Several features of the tendon-to-bone attachment were examined allometrically to determine load transfer mechanisms. The humeral head diameter increased geometrically with animal mass. Area of the attachment site exhibited a near isometric increase with muscle physiological cross section. In contrast, the interfacial roughness as well as the mineral gradient width demonstrated a hypoallometric relationship with physiologic cross-sectional area (PCSA). The isometric increase in attachment area indicates that as muscle forces increase, the attachment area increases accordingly, thus maintaining a constant interfacial stress. Due to the presence of constant stresses at the attachment, the micrometer-scale features may not need to vary with increasing load.

References

References
1.
Genin
,
G. M.
,
Kent
,
A.
,
Birman
,
V.
,
Wopenka
,
B.
,
Pasteris
,
J. D.
,
Marquez
,
P. J.
, and
Thomopoulos
,
S.
,
2009
, “
Functional Grading of Mineral and Collagen in the Attachment of Tendon to Bone
,”
Biophys. J.
,
97
(
4
), pp.
976
985
.
2.
Liu
,
Y.
,
Thomopoulos
,
S.
,
Chen
,
C.
,
Birman
,
V.
,
Buehler
,
M. J.
, and
Genin
,
G. M.
,
2014
, “
Modelling the Mechanics of Partially Mineralized Collagen Fibrils, Fibres and Tissue
,”
J. R. Soc. Interface
,
11
(
92
), p.
20130835
.
3.
Liu
,
Y. X.
,
Thomopoulos
,
S.
,
Birman
,
V.
,
Li
,
J. S.
, and
Genin
,
G. M.
,
2012
, “
Bi-Material Attachment Through a Compliant Interfacial System at the Tendon-to-Bone Insertion Site
,”
Int. J. Mech. Mater.
,
44
, pp.
83
92
.
4.
Thomopoulos
,
S.
,
Marquez
,
J. P.
,
Weinberger
,
B.
,
Birman
,
V.
, and
Genin
,
G. M.
,
2006
, “
Collagen Fiber Orientation at the Tendon to Bone Insertion and Its Influence on Stress Concentrations
,”
J. Biomech.
,
39
(
10
), pp.
1842
1851
.
5.
Hu
,
Y.
,
Birman
,
V.
,
Demyier-Black
,
A.
,
Schwartz
,
A. G.
,
Thomopoulos
,
S.
, and
Genin
,
G. M.
,
2015
, “
Stochastic Interdigitation as a Toughening Mechanism at the Interface Between Tendon and Bone
,”
Biophys. J.
,
108
(
2
), pp.
431
437
.
6.
Suresh
,
S.
,
2001
, “
Graded Materials for Resistance to Contact Deformation and Damage
,”
Science
,
292
(
5526
), pp.
2447
2451
.
7.
Galatz
,
L. M.
,
Ball
,
C. M.
,
Teefey
,
S. A.
,
Middleton
,
W. D.
, and
Yamaguchi
,
K.
,
2004
, “
The Outcome and Repair Integrity of Completely Arthroscopically Repaired Large and Massive Rotator Cuff Tears
,”
J. Bone Jt. Surg. Am.
,
86
(
2
), pp.
219
224
.
8.
Harryman
,
D.
,
Mack
,
L.
,
Wang
,
K.
,
Jackins
,
S.
,
Richardson
,
M.
, and
Matsen
,
F.
,
1991
, “
Repairs of the Rotator Cuff: Correlation of Functional Results With Integrity of the Cuff
,”
J. Bone Jt. Surg.
,
73
(
7
), pp.
982
989
.
9.
Wopenka
,
B.
,
Kent
,
A.
,
Pasteris
,
J. D.
,
Yoon
,
Y.
, and
Thomopoulos
,
S.
,
2008
, “
The Tendon-to-Bone Transition of the Rotator Cuff: A Preliminary Raman Spectroscopic Study Documenting the Gradual Mineralization Across the Insertion in Rat Tissue Samples
,”
Appl. Spectrosc.
,
62
(
12
), pp.
1285
1294
.
10.
Shoval
,
O.
,
Sheftel
,
H.
,
Shinar
,
G.
,
Hart
,
Y.
,
Ramote
,
O.
,
Mayo
,
A.
,
Dekel
,
E.
,
Kavanagh
,
K.
, and
Alon
,
U.
,
2012
, “
Evolutionary Trade-Offs, Pareto Optimality, and the Geometry of Phenotype Space
,”
Science
,
336
(
6085
), pp.
1157
1160
.
11.
Galilei
,
G.
,
2001
,
Dialogues Concerning Two New Sciences
,
William Andrew Publishing
,
Norwich, NY
.
