It is well known that the organization of the fibers constituting a collagenous tissue can affect its failure behavior. Less clear is how that effect can be described computationally so as to predict the failure of a native or engineered tissue under the complex loading conditions that can occur in vivo. Toward the goal of a general predictive strategy, we applied our multiscale model of collagen gel mechanics to the failure of a double-notched gel under tension, comparing the results for aligned and isotropic samples. In both computational and laboratory experiments, we found that the aligned gels were more likely to fail by connecting the two notches than the isotropic gels. For example, when the initial notches were 30% of the sample width (normalized tip-to-edge distance = 0.7), the normalized tip-to-tip distance at which the transition occurred from between-notch failure to across-sample failure shifted from 0.6 to 1.0. When the model predictions for the type of failure event (between the two notches versus across the sample width) were compared to the experimental results, the two were found to be strongly covariant by Fisher’s exact test (p < 0.05) for both the aligned and isotropic gels with no fitting parameters. Although the double-notch system is idealized, and the collagen gel system is simpler than a true tissue, it presents a simple model system for studying failure of anisotropic tissues in a controlled setting. The success of the computational model suggests that the multiscale approach, in which the structural complexity is incorporated via changes in the model networks rather than via changes to a constitutive equation, has the potential to predict tissue failure under a wide range of conditions.

References

References
1.
Fung
,
Y. C.
,
1993
,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer-Verlag
,
New York
, p.
568
.
2.
Humphrey
,
J. D.
, and
Delange
,
S. L.
,
2004
,
An Introduction to Biomechanics: Solids and Fluids, Analysis and Design
,
Springer
,
New York
, p.
631
.
3.
Jacobs
,
N. T.
,
Cortes
,
D. H.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2013
, “
Biaxial Tension of Fibrous Tissue: Using Finite Element Methods to Address Experimental Challenges Arising From Boundary Conditions and Anisotropy
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021004
.
4.
Avril
,
S.
,
Badel
,
P.
,
Gabr
,
M.
,
Sutton
,
M. A.
, and
Lessner
,
S. M.
,
2013
, “
Biomechanics of Porcine Renal Arteries and Role of Axial Stretch
,”
ASME J. Biomech. Eng.
,
135
(
8
), p.
81007
.
5.
Duprey
,
A.
,
Khanafer
,
K.
,
Schlicht
,
M.
,
Avril
,
S.
,
Williams
,
D.
, and
Berguer
,
R.
,
2010
, “
In Vitro Characterisation of Physiological and Maximum Elastic Modulus of Ascending Thoracic Aortic Aneurysms Using Uniaxial Tensile Testing
,”
Eur. J. Vasc. Endovascular Surg.
,
39
(
6
), pp.
700
707
.
6.
Thomopoulos
,
S.
,
Das
,
R.
,
Birman
,
V.
,
Smith
,
L.
,
Ku
,
K.
,
Elson
,
E. L.
,
Pryse
,
K. M.
,
Marquez
,
J. P.
, and
Genin
,
G. M.
,
2011
, “
Fibrocartilage Tissue Engineering: The Role of the Stress Environment on Cell Morphology and Matrix Expression
,”
Tissue Eng. Part A
,
17
(
7–8
), pp.
1039
1053
.
7.
Sander
,
E. A.
,
Lynch
,
K. A.
, and
Boyce
,
S. T.
,
2014
, “
Development of the Mechanical Properties of Engineered Skin Substitutes After Grafting to Full-Thickness Wounds
,”
ASME J. Biomech. Eng.
,
136
(
5
), p.
051008
.
8.
Vorp
,
D. A.
,
Schiro
,
B. J.
,
Ehrlich
,
M. P.
,
Juvonen
,
T. S.
,
Ergin
,
M. A.
, and
Griffith
,
B. P.
,
2003
, “
Effect of Aneurysm on the Tensile Strength and Biomechanical Behavior of the Ascending Thoracic Aorta
,”
Ann. Thorac. Surg.
,
75
(
4
), pp.
1210
1214
.
