Knowledge of the nature of the elastic symmetry of trabecular bone is fundamental to the study of bone adaptation and failure. Previous studies have classified human vertebral trabecular bone as orthotropic or transversely isotropic but have typically obtained samples from only selected regions of the centrum. In this study, the elastic symmetry of human vertebral trabecular bone was characterized using microfinite element (μFE) analyses performed on 1019 cubic regions of side length equal to 5 mm, obtained via thorough sampling of the centrums of 18 human L1 vertebrae (age = 81.17 ± 7.7 yr; eight males and ten females). An optimization procedure was used to find the closest orthotropic representation of the resulting stiffness tensor for each cube. The orthotropic elastic constants and orientation of the principal elastic axes were then recorded for each cube and were compared to the constants predicted from Cowin's fabric-based constitutive model (Cowin, 1985, “The Relationship Between the Elasticity Tensor and the Fabric Tensor,” Mech. Mater., 4(2), pp. 137–147.) and the orientation of the principal axes of the fabric tensor, respectively. Deviations from orthotropy were quantified by the “orthotropic error” (van Rietbergen et al., 1996, “Direct Mechanics Assessment of Elastic Symmetries and Properties of Trabecular Bone Architecture,” J. Biomech., 29(12), pp. 1653–1657), and deviations from transverse isotropy were determined by statistical comparison of the secondary and tertiary elastic moduli. The orthotropic error was greater than 50% for nearly half of the cubes, and the secondary and tertiary moduli differed from one another (p < 0.0001). Both the orthotropic error and the difference between secondary and tertiary moduli decreased with increasing bone volume fraction (BV/TV; p ≤ 0.007). Considering only the cubes with an orthotropic error less than 50%, only moderate correlations were observed between the fabric-based and the μFE-computed elastic moduli (R2 ≥ 0.337; p < 0.0001). These results indicate that when using a criterion of 5 mm for a representative volume element (RVE), transverse isotropy or orthotropy cannot be assumed for elderly human vertebral trabecular bone. Particularly at low values of BV/TV, this criterion does not ensure applicability of theories of continuous media. In light of the very sparse and inhomogeneous microstructure found in the specimens analyzed in this study, further work is needed to establish guidelines for selecting a RVE within the aged vertebral centrum.

References

References
1.
Odgaard
,
A.
,
Kabel
,
J.
,
van Rietbergen
,
B.
,
Dalstra
,
M.
, and
Huiskes
,
R.
,
1997
, “
Fabric and Elastic Principal Directions of Cancellous Bone are Closely Related
,”
J. Biomech.
,
30
(
5
), pp.
487
495
.
2.
Cowin
,
S. C.
,
1985
, “
The Relationship Between the Elasticity Tensor and the Fabric Tensor
,”
Mech. Mater.
,
4
(
2
), pp.
137
147
.
3.
Zysset
,
P. K.
, and
Curnier
,
A.
,
1995
, “
An Alternative Model for Anisotropic Elasticity Based on Fabric Tensors
,”
Mech. Mater.
,
21
(
4
), pp.
243
250
.
4.
Keller
,
T. S.
,
Hansson
,
T. H.
,
Abram
,
A. C.
,
Spengler
,
D. M.
, and
Panjabi
,
M. M.
,
1989
, “
Regional Variations in the Compressive Properties of Lumbar Vertebral Trabeculae. Effects of Disc Degeneration
,”
Spine
,
14
(9), pp.
1012
1019
.
5.
Morgan
,
E. F.
, and
Keaveny
,
T. M.
,
2001
, “
Dependence of Yield Strain of Human Trabecular Bone on Anatomic Site
,”
J. Biomech.
,
34
(
5
), pp.
569
577
.
6.
Kim
,
D.-G.
,
Hunt
,
C.
,
Zauel
,
R.
,
Fyhrie
,
D.
, and
Yeni
,
Y.
,
2007
, “
The Effect of Regional Variations of the Trabecular Bone Properties on the Compressive Strength of Human Vertebral Bodies
,”
Ann. Biomed. Eng.
,
35
(
11
), pp.
1907
1913
.
7.
van Rietbergen
,
B.
,
Odgaard
,
A.
,
Kabel
,
J.
, and
Huiskes
,
R.
,
1998
, “
Relationships Between Bone Morphology and Bone Elastic Properties can be Accurately Quantified Using High-Resolution Computer Reconstructions
,”
J. Orthop. Res.
,
16
(1), pp.
23
28
.
8.
Kabel
,
J.
,
van Rietbergen
,
B.
,
Odgaard
,
A.
, and
Huiskes
,
R.
,
1999
, “
Constitutive Relationships of Fabric, Density, and Elastic Properties in Cancellous Bone Architecture
,”
Bone
,
25
(
4
), pp.
481
486
.
9.
Harrigan
,
T. P.
,
Jasty
,
M.
