The left ventricle function is to pump the oxygenated blood through the circulatory system. Ejection fraction is the main noninvasive parameter for detecting heart disease (healthy >55%), and it is thought to be the main parameter affecting efficiency. However, the effects of other parameters on efficiency have yet to be investigated. We investigate the effect of heart rate and left ventricle shape by carrying out 3D numerical simulations of a left ventricle at different heart rates and perturbed geometries under constant, normal ejection fraction. The simulation using the immersed boundary method provide the 3D flow and pressure fields, which enable direct calculation of a new hemodynamic efficiency (H-efficiency) parameter, which does not depend on any reference pressure. The H-efficiency is defined as the ratio of flux of kinetic energy (useful power) to the total cardiac power into the left ventricle control volume. Our simulations show that H-efficiency is not that sensitive to heart rate but is maximized at around normal heart rate (72 bpm). Nevertheless, it is more sensitive to the shape of the left ventricle, which affects the H-efficiency by as much as 15% under constant ejection fraction.

References

References
1.
Pedrizzetti
,
G.
, and
Domenichini
,
F.
,
2005
, “
Nature Optimizes the Swirling Flow in the Human Left Ventricle
,”
Phys. Rev. Lett.
,
95
(
10
), pp.
108101
108104
.
2.
Gharib
,
M.
,
Rambod
,
E.
,
Kheradvar
,
A.
,
Sahn
,
D. J.
, and
Dabiri
,
J. O.
,
2006
, “
Optimal Vortex Formation as an Index of Cardiac Health
,”
Proc. Natl. Acad. Sci.
,
103
(
16
), pp.
6305
6308
.
3.
Belohlavek
,
M.
,
Jiamsripong
,
P.
,
Calleja
,
A. M.
,
McMahon
,
E. M.
,
Maarouf
,
C. L.
,
Kokjohn
,
T. A.
,
Chaffin
,
T. L.
,
Vedders
,
L. J.
,
Garami
,
Z.
,
Beach
,
T. G.
,
Sabbagh
,
M. N.
, and
Roher
,
A. E.
,
2009
, “
Patients With Alzheimer Disease Have Altered Transmitral Flow Echocardiographic Analysis of the Vortex Formation Time
,”
J. Ultrasound Med.
,
28
(
11
), pp.
1493
1500
.
4.
Jiamsripong
,
P.
,
Alharthi
,
M. S.
,
Calleja
,
A. M.
,
McMahon
,
E. M.
,
Katayama
,
M.
,
Westerdale
,
J.
,
Milano
,
M.
,
Heys
,
J. J.
,
Mookadam
,
F.
, and
Belohlavek
,
M.
,
2010
, “
Impact of Pericardial Adhesions on Diastolic Function as Assessed by Vortex Formation Time, a Parameter of Transmitral Flow Efficiency
,”
Cardiovasc. Ultrasound
,
8
(
1
), p.
42
.
5.
Kheradvar
,
A.
,
Assadi
,
R.
,
Falahatpisheh
,
A.
, and
Sengupta
,
P. P.
,
2012
, “
Assessment of Transmitral Vortex Formation in Patients With Diastolic Dysfunction
,”
J. Am. Soc. Echocardiograph.
,
25
(
2
), pp.
220
227
.
6.
Gharib
,
M.
,
Rambod
,
E.
, and
Shariff
,
K.
,
1998
, “
A Universal Timescale for Vortex Ring Formation
,”
J. Fluid Mech.
,
360
, pp.
121
140
.
7.
Stewart
,
K. C.
,
Charonko
,
J. C.
,
Niebel
,
C. L.
,
Little
,
W. C.
, and
Vlachos
,
P. P.
,
2012
, “
Left Ventricular Vortex Formation is Unaffected by Diastolic Impairment
,”
Am. J. Physiol.-Heart Circul. Physiol.
,
303
(
10
), pp.
H1255
H1262
.
8.
Eriksson
,
J.
,
Dyverfeldt
,
P.
,
Engvall
,
J.
,
Bolger
,
A. F.
,
Ebbers
,
T.
, and
Carlhäll
,
C. J.
,
2011
, “
Quantification of Presystolic Blood Flow Organization and Energetics in the Human Left Ventricle
,”
Am. J. Physiol.-Heart Circul. Physiolo.