9.
Gasser
,
T. C.
, and
Holzapfel
,
G. A.
,
2006
, “
Modeling the Propagation of Arterial Dissection
,”
Eur. J. Mech. A
,
25
(
4
), pp.
617
633
.
10.
Gasser
,
T. C.
, and
Holzapfel
,
G. A.
,
2007
, “
Modeling Plaque Fissuring and Dissection During Balloon Angioplasty Intervention
,”
Ann. Biomed. Eng.
,
35
(
5
), pp.
711
723
.
11.
Pei
,
X.
,
Wu
,
B.
,
Tang
,
T. Y.
,
Gillard
,
J. H.
, and
Li
,
Z. Y.
,
2014
, “
Fatigue Crack Growth Under Pulsatile Pressure and Plaque Rupture
,”
JACC: Cardiovasc. Imaging
,
7
(
7
), pp.
738
740
.
12.
Pei
,
X.
,
Wu
,
B.
, and
Li
,
Z. Y.
,
2013
, “
Fatigue Crack Propagation Analysis of Plaque Rupture
,”
ASME J. Biomech. Eng.
,
135
(
10
), p.
101003
.
13.
Davies
,
R. R.
,
Goldstein
,
L. J.
,
Coady
,
M. A.
,
Tittle
,
S. L.
,
Rizzo
,
J. A.
,
Kopf
,
G. S.
, and
Elefteriades
,
J. A.
,
2002
, “
Yearly Rupture or Dissection Rates for Thoracic Aortic Aneurysms: Simple Prediction Based on Size
,”
Ann. Thorac. Surg.
,
73
(
1
), pp.
17
27
; Discussion 27-8.
14.
Pasta
,
S.
,
Phillippi
,
J. A.
,
Gleason
,
T. G.
, and
Vorp
,
D. A.
,
2012
, “
Effect of Aneurysm on the Mechanical Dissection Properties of the Human Ascending Thoracic Aorta
,”
J. Thorac. Cardiovasc. Surg.
,
143
(
2
), pp.
460
467
.
15.
Rheault
,
M. N.
,
Kren
,
S. M.
,
Thielen
,
B. K.
,
Mesa
,
H. A.
,
Crosson
,
J. T.
,
Thomas
,
W.
,
Sado
,
Y.
,
Kashtan
,
C. E.
, and
Segal
,
Y.
,
2004
, “
Mouse Model of X-Linked Alport Syndrome
,”
J. Am. Soc. Nephrol.
,
15
(
6
), pp.
1466
1474
.
16.
Iatridis
,
J. C.
, and
ap Gwynn
,
I.
,
2004
, “
Mechanisms for Mechanical Damage in the Intervertebral Disc Annulus Fibrosus
,”
J. Biomech.
,
37
(
8
), pp.
1165
1175
.
17.
Von Forell
,
G. A.
,
Hyoung
,
P. S.
, and
Bowden
,
A. E.
,
2014
, “
Failure Modes and Fracture Toughness in Partially Torn Ligaments and Tendons
,”
J. Mech. Behav. Biomed. Mater.
,
35
, pp.
77
84
.
18.
Hadi
,
M. F.
,
Sander
,
E. A.
, and
Barocas
,
V. H.
,
2012
, “
Multiscale Model Predicts Tissue-Level Failure from Collagen Fiber-Level Damage
,”
ASME J. Biomech. Eng.
,
134
(
9
), p.
091005
.
19.
Hadi
,
M. F.
, and
Barocas
,
V. H.
,
2013
, “
Microscale Fiber Network Alignment Affects Macroscale Failure Behavior in Simulated Collagen Tissue Analogs
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021026
.
20.
Ritter
,
M. C.
,
Jesudason
,
R.
,
Majumdar
,
A.
,
Stamenovic
,
D.
,
Buczek-Thomas
,
J. A.
,
Stone
,
P. J.
,
Nugent
,
M. A.
, and
Suki
,
B.
,
2009
, “
A Zipper Network Model of the Failure Mechanics of Extracellular Matrices
,”
Proc. Natl. Acad. Sci. U.S.A.
