prostate Tumor Cells
,”
ASME J. Biomech. Eng.
,
122
(
1
), pp.
51
59
.
9.
Feng
,
Y.
,
Oden
,
J. T.
, and
Rylander
,
M. N.
,
2008
, “
A Two-State Cell Damage Model Under Hyperthermic Conditions: Theory and In Vitro Experiments
,”
ASME J. Biomech. Eng.
,
130
(
4
), p.
041016
.
10.
Wright
,
N. T.
,
2013
, “
Comparison of Models of Post-Hyperthermia Cell Survival
,”
ASME J. Biomech. Eng.
,
135
(
5
), p.
51001
.
11.
Weinberg
,
W. A.
,
2007
,
The Biology of Cancer
,
Garland Science, Taylor & Francis
,
New York
.
12.
Vandenabeele
,
P.
,
Galluzzi
,
L.
,
Berghe
,
T. V.
, and
Kroemer
,
G.
,
2010
, “
Molecular Mechanisms of Necroptosis: An Ordered Cellular Explosion
,”
Nat. Rev. Mol. Cell Biol.
,
11
(
10
), pp.
700
714
.
13.
Vanlangenakker
,
N.
,
Bertrand
,
M. J. M.
,
Bogaert
,
P.
,
Vandenabeele
,
P.
, and
Berghe
,
T. V.
,
2011
, “
TNF-Induced Necroptosis in L929 Cells is Tightly Regulated by Multiple TNFR1 Complex I and II Members
,”
Cell Death Dis.
,
2
(
11
), p.
e230
.
14.
Gozuacik
,
D.
, and
Kimchi
,
A.
,
2004
, “
Autophagy as a Cell Death and Tumor Suppressor Mechanism
,”
Oncogene
,
23
(
16
), pp.
2891
2906
.
15.
Zhang
,
Y.
, and
Calderwood
,
S. K.
,
2011
, “
Autophagy, Protein Aggregation and Hyperthermia: A Mini-Review
,”
Int. J. Hyperthermia
,
27
(
5
), pp.
409
414
.
16.
Bergsbaken
,
T.
,
Fink
,
S. L.
,
den Hartigh
,
A. B.
,
Loomis
,
W. P.
, and
Cookson
,
B. T.
,
2011
, “
Coordinated Host Responses During Pyroptosis: Caspase-1-Dependent Lysosome Exocytosis and Inflammatory Cytokine Maturation
,”
J. Immunol.
,
187
(
5
), pp.
2748
2754
.
17.
Eissing
,
T.
,
Conzelmann
,
H.
,
Gilles
,
E. D.
,
Allgower
,
F.
,
Bullinger
,
E.
, and
Scheurich
,
P.
,
2004
, “
Bistability Analyses of a Caspase Activation Model for Receptor-Induced Apoptosis
,”
J. Biol. Chem.
,
279
(
35
), pp.
36892
36897
.
18.
Mackey
,
M.
, and
Roti
,
J. L. R.
,
1992
, “
A Model of Heat-Induced Clonogenic Cell Death
,”
J. Theor. Biol.
,
156
(
2
), pp.
133
146
.
19.
O'Neill
,
D. P.
,
Peng
,
T.
,
Stiegler
,
P.
,
Mayrhauser
,
U.
,
Koestenbauer
,
S.
,
Tscheliessnigg
,
K.
, and
Payne
,
S. J.
,
2011
, “
A Three-State Mathematical Model of Hyperthermic Cell Death
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
570
579
.
20.
Alberts
,
B.
,
Johnson
,
A.
,
Lewis
,
J.
,
Raff
,
M.
,
Roberts
,
K.
, and
Peter
,
W.
,
2008
,
Molecular Biology of the Cell
,
Garland Science
,
New York
.
21.
