Osteoporosis is characterized by bony material loss and decreased bone strength leading to a significant increase in fracture risk. Patient-specific quantitative computed tomography (QCT) finite element (FE) models may be used to predict fracture under physiological loading. Material properties for the FE models used to predict fracture are obtained by converting grayscale values from the CT into volumetric bone mineral density (vBMD) using calibration phantoms. If there are any variations arising from the CT acquisition protocol, vBMD estimation and material property assignment could be affected, thus, affecting fracture risk prediction. We hypothesized that material property assignments may be dependent on scanning and postprocessing settings including voltage, current, and reconstruction kernel, thus potentially having an effect in fracture risk prediction. A rabbit femur and a standard calibration phantom were imaged by QCT using different protocols. Cortical and cancellous regions were segmented, their average Hounsfield unit (HU) values obtained and converted to vBMD. Estimated vBMD for the cortical and cancellous regions were affected by voltage and kernel but not by current. Our study demonstrated that there exists a significant variation in the estimated vBMD values obtained with different scanning acquisitions. In addition, the large noise differences observed utilizing different scanning parameters could have an important negative effect on small subregions containing fewer voxels.

References

References
1.
Kayanja
,
M. M.
,
Ferrara
,
L. A.
, and
Lieberman
,
I. H.
,
2004
, “
Distribution of Anterior Cortical Shear Strain after a Thoracic Wedge Compression Fracture
,”
Spine J.
,
4
(
1
), pp.
76
87
.
2.
Melton
,
L. J.
, III
, and
Kallmes
,
D. F.
,
2006
, “
Epidemiology of Vertebral Fractures: Implications for Vertebral Augmentation
,”
Acad. Radiol.
,
13
(
5
), pp.
538
545
.
3.
Homminga
,
J.
,
Weinans
,
H.
,
Gowin
,
W.
,
Felsenberg
,
D.
, and
Huiskes
,
R.
,
2001
, “
Osteoporosis Changes the Amount of Vertebral Trabecular Bone at Risk of Fracture But Not the Vertebral Load Distribution
,”
Spine
,
26
(
14
), pp.
1555
1561
.
4.
Imai
,
K.
,
Ohnishi
,
I.
,
Matsumoto
,
T.
,
Yamamoto
,
S.
, and
Nakamura
,
K.
,
2009
, “
Assessment of Vertebral Fracture Risk and Therapeutic Effects of Alendronate in Postmenopausal Women Using a Quantitative Computed Tomography-Based Nonlinear Finite Element Method
,”
Osteoporosis Int.
,
20
(
5
), pp.
801
810
.
5.
McDonnell
,
P.
,
McHugh
,
P. E.
, and
O'Mahoney
,
D.
,
2007
, “
Vertebral Osteoporosis and Trabecular Bone Quality
,”
Ann. Biomed. Eng.
,
35
(
2
), pp.
170
189
.
6.
Cann
,
C. E.
,
Genant
,
H. K.
,
Kolb
,
F. O.
, and
Ettinger
,
B.
,
1985
, “
Quantitative Computed Tomography for Prediction of Vertebral Fracture Risk
,”
Bone
,
6
(
1
), pp.
1
7
.
7.
Genant
,
H. K.
,
Ettinger
,
B.
,
Cann
,
C. E.
,
Reiser
,
U.
,
Gordan
,
G. S.
, and
Kolb
,
F. O.
,
1985
, “
Osteoporosis: Assessment by Quantitative Computed Tomography
,”
Orthop. Clin. N. Am.
,
16
(
3
), pp.
557
568
.
8.
Cann
,
C. E.
,
1987
, “
Quantitative CT Applications: Comparison of Current Scanners
,”
Radiology
,
162
(
1 Pt 1
), pp.
257
261
.
9.
Cann
,
C. E.
,
1988
, “
Quantitative CT for Determination of Bone Mineral Density: A Review
,”
Radiology
,
166
(
2
), pp.