12.
Huxley
,
J. S.
, and
Teissier
,
G.
,
1936
, “
Terminology of Relative Growth
,”
Nature
,
137
(
3471
), pp.
780
781
.
13.
Alexander
,
R. M.
,
2005
, “
Models and the Scaling of Energy Costs for Locomotion
,”
J. Exp. Biol.
,
208
(
9
), pp.
1645
1652
.
14.
Franz
,
R.
,
Hummel
,
J.
,
Kienzle
,
E.
,
Kölle
,
P.
,
Gunga
,
H.-C.
, and
Clauss
,
M.
,
2009
, “
Allometry of Visceral Organs in Living Amniotes and Its Implications for Sauropod Dinosaurs
,”
Proc. R. Soc. B: Biol. Sci.
,
276
(
1662
), pp.
1731
1736
.
15.
Gayon
,
J.
,
2000
, “
History of the Concept of Allometry
,”
Am. Zool.
,
40
(
5
), pp.
748
758
.
16.
Gould
,
S. J.
,
1971
, “
Geometric Similarity in Allometric Growth: A Contribution to the Problem of Scaling in the Evolution of Size
,”
Am. Nat.
,
105
(
942
), pp.
113
136
.
17.
Champy
,
C.
,
1924
,
Les Caractères Sexuels Considérés Comme Phénomènes de Développement et Dans Leurs Rapports Avec l'hormone Sexuelle
,
G.
Doin
,
Paris
.
18.
McMahon
,
T. A.
,
1975
, “
Using Body Size to Understand Structural Design of Animals-Quadrupedal Locomotion
,”
J. Appl. Physiol.
,
39
(
4
), pp.
619
627
.
19.
Shingleton
,
A.
,
2010
, “
Allometry: The Study of Biological Scaling
,”
Nat. Educ. Knowl.
,
3
(
10
), p. 2.
20.
Fang
,
Q.
, and
Boas
,
D. A.
,
2009
, “
Tetrahedral Mesh Generation From Volumetric Binary and Grayscale Images
,”
Sixth IEEE International Conference on Symposium on Biomedical Imaging: From Nano to Macro
(
ISBI '09
),
Boston, MA
, June 28–July 1, pp.
1142
1145
.
21.
Schwartz
,
A. G.
,
Lipner
,
J. H.
,
Pasteris
,
J. D.
,
Genin
,
G. M.
, and
Thomopoulos
,
S.
,
2013
, “
Muscle Loading is Necessary for the Formation of a Functional Tendon Enthesis
,”
Bone
,
55
(
1
), pp.
44
51
.
22.
Schwartz
,
A. G.
,
Pasteris
,
J. D.
,
Genin
,
G. M.
,
Daulton
,
T. L.
, and
Thomopoulos
,
S.
,
2012
, “
Mineral Distributions at the Developing Tendon Enthesis
,”
PLoS One
,
7
(
11
), p. e48630.
23.
Mathewson
,
M. A.
,
Kwan
,
A.
,
Eng
,
C. M.
,
Lieber
,
R. L.
, and
Ward
,
S. R.
,
2013
, “
Comparison of Rotator Cuff Muscle Architecture Among Humans and Selected Vertebrate Species
,”
J. Exp. Biol.
,
217
(
Pt. 2
), pp.
261
273
.
24.
Bodine
,
S. C.
,
Roy
,
R. R.
,
Meadows
,
D. A.
,
Zernicke
,
R. F.
,
Sacks
,
R. D.
,
Fournier
,
M.
, and
Edgerton
,
V. R.
,
1982
, “
Architectural, Histochemical, and Contractile Characteristics of a Unique Biarticular Muscle: The Cat Semitendinosus
,”
J. Neurophysiol.
,
48
(
1
), pp.
192
201
.
25.
Lieber
,
R. L.
, and
Friden
,
J.
,
2000
, “
Functional and Clinical Significance of Skeletal Muscle Architecture
,”
Muscle Nerve
,
23
(
11
), pp.
1647
1666
.
26.
Powell
,
P. L.
,
Roy
,
R. R.
,
Kanim
,
P.
,
Bello
,
M. A.
, and
Edgerton
,
V. R.
,
1984
, “
Predictability of Skeletal Muscle Tension From Architectural Determinations in Guinea Pig Hindlimbs
,”
J. Appl. Physiol.: Respir., Environ. Exercise Physiol.
,
57
(
6
), pp.
1715
1721
.
27.
Doube
,
M.
,
Conroy
,
A. W.
,
Christiansen
,
P.
,
Hutchinson
,
J. R.
, and
Shefelbine
,
S.