,
300
(
6
), pp.
H2135
H2141
.
9.
Eriksson
,
J.
,
Bolger
,
A. F.
,
Ebbers
,
T.
, and
Carlhäll
,
C.-J.
,
2013
, “
Four-Dimensional Blood Flow-Specific Markers of LV Dysfunction in Dilated Cardiomyopathy
,”
Eur. Heart J.—Cardiovasc. Imag.
,
14
(
5
), pp.
417
424
.
10.
Peskin
,
C.
,
1977
, “
Numerical Analysis of Blood Flow in the Heart
,”
J. Comput. Phys.
,
25
(
3
), pp.
220
252
.
11.
Nakamura
,
M.
,
Wada
,
S.
,
Mikami
,
T.
,
Kitabatake
,
A.
,
Karino
,
T.
, and
Yamaguchi
,
T.
,
2004
, “
Effect of Flow Disturbances Remaining at the Beginning of Diastole on Intraventricular Diastolic Flow and Colour M-Mode Doppler Echocardiograms
,”
Med. Biol. Eng. Comput.
,
42
(
4
), pp.
509
515
.
12.
Boffi
,
D.
,
Gastaldi
,
L.
,
Heltai
,
L.
, and
Peskin
,
C.
,
2008
, “
On the Hyper-Elastic Formulation of the Immersed Boundary Method
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
25
), pp.
2210
2231
.
13.
Domenichini
,
F.
,
Pedrizzetti
,
G.
, and
Baccani
,
B.
,
2005
, “
Three-Dimensional Filling Flow Into a Model Left Ventricle
,”
J. Fluid Mech.
,
539
, pp.
179
198
.
14.
Domenichini
,
F.
, and
Pedrizzetti
,
G.
,
2011
, “
Intraventricular Vortex Flow Changes in the Infarcted Left Ventricle: Numerical Results in an Idealised 3D Shape
,”
Comput. Methods Biomechan. Biomed. Eng.
,
14
(01), pp.
95
101
.
15.
Pedrizzetti
,
G.
,
Domenichini
,
F.
, and
Tonti
,
G.
,
2010
, “
On the Left Ventricular Vortex Reversal After Mitral Valve Replacement
,”
Ann. Biomed, Eng.
,
38
(
3
), pp.
769
773
.
16.
Mangual
,
J. O.
,
Kraigher-Krainer
,
E.
,
De Luca
,
A.
,
Toncelli
,
L.
,
Shah
,
A.
,
Solomon
,
S.
,
Galanti
,
G.
,
Domenichini
,
F.
, and
Pedrizzetti
,
G.
,
2013
, “
Comparative Numerical Study on Left Ventricular Fluid Dynamics After Dilated Cardiomyopathy
,”
J. Biomech.
,
46
(
11
), pp.
1611
1617
.
17.
Saber
,
N.
,
Gosman
,
A.
,
Wood
,
N.
,
Kilner
,
P.
,
Charrier
,
C.
, and
Firmin
,
D.
,
2001
, “
Computational Flow Modeling of the Left Ventricle Based on In Vivo MRI Data: Initial Experience
,”
Ann. Biomed. Eng.
,
29
(
4
), pp.
275
283
.
18.
Schenkel
,
T.
,
Malve
,
M.
,
Reik
,
M.
,
Markl
,
M.
,
Jung
,
B.
, and
Oertel
,
H.
,
2009
, “
MRI-Based CFD Analysis of Flow in a Human Left Ventricle: Methodology and Application to a Healthy Heart
,”
Ann. Biomed. Eng.
,
37
(
3
), pp.
503
515
.
19.
Sotiropoulos
,
F.
, and
Borazjani
,
I.
,
2009
, “
A Review of State-of-the-Art Numerical Methods for Simulating Flow Through Mechanical Heart Valves
,”
Med. Biol. Eng. Comput.
,
47
(
3
), pp.
245
256
.
20.
Kerfoot
,
E.
,
Lamata
,
P.
,
Niederer
,
S.
,
Hose
,
R.
,
Spaan
,
J.
, and
Smith
,
N.
,
2013
, “
Share and Enjoy: Anatomical Models Database Generating and Sharing Cardiovascular Model Data Using Web Services
,”
Med. Biol. Eng. Comput.
