In flow through cardiovascular implants, hemolysis, and thrombosis may be initiated by nonphysiological shear stress on blood elements. To enhance understanding of the small-scale flow structures that stimulate cellular responses, and ultimately to design devices for reduced blood damage, it is necessary to study the flow-field at high spatial and temporal resolution. In this work, we investigate flow in the reverse leakage jet from the hinge of a bileaflet mechanical heart valve (BMHV). Scaled-up model hinges are employed, enabling measurement of the flow-field at effective spatial resolution of 167 μm and temporal resolution of 594 μs using two-component particle image velocimetry (PIV). High-velocity jets were observed at the hinge outflow, with time-average velocity up to 5.7 m/s, higher than reported in previous literature. Mean viscous shear stress is up to 60 Pa. For the first time, strongly unsteady flow has been observed in the leakage jet. Peak instantaneous shear stress is up to 120 Pa, twice as high as the average value. These high-resolution measurements identify the hinge leakage jet as a region of very high fluctuating shear stress which is likely to be thrombogenic and should be an important target for future design improvement.

References

References
1.
Vallana
,
F.
,
Rinaldi
,
S.
,
Galletti
,
P.
,
Nguyen
,
A.
, and
Piwnica
,
A.
,
1992
, “
Pivot Design in Bileaflet Valves
,”
ASAIO J.
,
38
(
3
), pp.
M600
606
.
2.
Ellis
,
J. T.
,
Healy
,
T. M.
,
Fontaine
,
A. A.
,
Saxena
,
R.
, and
Yoganathan
,
A. P.
,
1996
, “
Velocity Measurements and Flow Patterns Within the Hinge Region of a Medtronic Parallel Bileaflet Mechanical Valve With Clear Housing
,”
J. Heart Valve Dis.
,
5
(
6
), pp.
591
599
.
3.
Ellis
,
J. T.
,
Travis
,
B. R.
, and
Yoganathan
,
A. P.
,
2000
, “
An In Vitro Study of the Hinge and Near-Field Forward Flow Dynamics of the St. Jude Medical Regent Bileaflet Mechanical Heart Valve
,”
Ann. Biomed. Eng.
,
28
(
5
), pp.
524
532
.
4.
Fallon
,
A. M.
,
Shah
,
N.
,
Marzec
,
U. M.
,
Warnock
,
J. N.
,
Yoganathan
,
A. P.
, and
Hanson
,
S. R.
,
2006
, “
Flow and Thrombosis at Orifices Simulating Mechanical Heart Valve Leakage Regions
,”
ASME J. Biomech. Eng.
,
128
(
1
), pp.
30
39
.
5.
Jun
,
B. H.
,
Saikrishnan
,
N.
,
Arjunon
,
S.
,
Yun
,
B. M.
, and
Yoganathan
,
A. P.
,
2014
, “
Effect of Hinge Gap Width of a St. Jude Medical Bileaflet Mechanical Heart Valve on Blood Damage Potential: An In Vitro Micro Particle Image Velocimetry Study
,”
ASME J. Biomech. Eng.
,
136
(
9
), p.
091008
.
6.
Woo
,
Y. R.
, and
Yoganathan
,
A. P.
,
1986
, “
In Vitro Pulsatile Flow Velocity and Shear Stress Measurements in the Vicinity of Mechanical Mitral Heart Valve Prostheses
,”
J. Biomech.
,
19
(
1
), pp.
39
51
.
7.
Zhao
,
J. B.
,
Shi
,
Y. B.
,
Yeo
,
T. J.
, and
Hwang
,
N. H.
,
2001
, “
Digital Particle Image Velocimetry Investigation of the Pulsating Flow Around a Simplified 2-D Model of a Bileaflet Heart Valve
,”
J. Heart Valve Dis.
,
10
(
2
), pp.
239
253
.
8.
Herbertson
,
L. H.
,
Deutsch
,
S.
, and
Manning
,
K. B.
,
2011
, “
Near Valve Flows and Potential Blood Damage During Closure of a Bileaflet Mechanical Heart Valve
,”
ASME J. Biomech. Eng.
,
133
(
9
), p.
094507
.
9.
Brown
,
C. H.
,
Leverett
,
L. B.
,
Lewis
,
C. W.
,
Alfrey
,
C. P.
, and
Hellums
,
J. D.
,
1975
, “
Morphological, Biochemical, and Functional Changes in Human Platelets Subjected to Shear Stress
,”
J. Lab. Clin. Med.
,
86
(
3
), pp.