509
522
.
10.
Biggemann
,
M.
,
Hilweg
,
D.
,
Seidel
,
S.
,
Horst
,
M.
, and
Brinckmann
,
P.
,
1991
, “
Risk of Vertebral Insufficiency Fractures in Relation to Compressive Strength Predicted by Quantitative Computed Tomography
,”
Eur. J. Radiol.
,
13
(
1
), pp.
6
10
.
11.
Lang
,
T. F.
,
Li
,
J.
,
Harris
,
S. T.
, and
Genant
,
H. K.
,
1999
, “
Assessment of Vertebral Bone Mineral Density Using Volumetric Quantitative CT
,”
J. Comput. Assisted Tomogr.
,
23
(
1
), pp.
130
137
.
12.
Dragomir-Daescu
,
D.
,
Op Den Buijs
,
J.
,
Mceligot
,
S.
,
Dai
,
Y.
,
Entwistle
,
R. C.
,
Salas
,
C.
,
Melton
,
L. J.
, III
,
Bennet
,
K. E.
,
Khosla
,
S.
, and
Amin
,
S.
,
2011
, “
Robust QCT/FEA Models of Proximal Femur Stiffness and Fracture Load During a Sideways Fall on the Hip
,”
Ann. Biomed. Eng.
,
39
(
2
), pp.
742
755
.
13.
Homminga
,
J.
,
Van-Rietbergen
,
B.
,
Lochmuller
,
E. M.
,
Weinans
,
H.
,
Eckstein
,
F.
, and
Huiskes
,
R.
,
2004
, “
The Osteoporotic Vertebral Structure is Well Adapted to the Loads of Daily Life, But Not to Infrequent ‘Error’ Loads
,”
Bone
,
34
(
3
), pp.
510
516
.
14.
Imai
,
K.
,
Ohnishi
,
I.
,
Bessho
,
M.
, and
Nakamura
,
K.
,
2006
, “
Nonlinear Finite Element Model Predicts Vertebral Bone Strength and Fracture Site
,”
Spine
,
31
(
16
), pp.
1789
1794
.
15.
Snyder
,
S. M.
, and
Schneider
,
E.
,
1991
, “
Estimation of Mechanical Properties of Cortical Bone by Computed Tomography
,”
J. Orthop. Res.
,
9
(
3
), pp.
422
431
.
16.
Kato
,
N.
,
Koshino
,
T.
,
Saito
,
T.
, and
Takeuchi
,
R.
,
1998
, “
Estimation of Young's Modulus in Swine Cortical Bone Using Quantitative Computed Tomography
,”
Bull. Hosp. Jt. Dis.
,
57
(
4
), pp.
183
186
.
17.
Anderson
,
D. E.
,
Demissie
,
S.
,
Allaire
,
B. T.
,
Bruno
,
A. G.
,
Kopperdahl
,
D. L.
,
Keaveny
,
T. M.
,
Kiel
,
D. P.
, and
Bouxsein
,
M. L.
,
2014
, “
The Associations Between QCT-Based Vertebral Bone Measurements and Prevalent Vertebral Fractures Depend on the Spinal Locations of Both Bone Measurement and Fracture
,”
Osteoporosis Int.
,
25
(
2
), pp.
559
566
.
18.
Morgan
,
E. F.
,
Bayraktar
,
H. H.
, and
Keaveny
,
T. M.
,
2003
, “
Trabecular Bone Modulus-Density Relationships Depend on Anatomic Site
,”
J. Biomech.
,
36
(
7
), pp.
897
904
.
19.
Keller
,
T. S.
,
1994
, “
Predicting the Compressive Mechanical Behavior of Bone
,”
J. Biomech.
,
27
(
9
), pp.
1159
1168
.
20.