,
106
(
4
), pp.
1081
1086
.
21.
Buehler
,
M. J.
,
2008
, “
Nanomechanics of Collagen Fibrils Under Varying Cross-Link Densities: Atomistic and Continuum Studies
,”
J. Mech. Behav. Biomed. Mater.
,
1
(
1
), pp.
59
67
.
22.
Tang
,
H.
,
Buehler
,
M. J.
, and
Moran
,
B.
,
2009
, “
A Constitutive Model of Soft Tissue: From Nanoscale Collagen to Tissue Continuum
,”
Ann. Biomed. Eng.
,
37
(
6
), pp.
1117
1130
.
23.
Bell
,
E.
,
Ivarsson
,
B.
, and
Merrill
,
C.
,
1979
, “
Production of a Tissue-Like Structure by Contraction of Collagen Lattices by Human Fibroblasts of Different Proliferative Potential In Vivo
,”
Proc. Natl. Acad. Sci. U.S.A.
,
76
(
3
), pp.
1274
1278
.
24.
Eschenhagen
,
T.
,
Fink
,
C.
,
Remmers
,
U.
,
Scholz
,
H.
,
Wattchow
,
J.
,
Weil
,
J.
,
Zimmermann
,
W.
,
Dohmen
,
H. H.
,
Schafer
,
H.
,
Bishopric
,
N.
,
Wakatsuki
,
T.
, and
Elson
,
E. L.
,
1997
, “
Three-Dimensional Reconstitution of Embryonic Cardiomyocytes in a Collagen Matrix: A New Heart Muscle Model System
,”
FASEB J.
,
11
(
8
), pp.
683
694
.
25.
Marquez
,
J. P.
,
Genin
,
G. M.
,
Zahalak
,
G. I.
, and
Elson
,
E. L.
,
2005
, “
The Relationship Between Cell and Tissue Strain in Three-Dimensional Bio-Artificial Tissues
,”
Biophys. J.
,
88
(
2
), pp.
778
789
.
26.
Bursac
,
N.
,
Papadaki
,
M.
,
Cohen
,
R. J.
,
Schoen
,
F. J.
,
Eisenberg
,
S. R.
,
Carrier
,
R.
,
Vunjak-Novakovic
,
G.
, and
Freed
,
L. E.
,
1999
, “
Cardiac Muscle Tissue Engineering: Toward an In Vitro Model for Electrophysiological Studies
,”
Am. J. Physiol.
,
277
, pp.
H433
H444
.
27.
Butler
,
D. L.
,
Gooch
,
C.
,
Kinneberg
,
K. R.
,
Boivin
,
G. P.
,
Galloway
,
M. T.
,
Nirmalanandhan
, V
. S.
,
Shearn
,
J. T.
,
Dyment
,
N. A.
, and
Juncosa-Melvin
,
N.
,
2010
, “
The Use of Mesenchymal Stem Cells in Collagen-Based Scaffolds for Tissue-Engineered Repair of Tendons
,”
Nat. Protoc.
,
5
(
5
), pp.
849
863
.
28.
Chamberlain
,
M. D.
,
Butler
,
M. J.
,
Ciucurel
,
E. C.
,
Fitzpatrick
,
L. E.
,
Khan
,
O. F.
,
Leung
,
B. M.
,
Lo
,
C.
,
Patel
,
R.
,
Velchinskaya
,
A.
,
Voice
,
D. N.
, and
Sefton
,
M. V.
,
2010
, “
Fabrication of Micro-Tissues Using Modules of Collagen Gel Containing Cells
,”
J. Visualized Exp.: JoVE
,
13
(
46
), p.
2177
.
29.
Torbet
,
J.
, and
Ronziere
,
M. C.
,
1984
, “
Magnetic Alignment of Collagen During Self-Assembly
,”
Biochem. J.
,
219
(
3
), pp.
1057
1059
.
30.