462
471
.
10.
Hellums
,
J. D.
,
Peterson
,
D. M.
,
Stathopoulos
,
N. A.
,
Moake
,
J. L.
, and
Giorgio
,
T. D.
,
1987
, “
Studies on the Mechanisms of Shear-Induced Platelet Activation
,”
Cereb. Ischemia Hemorheol.
, Springer, Berlin, pp.
80
89
.
11.
Hung
,
T. C.
,
Hochmuth
,
R. M.
,
Joist
,
J. H.
, and
Sutera
,
S. P.
,
1976
, “
Shear-Induced Aggregation and Lysis of Platelets
,”
Trans. Am. Soc. Artif. Intern. Organs
,
22
(
1
), pp.
285
291
.
12.
Sheriff
,
J.
,
Bluestein
,
D.
,
Girdhar
,
G.
, and
Jesty
,
J.
,
2010
, “
High-Shear Stress Sensitizes Platelets to Subsequent Low-Shear Conditions
,”
Ann. Biomed. Eng.
,
38
(
4
), pp.
1442
1450
.
13.
Leverett
,
L. B.
,
Hellums
,
J. D.
,
Alfrey
,
C. P.
, and
Lynch
,
E. C.
,
1972
, “
Red Blood Cell Damage by Shear Stress
,”
Biophys. J.
,
12
(
3
), pp.
257
273
.
14.
Williams
,
A. R.
,
Hughes
,
D. E.
, and
Nyborg
,
W. L.
,
1970
, “
Hemolysis Near a Transversely Oscillating Wire
,”
Science
,
169
(
3948
), pp.
871
873
.
15.
Paul
,
R.
,
Apel
,
J.
,
Klaus
,
S.
,
Schügner
,
F.
,
Schwindke
,
P.
, and
Reul
,
H.
,
2003
, “
Shear Stress Related Blood Damage in Laminar Couette Flow
,”
Artif. Organs
,
27
(
6
), pp.
517
529
.
16.
Travis
,
B. R.
,
Marzec
,
U. M.
,
Leo
,
H. L.
,
Momin
,
T.
,
Sanders
,
C.
,
Hanson
,
S. R.
, and
Yoganathan
,
A. P.
,
2001
, “
Bileaflet Aortic Valve Prosthesis Pivot Geometry Influences Platelet Secretion and Anionic Phospholipid Exposure
,”
Ann. Biomed. Eng.
,
29
(
8
), pp.
657
664
.
17.
Leo
,
H. L.
,
Simon
,
H. A.
,
Dasi
,
L. P.
, and
Yoganathan
,
A. P.
,
2006
, “
Effect of Hinge Gap Width on the Microflow Structures in 27-mm Bileaflet Mechanical Heart Valves
,”
J. Heart Valve Dis.
,
15
(
6
), pp.
800
808
.
18.
Simon
,
H. A.
,
Ge
,
L.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
A. P.
,
2010
, “
Numerical Investigation of the Performance of Three Hinge Designs of Bileaflet Mechanical Heart Valves
,”
Ann. Biomed. Eng.
,
38
(
11
), pp.
3295
3310
.
19.
Simon
,
H. A.
,
Leo
,
H. L.
,
Carberry
,
J.
, and
Yoganathan
,
A. P.
,
2004
, “
Comparison of the Hinge Flow Fields of Two Bileaflet Mechanical Heart Valves Under Aortic and Mitral Conditions
,”
Ann. Biomed. Eng.
,
32
(
12
), pp.
1607
1617
.
20.
Manning
,
K. B.
,
Kini
,
V.
,
Fontaine
,
A. A.
,
Deutsch
,
S.
, and
Tarbell
,
J. M.
,
2003
, “
Regurgitant Flow Field Characteristics of the St. Jude Bileaflet Mechanical Heart Valve Under Physiologic Pulsatile Flow Using Particle Image Velocimetry
,”
Artif. Organs
,
27
(
9
), pp.
840
846
.
21.
Wang
,
G.
,
2013
, “
Fluid Dynamics Characterization of Biomedical Implantable Devices: Experimental Measurements and Numerical Simulation
,” Ph.D. thesis, Università degli Studi di Padova, Padua, Italy.
22.
Jun
,
B. H.
,
Saikrishnan
,
N.
, and
Yoganathan
,
A. P.
,
2014
, “
Micro Particle Image Velocimetry Measurements of Steady Diastolic Leakage Flow in the Hinge of a St. Jude Medical® Regent Mechanical Heart Valve
,”
Ann. Biomed. Eng.