Kopperdahl
,
D. L.
,
Morgan
,
E. F.
, and
Keaveny
,
T. M.
,
2002
, “
Quantitative Computed Tomography Estimates of the Mechanical Properties of Human Vertebral Trabecular Bone
,”
J. Orthop. Res.
,
20
(
4
), pp.
801
805
.
21.
Dragomir-Daescu
,
D.
,
Salas
,
C.
,
Uthamaraj
,
S.
, and
Rossman
,
T.
,
2015
, “
Quantitative Computed Tomography-Based Finite Element Analysis Predictions of Femoral Strength and Stiffness Depend on Computed Tomography Settings
,”
J. Biomech.
,
48
(
1
), pp.
153
161
.
22.
Levi
,
C.
,
Gray
,
J. E.
,
McCullough
,
E. C.
, and
Hattery
,
R. R.
,
1982
, “
The Unreliability of CT Numbers as Absolute Values
,”
Am. J. Roentgenol.
,
139
(
3
), pp.
443
447
.
23.
Bessho
,
M.
,
Ohnishi
,
I.
,
Matsuyama
,
J.
,
Matsumoto
,
T.
,
Imai
,
K.
, and
Nakamura
,
K.
,
2007
, “
Prediction of Strength and Strain of the Proximal Femur by a CT-Based Finite Element Method
,”
J. Biomech.
,
40
(
8
), pp.
1745
1753
.
24.
Buckley
,
J. M.
,
Cheng
,
L.
,
Loo
,
K.
,
Slyfield
,
C.
, and
Xu
,
Z.
,
2007
, “
Quantitative Computed Tomography-Based Predictions of Vertebral Strength in Anterior Bending
,”
Spine
,
32
(
9
), pp.
1019
1027
.
25.
Matsumoto
,
T.
,
Ohnishi
,
I.
,
Bessho
,
M.
,
Imai
,
K.
,
Ohashi
,
S.
, and
Nakamura
,
K.
,
2009
, “
Prediction of Vertebral Strength Under Loading Conditions Occurring in Activities of Daily Living Using a Computed Tomography-Based Nonlinear Finite Element Method
,”
Spine
,
34
(
14
), pp.
1464
1469
.
26.
Mirzaei
,
M.
,
Keshavarzian
,
M.
, and
Naeini
,
V.
,
2014
, “
Analysis of Strength and Failure Pattern of Human Proximal Femur Using Quantitative Computed Tomography (QCT)-Based Finite Element Method
,”
Bone
,
64
, pp.
108
114
.
27.
Mirzaei
,
M.
,
Zeinali
,
A.
,
Razmjoo
,
A.
, and
Nazemi
,
M.
,
2009
, “
On Prediction of the Strength Levels and Failure Patterns of Human Vertebrae Using Quantitative Computed Tomography (QCT)-Based Finite Element Method
,”
J. Biomech.
,
42
(
11
), pp.
1584
1591
.
28.
Wang
,
X.
,
Sanyal
,
A.
,
Cawthon
,
P. M.
,
Palermo
,
L.
,
Jekir
,
M.
,
Christensen
,
J.
,
Ensrud
,
K. E.
,
Cummings
,
S. R.
,
Orwoll
,
E.
,
Black
,
D. M.
, and
Keaveny
,
T. M.
,
2012
, “
Prediction of New Clinical Vertebral Fractures in Elderly Men Using Finite Element Analysis of CT Scans
,”
J. Bone Miner. Res.
,
27
(
4
), pp.
808
816
.
29.
Jang
,
K.
,
Kweon
,
D.
,
Lee
,
J.
,
Choi
,
J.
,
Goo
,
E.
,
Dong
,
K.
,
Lee
,
J.
,
Jin
,
G.
, and
Seo
,
S.
,
2011
, “
Measurement of Image Quality in CT Images Reconstructed With Different Kernels
,”
J. Korean Phys. Soc.
,
58
(
2
), pp.
334
342
.
You do not currently have access to this content.