Tranquillo
,
R. T.
,
Girton
,
T. S.
,
Bromberek
,
B. A.
,
Triebes
,
T. G.
, and
Mooradian
,
D. L.
,
1996
, “
Magnetically-Oriented Tissue-Equivalent Tubes: Application to a Circumferentially-Oriented Media-Equivalent
,”
Biomaterials
,
17
(
3
), pp.
349
357
.
31.
Thomopoulos
,
S.
,
Fomovsky
,
G. M.
,
Chandran
,
P. L.
, and
Holmes
,
J. W.
,
2007
, “
Collagen Fiber Alignment Does Not Explain Mechanical Anisotropy in Fibroblast Populated Collagen Gels
,”
ASME J. Biomech. Eng.
,
129
(
5
), pp.
642
650
.
32.
Eastwood
,
M.
,
Porter
,
R.
,
Khan
,
U.
,
McGrouther
,
G.
, and
Brown
,
R.
,
1996
, “
Quantitative Analysis of Collagen Gel Contractile Forces Generated by Dermal Fibroblasts and the Relationship to Cell Morphology
,”
J. Cell. Physiol.
,
166
(
1
), pp.
33
42
.
33.
Tower
,
T. T.
,
Neidert
,
M. R.
, and
Tranquillo
,
R. T.
,
2002
, “
Fiber Alignment Imaging During Mechanical Testing of Soft Tissues
,”
Ann. Biomed. Eng.
,
30
(
10
), pp.
1221
1233
.
34.
Sander
,
E. A.
,
Stylianopoulos
,
T.
,
Tranquillo
,
R. T.
, and
Barocas
,
V. H.
,
2009
, “
Image-Based Multiscale Modeling Predicts Tissue-Level and Network-Level Fiber Reorganization in Stretched Cell-Compacted Collagen Gels
,”
Proc. Natl. Acad. Sci. U.S.A.
,
106
(
42
), pp.
17675
17680
.
35.
Lake
,
S. P.
, and
Barocas
,
V. H.
,
2012
, “
Mechanics and Kinematics of Soft Tissue Under Indentation Are Determined by the Degree of Initial Collagen Fiber Alignment
,”
J. Mech. Behav. Biomed. Mater.
,
13
, pp.
25
35
.
36.
Guidry
,
C.
, and
Grinnell
,
F.
,
1985
, “
Studies on the Mechanism of Hydrated Collagen Gel Reorganization by Human Skin Fibroblasts
,”
J. Cell Sci.
,
79
, pp.
67
81
.
37.
Chandran
,
P. L.
,
Stylianopoulos
,
T.
, and
Barocas
,
V. H.
,
2008
, “
Microstructure-Based, Multiscale Modeling for the Mechanical Behavior of Hydrated Fiber Networks
,”
SIAM J. Multiscale Model. Simul.
,
7
(
1
), pp.
22
43
.
38.
Stylianopoulos
,
T.
, and
Barocas
, V
. H.
,
2007
, “
Volume-Averaging Theory for the Study of the Mechanics of Collagen Networks
,”
Comput. Methods Appl. Mech. Eng.
,
196
(31–32), pp.
2981
2990
.
39.
Billiar
,
K. L.
, and
Sacks
,
M. S.
,
2000
, “
Biaxial Mechanical Properties of the Native and Glutaraldehyde-Treated Aortic Valve Cusp: Part II—A Structural Constitutive Model
,”
ASME J. Biomech. Eng.
,
122
(
4
), pp.
327
335
.
40.
Zhang
,
L.
,
Lake
,
S. P.
,
Lai
,
V. K.
,
Picu
,
C. R.
,
Barocas
,
V. H.
, and
Shephard
,
M. S.
,
2013
, “
A Coupled Fiber-Matrix Model Demonstrates Highly Inhomogeneous Microstructural Interactions in Soft Tissues Under Tensile Load
,”
ASME J. Biomech. Eng.
,
135
(1), p.
011008
.
41.
Lai
, V
. K.