,
42
(
3
), pp.
526
540
.
23.
Simon
,
H. A.
,
Ge
,
L.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
A. P.
,
2010
, “
Simulation of the Three-Dimensional Hinge Flow Fields of a Bileaflet Mechanical Heart Valve Under Aortic Conditions
,”
Ann. Biomed. Eng.
,
38
(
3
), pp.
841
853
.
24.
Affeld
,
K.
,
Walker
,
P.
, and
Schichl
,
K.
,
1989
, “
The Use of Image Processing in the Investigation of Artificial Heart Valve Flow
,”
Trans. Am. Soc. Artif. Intern. Organs
,
35
(
3
), pp.
294
298
.
25.
Knoch
,
M.
,
Reul
,
H.
,
Kröger
,
R.
, and
Rau
,
G.
,
1988
, “
Model Studies at Mechanical Aortic Heart Valve Prostheses–Part I: Steady-State Flow Fields and Pressure Loss Coefficients
,”
ASME J. Biomech. Eng.
,
110
(
4
), pp.
334
343
.
26.
Healy
,
T. M.
,
Fontaine
,
A. A.
,
Ellis
,
J. T.
,
Walton
,
S. P.
, and
Yoganathan
,
A. P.
,
1998
, “
Visualization of the Hinge Flow in a 5:1 Scaled Model of the Medtronic Parallel Bileaflet Heart Valve Prosthesis
,”
Exp. Fluid.
,
25
(
5–6
), pp.
512
518
.
27.
Bellofiore
,
A.
,
Donohue
,
E. M.
, and
Quinlan
,
N. J.
,
2011
, “
Scale-Up of an Unsteady Flow Field for Enhanced Spatial and Temporal Resolution of PIV Measurements: Application to Leaflet Wake Flow in a Mechanical Heart Valve
,”
Exp. Fluid.
,
51
(
1
), pp.
161
176
.
28.
Bellofiore
,
A.
, and
Quinlan
,
N. J.
,
2011
, “
High-Resolution Measurement of the Unsteady Velocity Field to Evaluate Blood Damage Induced by a Mechanical Heart Valve
,”
Ann. Biomed. Eng.
,
39
(
9
), pp.
2417
2429
.
29.
ANSYS
, “
Academic Research, Release 14.5
.”
30.
Klusak
,
E.
,
Bellofiore
,
A.
,
Loughnane
,
S.
, and
Quinlan
,
N. J.
,
2015
, “
Velocity Vector Fields, Measured at the Outflow From Two Hinge Models of a Bileaflet Mechanical Heart Valve, Using 2-Component Particle Image Velocimetry Technique
,”
Zenodo
, European Organization for Nuclear Research, CERN, Genève, Switzerland.
31.
Quinlan
,
N. J.
, and
Dooley
,
P. N.
,
2007
, “
Models of Flow-Induced Loading on Blood Cells in Laminar and Turbulent Flow, With Application to Cardiovascular Device Flow
,”
Ann. Biomed. Eng.
,
35
(
8
), pp.
1347
1356
.
32.
Ge
,
L.
,
Dasi
,
L.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
A. P.
,
2008
, “
Characterization of Hemodynamic Forces Induced by Mechanical Heart Valves: Reynolds vs. Viscous Stresses
,”
Ann. Biomed. Eng.
,
36
(
2
), pp.
276
297
.
33.
Ellis
,
J. T.
,
1999
, “
An In Vitro Investigation of the Leakage and Hinge Flow Fields Through Bileaflet Mechanical Heart Valves and Their Relevance to Thrombogenesis
,”
Ph.D. Dissertation
, Georgia Institute of Technology,
Atlanta, GA
.
34.
Bluestein
,
D.
,
Li
,
Y. M.
, and
Krukenkamp
,
I. B.
,
2002
, “
Free Emboli Formation in the Wake of Bi-Leaflet Mechanical Heart Valves and the Effects of Implantation Techniques
,”
J. Biomech.
,
35
(
12
), pp.
1533
1540
.
35.
Bluestein
,
D.
,
Chandran
,
K. B.
, and
Manning
,
K. B.
,
2010
, “
Towards Non-Thrombogenic Performance of Blood Recirculating Devices
,”
Ann. Biomed. Eng.
,
38
(
3
), pp.
1236
1256
.
You do not currently have access to this content.