,
Mann
,
R. W.
, and
Harris
,
W. H.
,
1988
, “
Limitations of the Continuum Assumption in Cancellous Bone
,”
J. Biomech.
,
21
(
4
), pp.
269
275
.
10.
Ridler
,
T. W.
, and
Calvard
,
S.
,
1978
, “
Picture Thresholding Using an Iterative Selection Method
,”
IEEE Trans. Syst., Man Cybern.
,
8
(
8
), pp.
630
632
.
11.
Hoffler
,
C. E.
,
Moore
,
K. E.
,
Kozloff
,
K.
,
Zysset
,
P. K.
,
Brown
,
M. B.
, and
Goldstein
,
S. A.
,
2000
, “
Heterogeneity of Bone Lamellar-Level Elastic Moduli
,”
Bone
,
26
(
6
), pp.
603
609
.
12.
Hildebrand
,
T.
, and
Rüegsegger
,
P.
,
1997
, “
A New Method for the Model-Independent Assessment of Thickness in Three-Dimensional Images
,”
J. Microsc.
,
185
(
1
), pp.
67
75
.
13.
Whitehouse
,
W. J.
,
1974
, “
The Quantitative Morphology of Anisotropic Trabecular Bone
,”
J. Microsc.
,
101
(2), pp.
153
168
.
14.
Harrigan
,
T. P.
, and
Mann
,
R. W.
,
1984
, “
Characterization of Microstructural Anisotropy in Orthotropic Materials Using a Second Rank Tensor
,”
J. Mater. Sci.
,
19
(
3
), pp.
761
767
.
15.
van Rietbergen
,
B.
,
Odgaard
,
A.
,
Kabel
,
J.
, and
Huiskes
,
R.
,
1996
, “
Direct Mechanics Assessment of Elastic Symmetries and Properties of Trabecular Bone Architecture
,”
J. Biomech.
,
29
(
12
), pp.
1653
1657
.
16.
Gross
,
T.
,
Pahr
,
D.
, and
Zysset
,
P.
,
2013
, “
Morphology–Elasticity Relationships Using Decreasing Fabric Information of Human Trabecular Bone From Three Major Anatomical Locations
,”
Biomech. Model. Mechanobiol.
,
12
(
4
), pp.
793
800
.
17.
Panyasantisuk
,
J.
,
Pahr
,
D. H.
,
Gross
,
T.
, and
Zysset
,
P. K.
,
2015
, “
Comparison of Mixed and Kinematic Uniform Boundary Conditions in Homogenized Elasticity of Femoral Trabecular Bone Using Microfinite Element Analyses
,”
ASME J. Biomech. Eng.
,
137
(
1
), p.
011002
.
18.
Crawford
,
R.
,
Rosenberg
,
W. S.
, and
Keaveny
,
T. M.
,
2003
, “
Quantitative Computed Tomography-Based Finite Element Models of the Human Lumbar Vertebral Body: Effect of Element Size on Stiffness, Damage, and Fracture Strength Predictions
,”
ASME J. Biomech. Eng.
,
125
(4), pp.
434
438
.
19.
Chevalier
,
Y.
,
Charlebois
,
M.
,
Pahr
,
D.
,
Varga
,
P.
,
Heini
,
P.
,
Schneider
,
E.
, and
Zysset
,
P.
,
2008
, “
A Patient-Specific Finite Element Methodology to Predict Damage Accumulation in Vertebral Bodies Under Axial Compression, Sagittal Flexion and Combined Loads
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
(
5
), pp.
477
487
.
20.
Crawford
,
R. P.
,
Cann
,
C. E.
, and
Keaveny
,
T. M.
,
2003
, “
Finite Element Models Predict In Vitro Vertebral Body Compressive Strength Better Than Quantitative Computed Tomography
,”
Bone
,
33
(
4
), pp.
744
750
.
21.
Buckley
,
J. M.
,
Loo
,
K.
, and
Motherway
,
J.
,
2007
, “
Comparison of Quantitative Computed Tomography-Based Measures in Predicting Vertebral Compressive Strength
,”
Bone
,
40
(
3
), pp.
767
774
.
22.
Unnikrishnan
,
G. U.
,
Barest
,
G. D.
,
Berry
,
D. B.
,
Hussein
,
A. I.
, and
Morgan
,
E. F.
,
2013
, “
Effect of Specimen-Specific Anisotropic Material Properties in Quantitative Computed Tomography-Based Finite Element Analysis of the Vertebra
,”
ASME J. Biomech. Eng.
,
135
(10), p.
101007
.
23.
Pollintine
,
P.
,
Przybyla
,
A. S.
,
Dolan
,
P.
, and
Adams
,
M. A.
,
2004
, “
Neural Arch Load-Bearing in Old and Degenerated Spines
,”
J. Biomech.
,
37
(
2
), pp.
197
204
.
You do not currently have access to this content.