,
Lake
,
S. P.
,
Frey
,
C. R.
,
Tranquillo
,
R. T.
, and
Barocas
,
V. H.
,
2012
, “
Mechanical Behavior of Collagen-Fibrin Co-Gels Reflects Transition From Series to Parallel Interactions With Increasing Collagen Content
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011004
.
42.
Sue
,
H.
, and
Yee
,
H. F.
,
1993
, “
Study of Fracture Mechanisms of Multiphase Polymers Using the Double-Notch Four-Point-Bending Method
,”
J. Mater. Sci.
,
28
(
11
), pp.
2975
2980
.
43.
Geers
,
M. G. D.
,
de Borst
,
R.
, and
Peerlings
,
R. H. J.
,
2000
, “
Damage and Crack Modeling in Single-Edge and Double-Edge Notched Concrete Beams
,”
Eng. Fract. Mech.
,
65
(
2–3
), pp.
247
261
.
44.
Haque
,
M. A.
,
Kamita
,
G.
,
Kurokawa
,
T.
,
Tsujii
,
K.
, and
Gong
,
J. P.
,
2010
, “
Unidirectional Alignment of Lamellar Bilayer in Hydrogel: One-Dimensional Swelling, Anisotropic Modulus, and Stress/Strain Tunable Structural Color
,”
Adv. Mater.
,
22
(
45
), pp.
5110
5114
.
45.
Haque
,
M. A.
,
Kurokawa
,
T.
, and
Gong
,
J. P.
,
2012
, “
Anisotropic Hydrogel Based on Bilayers: Color, Strength, Toughness, and Fatigue Resistance
,”
Soft Matter
,
8
(
31
), pp.
8008
8016
.
46.
Shah
,
S. B.
,
Witzenburg
,
C.
,
Hadi
,
M. F.
,
Wagner
,
H. P.
,
Goodrich
,
J. M.
,
Alford
,
P. W.
, and
Barocas
,
V. H.
,
2014
, “
Prefailure and Failure Mechanics of the Porcine Ascending Thoracic Aorta: Experiments and a Multiscale Model
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021028
.
47.
Tong
,
J.
,
Sommer
,
G.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
,
2011
, “
Dissection Properties and Mechanical Strength of Tissue Components in Human Carotid Bifurcations
,”
Ann. Biomed. Eng.
,
39
(
6
), pp.
1703
1719
.
48.
Lee
,
D. J.
, and
Winkelstein
,
B. A.
,
2012
, “
The Failure Response of the Human Cervical Facet Capsular Ligament During Facet Joint Retraction
,”
J. Biomech.
,
45
(
14
), pp.
2325
2329
.
49.
Shen
,
Z. L.
,
Kahn
,
H.
,
Ballarini
,
R.
, and
Eppell
,
S. J.
,
2011
, “
Viscoelastic Properties of Isolated Collagen Fibrils
,”
Biophys. J.
,
100
(
12
), pp.
3008
3015
.
50.
Shen
,
Z. L.
,
Dodge
,
M. R.
,
Kahn
,
H.
,
Ballarini
,
R.
, and
Eppell
,
S. J.
,
2008
, “
Stress-Strain Experiments on Individual Collagen Fibrils
,”
Biophys. J.
,
95
(
8
), pp.
3956
3963
.
51.
Marquez
,
J. P.
,
Elson
,
E. L.
, and
Genin
,
G. M.
,
2010
, “
Whole Cell Mechanics of Contractile Fibroblasts: Relations Between Effective Cellular and Extracellular Matrix Moduli
,”
Philos. Trans. Ser. A
,
368
(
1912
), pp.
635
654
.
52.
Evans
,
M. C.
, and
Barocas
, V
. H.
,
2009
, “
The Modulus of Fibroblast-Populated Collagen Gels Is not Determined by Final Collagen and Cell Concentration: Experiments and an Inclusion-Based Model
,”
ASME J. Biomech. Eng.
,
131
(
10
), p.
101014
.
53.
Pizzo
,
A. M.
,
Kokini
,
K.