,
51
(
11
), pp.
1181
1190
.
21.
Weese
,
J.
,
Groth
,
A.
,
Nickisch
,
H.
,
Barschdorf
,
H.
,
Weber
,
F. M.
,
Velut
,
J.
,
Castro
,
M.
,
Toumoulin
,
C.
,
Coatrieux
,
J.-L.
,
De Craene
,
M.
,
Piella
,
G.
,
Tobón-Gomez
,
C.
,
Frangi
,
A. F.
,
Barber
,
D. C.
,
Valverde
,
I.
,
Shi
,
Y.
,
Staicu
,
C.
,
Brown
,
A.
,
Beerbaum
,
P.
, and
Hose
,
D. R.
,
2013
, “
Generating Anatomical Models of the Heart and the Aorta From Medical Images for Personalized Physiological Simulations
,”
Med. Biol. Eng. Comp.
,
51
(
11
), pp.
1209
1219
.
22.
Le
,
T. B.
, and
Sotiropoulos
,
F.
,
2013
, “
Fluid-Structure Interaction of an Aortic Heart Valve Prosthesis Driven by an Animated Anatomic Left Ventricle
,”
J. Comput. Phys.
,
244
, p.
4162
.
23.
Borazjani
,
I.
,
Ge
,
L.
,
Le
,
T.
, and
Sotiropoulos
,
F.
,
2013
, “
A Parallel Overset-Curvilinear-Immersed Boundary Framework for Simulating Complex 3D Incompressible Flows
,”
Comput. Fluids
,
77
, pp.
76
96
.
24.
Borazjani
,
I.
,
Westerdale
,
J.
,
McMahon
,
E.
,
Rajaraman
,
P. K.
,
Heys
,
J.
, and
Belohlavek
,
M.
,
2013
, “
Left Ventricular Flow Analysis: Recent Advances in Numerical Methods and Applications in Cardiac Ultrasound
,”
Comput. Math. Methods Med., Special Issue: Comput. Anal. Coronary Ventric. Hemodynam.
,
2013
, p.
395081
.
25.
Bermejo
,
J.
,
Martínez-Legazpi
,
P.
, and
del Álamo
,
J. C.
,
2015
, “
The Clinical Assessment of Intraventricular Flows
,”
Ann. Rev. Fluid Mechan.
,
47
(
1
), pp.
315
342
.
26.
Pedrizzetti
,
G.
, and
Domenichini
,
F.
,
2015
, “
Left Ventricular Fluid Mechanics: The Long Way From Theoretical Models to Clinical Applications
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
26
40
.
27.
Gilmanov
,
A.
, and
Sotiropoulos
,
F.
,
2005
, “
A Hybrid Cartesian/Immersed Boundary Method for Simulating Flows With 3D, Geometrically Complex, Moving Bodies
,”
J. Comput. Phys.
,
207
(
2
), pp.
457
492
.
28.
Ge
,
L.
, and
Sotiropoulos
,
F.
,
2007
, “
A Numerical Method for Solving the 3D Unsteady Incompressible Navier--Stokes Equations in Curvilinear Domains With Complex Immersed Boundaries
,”
J. Comput. Phys.
,
225
(
2
), pp.
1782
1809
.
29.
Borazjani
,
I.
,
Ge
,
L.
, and
Sotiropoulos
,
F.
,
2008
, “
Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction With Complex 3D Rigid Bodies
,”
J. Comput. Phys.
,
227
(
16
), pp.
7587
7620
.
30.
Behara
,
S.
,
Borazjani
,
I.
, and
Sotiropoulos
,
F.
,
2011
, “
Vortex-Induced Vibrations of an Elastically Mounted Sphere With Three Degrees of Freedom at Re = 300: Hysteresis and Vortex Shedding Modes
,”
J. Fluid Mech.
,
686
, pp.
426
450
.
31.
Borazjani
,
I.
, and
Sotiropoulos
,
F.
,
2009
, “
Vortex-Induced Vibrations of Two Cylinders in Tandem Arrangement in the Proximity–Wake Interference Region
,”
J. Fluid Mech.
,
621
, pp.
321
364
.
32.
Borazjani
,
I.