Cravalho
,
E. G.
,
1992
, “
Response of Cells to Supraphysiological Temperatures: Experimental Measurements and Kinetic Models
,”
Electrical Trauma. The Pathology, Manifestations and Clinical Management
,
R. C.
Lee
,
E. G.
Cravalho
, and
J. F.
Burke
, eds.,
Cambridge Press
, Cambridge, UK.
22.
Peschke
,
P.
,
Lohr
,
F.
,
Wolber
,
G.
,
Hoever
,
K.-H.
,
Wenz
,
F.
, and
Lorenz
,
W. J.
,
1992
, “
Response of the Rat Dunning R3327-AT1 Prostate Tumor to Treatment With Fractionated Fast Neutrons
,”
Radiat. Res.
,
129
(
1
), pp.
112
114
.
23.
Sapareto
,
S. A.
,
Hopwood
,
L. E.
,
Dewey
,
W. C.
,
Raju
,
M. R.
, and
Gray
,
J. W.
,
1978
, “
Effects of Hyperthermia on Survival and Progression of Chinese Hamster Ovary Cells
,”
Cancer Res.
,
38
(
2
), pp.
393
400
.
24.
Qin
,
Z. P.
,
Balasubramanian
,
S. K.
,
Wolkers
,
W. F.
,
Pearce
,
J. A.
, and
Bischof
,
J. C.
,
2014
, “
Correlated Parameter Fit of Arrhenius Model for Thermal Denaturation of Proteins and Cells
,”
Ann. Biomed. Eng.
,
42
(
12
), pp.
2392
2404
.
25.
Rosenberg
,
B.
,
Kemeny
,
G.
,
Switzer
,
R. C.
, and
Hamilton
,
T. C.
,
1971
, “
Quantitative Evidence for Protein Denaturation as the Cause of Thermal Death
,”
Nature
,
232
(
5311
), pp.
471
473
.
26.
Barrie
,
P. J.
,
2012
, “
The Mathematical Origins of the Kinetic Compensation Effect: 2. The Effect of Systematic Errors
,”
Phys. Chem. Chem. Phys.
,
14
(
1
), pp.
327
336
.
27.
Barrie
,
P. J.
,
2012
, “
The Mathematical Origins of the Kinetic Compensation Effect: 1. The Effect of Random Experimental Errors
,”
Phys. Chem. Chem. Phys.
,
14
(
1
), pp.
318
326
.
28.
Yelon
,
A.
,
Sacher
,
E.
, and
Linert
,
W.
,
2012
, “
Comment on ‘The Mathematical Origins of the Kinetic Compensation Effect’ Parts 1 and 2 by P. J. Barrie, Phys. Chem. Chem. Phys., 2012, 14, 318 and 327
,”
Phys. Chem. Chem. Phys.
,
14
(
22
), pp.
8232
8234
.
29.
Barrie
,
P. J.
,
2012
, “
Reply to ‘Comment on ‘The Mathematical Origins of the Kinetic Compensation Effect’ Parts 1 and 2' by A. Yelon, E. Sacher and W. Linert, Phys. Chem. Chem. Phys., 2012, 14, DOI: 10.1039/c2cp40618g
,”
Phys. Chem. Chem. Phys.
,
14
(
22
), pp.
8235
8236
.
30.
He
,
X.
, and
Bischof
,
J. C.
,
2003
, “
Quantification of Temperature and Injury Response in Thermal Therapy and Cryosurgery
,”
Crit. Rev. Biomed. Eng.
,
31
(
5–6
), pp.
355
421
.
31.
Wright
,
N. T.
,
2003
, “
On a Relationship Between the Arrhenius Parameters From Thermal Damage Studies
,”
ASME J. Biomech. Eng.
,
125
(
2
), pp.
300
304
.
32.
Eyring
,
H.
, and
Polyani
,
M.
,
1931
, “
Über Einfache Gasreaktionen (On Simple Gas Reactions)
,”
Z. Phys. Chem. B
,
12
, pp.
279
311
.
You do not currently have access to this content.