,
Vaughn
,
L. C.
,
Waisner
,
B. Z.
, and
Voytik-Harbin
,
S. L.
,
2005
, “
Extracellular Matrix (ECM) Microstructural Composition Regulates Local Cell-ECM Biomechanics and Fundamental Fibroblast Behavior: A Multidimensional Perspective
,”
J. Appl. Physiol.
,
98
(
5
), pp.
1909
1921
.
54.
Stevenson
,
M. D.
,
Sieminski
,
A. L.
,
McLeod
,
C. M.
,
Byfield
,
F. J.
,
Barocas
, V
. H.
, and
Gooch
,
K. J.
,
2010
, “
Pericellular Conditions Regulate Extent of Cell-Mediated Compaction of Collagen Gels
,”
Biophys. J.
,
99
(
1
), pp.
19
28
.
55.
Elamparithi
,
A.
,
Punnoose
,
A. M.
, and
Kuruvilla
,
S.
,
2015
, “
Electrospun Type 1 Collagen Matrices Preserving Native Ultrastructure Using Benign Binary Solvent for Cardiac Tissue Engineering
,”
Artif. Cells, Nanomed., Biotechnol.
, (epub).
56.
Satriano
,
A.
,
Bellini
,
C.
,
Vigmond
,
E. J.
, and
Di Martino
,
E. S.
,
2013
, “
A Feature-Based Morphing Methodology for Computationally Modeled Biological Structures Applied to Left Atrial Fiber Directions
,”
ASME J. Biomech. Eng.
,
135
(
3
), p.
031001
.
57.
Humphrey
,
J. D.
,
1995
, “
Mechanics of the Arterial Wall: Review and Directions
,”
Crit. Rev. Biomed. Eng.
,
23
(
1–2
), pp.
1
162
.
58.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc., Interface
,
3
(
6
), pp.
15
35
.
59.
Schriefl
,
A. J.
,
Wolinski
,
H.
,
Regitnig
,
P.
,
Kohlwein
,
S. D.
, and
Holzapfel
,
G. A.
,
2012
, “
An Automated Approach for Three-Dimensional Quantification of Fibrillar Structures in Optically Cleared Soft Biological Tissues
,”
J. R. Soc., Interface
,
10
(
80
), p.
20120760
.
60.
Schriefl
,
A. J.
,
Zeindlinger
,
G.
,
Pierce
,
D. M.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
,
2012
, “
Determination of the Layer-Specific Distributed Collagen Fibre Orientations in Human Thoracic and Abdominal Aortas and Common Iliac Arteries
,”
J. R. Soc., Interface
,
9
(
71
), pp.
1275
1286
.
61.
Haskett
,
D.
,
Johnson
,
G.
,
Zhou
,
A.
,
Utzinger
,
U.
, and
Vande Geest
,
J.
,
2010
, “
Microstructural and Biomechanical Alterations of the Human Aorta as a Function of Age and Location
,”
Biomech. Model. Mechanobiol.
,
9
(
6
), pp.
725
736
.
62.
Pierlot
,
C. M.
,
Lee
,
J. M.
,
Amini
,
R.
,
Sacks
,
M. S.
, and
Wells
,
S. M.
,
2014
, “
Pregnancy-Induced Remodeling of Collagen Architecture and Content in the Mitral Valve
,”
Ann. Biomed. Eng.
,
42
(
10
), pp.
2058
2071
.
63.
Wang
,
H.
,
Al-Qaisi
,
M. K.
, and
Akkin
,
T.
,
2010
, “
Polarization-Maintaining Fiber Based Polarization-Sensitive Optical Coherence Tomography in Spectral Domain
,”
Opt. Lett.
,
35
(
2
), pp.
154
156
.
64.
Stein
,
A. M.
,
Vader
,
D. A.
,
Jawerth
,
L. M.
,
Weitz
,
D. A.
, and
Sander
,
L. M.
,
2008
, “
An Algorithm for Extracting the Network Geometry of Three-Dimensional Collagen Gels
,”
J. Microsc.
,
232
(
3
), pp.
463
475
.
You do not currently have access to this content.