,
2013
, “
The Functional Role of Caudal and Anal/Dorsal Fins During the C-Start of a Bluegill Sunfish
,”
J. Exp. Biol.
,
216
(
9
), pp.
1658
1669
.
33.
Borazjani
,
I.
, and
Daghooghi
,
M.
,
2013
, “
The Fish Tail Motion Forms an Attached Leading Edge Vortex
,”
Proc. R. Soc. B
,
280
(
1756
), p.
20122071
.
34.
Borazjani
,
I.
, and
Sotiropoulos
,
F.
,
2010
, “
On the Role of Form and Kinematics on the Hydrodynamics of Self-Propelled Body/Caudal Fin Swimming
,”
J. Exp. Biol.
,
213
(
1
), pp.
89
107
.
35.
Borazjani
,
I.
, and
Sotiropoulos
,
F.
,
2009
, “
Numerical Investigation of the Hydrodynamics of Anguilliform Swimming in the Transitional and Inertial Flow Regimes
,”
J. Exp. Biol.
,
212
(
4
), pp.
576
592
.
36.
Borazjani
,
I.
, and
Sotiropoulos
,
F.
,
2008
, “
Numerical Investigation of the Hydrodynamics of Carangiform Swimming in the Transitional and Inertial Flow Regimes
,”
J. Exp. Biol.
,
211
(
10
), pp.
1541
1558
.
37.
Borazjani
,
I.
,
Sotiropoulos
,
F.
,
Tytell
,
E. D.
, and
Lauder
,
G. V.
,
2012
, “
Hydrodynamics of the Bluegill Sunfish C-Start Escape Response: Three-Dimensional Simulations and Comparison With Experimental Data
,”
J. Exp. Biol.
,
215
(
4
), pp.
671
684
.
38.
Borazjani
,
I.
,
Sotiropoulos
,
F.
,
Malkiel
,
E.
, and
Katz
,
J.
,
2010
, “
On the Role of Copepod Antenna in the Production of Hydrodynamic Force During Hopping
,”
J. Exp. Biol.
,
213
(
17
), pp.
3019
3035
.
39.
Borazjani
,
I.
,
2013
, “
Fluid–Structure Interaction, Immersed Boundary-Finite Element Method Simulations of Bio-Prosthetic Heart Valves
,”
Comput. Methods Appl. Mech. Eng.
,
257
, pp.
103
116
.
40.
Borazjani
,
I.
,
Ge
,
L.
, and
Sotiropoulos
,
F.
,
2010
, “
High-Resolution Fluid–Structure Interaction Simulations of Flow Through a Bi-Leaflet Mechanical Heart Valve in an Anatomic Aorta
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
326
344
.
41.
Borazjani
,
I.
, and
Sotiropoulos
,
F.
,
2010
, “
The Effect of Implantation Orientation of a Bi-Leaflet Mechanical Heart Valve on Kinematics and Hemodynamics in an Anatomic Aorta
,”
ASME J. Biomech. Eng.
,
132
(
11
), p.
111005
.
42.
Mangual
,
J.
,
Domenichini
,
F.
, and
Pedrizzetti
,
G.
,
2012
, “
Describing the Highly Three Dimensional Right Ventricle Flow
,”
Ann. Biomed. Eng.
,
40
(
8
), pp.
1790
1801
.
43.
Rideout
,
V. C.
,
1991
,
Mathematical and Computer Modeling of Physiological Systems
,
Prentice Hall
,
Englewood Cliffs, NJ
.
44.
Osranek
,
M.
,
Eisenach
,
J. H.
,
Khandheria
,
B. K.
,
Chandrasekaran
,
K.
,
Seward
,
J. B.
, and
Belohlavek
,
M.
,
2008
, “
Arterioventricular Coupling and Ventricular Efficiency After Antihypertensive Therapy: A Noninvasive Prospective Study
,”
Hypertension
,
51
(
2
), pp.
275
281
.
45.
Bing
,
R.
,
Hammond
,
M.
,
Handelsman
,
J.
,
Powers
,
S.
,
Spencer
,
F.
,
Eckenhoff
,
J.
,
Goodale
,
W.
,
Hafkenschiel
,
J.
, and
Kety
,
S.
,
1949
, “
The Measurement of Coronary Blood Flow, Oxygen Consumption, and Efficiency of the Left Ventricle in Man
,”
Am. Heart J.
,
38
(
1
), pp.
1
24
.
46.
Kassab
,
G. S.
,
Algranati
,
D.
, and
Lanir
,
Y.
,
2013
, “
Myocardial-Vessel Interaction: Role of LV Pressure and Myocardial Contractility
,”
Med. Biol. Eng. Comput.
,
51
(
7
), pp.
729
739
.
47.
Shwartz
,
L.
,
Ben-Haim
,
S.
,
Elami
,
A.
,
Hassan
,
A.
, and
Edoute
,
Y.
,
1991
, “
Algorithm for Calculating Left Ventricular Mechanical and Energetic Characteristics
,”
Med. Biol. Eng. Comput.
,
29
(
3
), pp.
318
323
.
48.
Hunt
,
J.
,
Wray
,
A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,” Summer Program, pp.
193
208
.
49.
Douglas
,
P. S.
,
Morrow
,
R.
,
Ioli
,
A.
, and
Reichek
,
N.
,
1989
, “
Left Ventricular Shape, Afterload and Survival in Idiopathic Dilated Cardiomyopathy
,”
J. Am. College Cardiol.
,
13
(
2
), pp.
311
315
.
50.
Mitchell
,
G. F.
,
Lamas
,
G. A.
,
Vaughan
,
D. E.
, and
Pfeffer
,
M. A.
,
1992
, “
Left Ventricular Remodeling in the Year After First Anterior Myocardial Infarction: A Quantitative Analysis of Contractile Segment Lengths and Ventricular Shape
,”
J. Am. College Cardiol.
,
19
(
6
), pp.
1136
1144
.
51.
Salgo
,
I. S.
,
Tsang
,
W.
,
Ackerman
,
W.
,
Ahmad
,
H.
,
Chandra
,
S.
,
Cardinale
,
M.
, and
Lang
,
R. M.
,
2012
, “
Geometric Assessment of Regional Left Ventricular Remodeling by Three-Dimensional Echocardiographic Shape Analysis Correlates With Left Ventricular Function
,”
J. Am. Soc. Echocardiogr.
,
25
(
1
), pp.
80
88
.
52.
Rajan
,
N. K.
,
Song
,
Z.
,
Hoffmann
,
K. R.
,
Belohlavek
,
M.
,
McMahon
,
E. R.
, and
Borazjani
,
I.
,
2014
, “
3D Reconstruction of the Left Ventricle From Four Echocardiographic Projections
,”
ASME
Paper No. pp.
DETC2014-34463
.
53.
Li
,
G.
, and
He
,
B.
,
2004
, “
Non-Invasive Estimation of Myocardial Infarction by Means of a Heart-Model-Based Imaging Approach: A Simulation Study
,”
Med. Biol. Eng. Comput.
,
42
(
1
), pp.
128
136
.
54.
Perl
,
M.
,
Horowitz
,
A.
, and
Sideman
,
S.
,
1986
, “
Comprehensive Model for the Simulation of Left Ventricle Mechanics
,”
Med. Biol. Eng. Comput.
,
24
(
2
), pp.
145
149
.
55.
Long
,
Q.
,
Merrifield
,
R.
,
Yang
,
G.
,
Xu
,
X.
,
Kilner
,
P.
, and
Firmin
,
D.
,
2003
, “
The Influence of Inflow Boundary Conditions on Intra Left Ventricle Flow Predictions
,”
ASME J. Biomech. Eng.
,
125
(
6
), pp.
922
927
.
56.
Chung
,
C. S.
,
Karamanoglu
,
M.
, and
Kovács
,
S. J.
,
2004
, “
Duration of Diastole and its Phases as a Function of Heart Rate During Supine Bicycle Exercise
,”
Am. J. Physiol. Heart Circul. Physiol.
,
287
(
5
), pp.
H2003
H2008
.
57.
Acharya
,
U. R.
,
Joseph
,
K. P.
,
Kannathal
,
N.
,
Lim
,
C. M.
, and
Suri
,
J. S.
,
2006
, “
Heart Rate Variability: A Review
,”
Med. Biol. Eng. Comput.
,
44
(
12
), pp.
1031
1051
.
You do not currently have access to this content.