,
2009
, “
Three-Dimensional Geometric Analysis of Felid Limb Bone Allometry
,”
PLoS One
,
4
(
3
), p.
e4742
.
28.
Di Masso
,
R. J.
,
Celoria
,
G. C.
, and
Font
,
M. T.
,
1998
, “
Morphometric Skeletal Traits, Femoral Measurements, and Bone Mineral Deposition in Mice With Agonistic Selection for Body Conformation
,”
Bone
,
22
(
5
), pp.
539
543
.
29.
Alexander
,
R. M.
,
Jayes
,
A. S.
,
Maloiy
,
G. M. O.
, and
Wathuta
,
E. M.
,
1979
, “
Allometry of the Limb Bones of Mammals From Shrews (Sorex) to Elephant (Loxodonta)
,”
J. Zool.
,
189
(
3
), pp.
305
314
.
30.
Brianza
,
S. Z. M.
,
D'Amelio
,
P.
,
Pugno
,
N.
,
Delise
,
M.
,
Bignardi
,
C.
, and
Isaia
,
G.
,
2007
, “
Allometric Scaling and Biomechanical Behavior of the Bone Tissue: An Experimental Intraspecific Investigation
,”
Bone
,
40
(
6
), pp.
1635
1642
.
31.
Biewener
,
A. A.
,
1983
, “
Allometry of Quadrupedal Locomotion: The Scaling of Duty Factor, Bone Curvature and Limb Orientation to Body Size
,”
J. Exp. Biol.
,
105
(
1
), pp.
147
171
.
32.
Christiansen
,
P.
,
2002
, “
Mass Allometry of the Appendicular Skeleton in Terrestrial Mammals
,”
J. Morphol.
,
251
(
2
), pp.
195
209
.
33.
Doube
,
M.
,
Klosowski
,
M. M.
,
Wiktorowicz-Conroy
,
A. M.
,
Hutchinson
,
J. R.
, and
Shefelbine
,
S. J.
,
2011
, “
Trabecular Bone Scales Allometrically in Mammals and Birds
,”
Proc. R. Soc. B
,
278
(
1721
), pp.
3067
3073
.
34.
Ryan
,
T. M.
, and
Shaw
,
C. N.
,
2013
, “
Trabecular Bone Microstructure Scales Allometrically in the Primate Humerus and Femur
,”
Proc. R. Soc. B
,
280
(
1758
), p.
20130172
.
35.
Swartz
,
S. M.
,
Parker
,
A.
, and
Huo
,
C.
,
1998
, “
Theoretical and Empirical Scaling Patterns and Topological Homology in Bone Trabeculae
,”
J. Exp. Biol.
,
201
(
4
), pp.
573
590
.
36.
Barak
,
M. M.
,
Lieberman
,
D. E.
, and
Hublin
,
J. J.
,
2013
, “
Of Mice, Rats and Men: Trabecular Bone Architecture in Mammals Scales to Body Mass With Negative Allometry
,”
J. Struct. Biol.
,
183
(
2
), pp.
123
131
.
37.
Alexander
,
R. M.
,
2002
, “
Tendon Elasticity and Muscle Function
,”
Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol.
,
133
(
4
), pp.
1001
1011
.
38.
Biewener
,
A. A.
,
2005
, “
Biomechanical Consequences of Scaling
,”
J. Exp. Biol.
,
208
(
Pt. 9
), pp.
1665
1676
.
39.
Cutts
,
A.
,
Alexander
,
R. M.
, and
Ker
,
R. F.
,
1991
, “
Ratios of Cross-Sectional Areas of Muscles and Their Tendons in a Healthy Human Forearm
,”
J Anat.
,
176
, pp.
133
137
.
40.
Ker
,
R. F.
,
Alexander
,
R. M.
, and
Bennett
,
M. B.
,
1988
, “
Why Are Mammalian Tendons So Thick?
,”
J. Zool.
,
216
(
2
), pp.
309
324
.
41.
Pollock
,
C. M.
, and
Shadwick
,
R. E.
,
1994
, “
Allometry of Muscle, Tendon, and Elastic Energy Storage Capacity in Mammals
,”
Am. J. Physiol.
,
266
(
3 Pt. 2
), pp.
R1022
R1031
.
42.
Hu
,
Y.
,
Birman
,
V.
,
Deymier-Black
,
A.
,
Schwartz
,
A.
,
Thomopoulos
,
S.
, and
Genin
,
G. M.
,
2015
, “
Stochastic Interdigitation as a Toughening Mechanism at the Interface Between Tendon and Bone
,”
Biophys. J.
,
108
(
2
), pp.
431
437
.
43.
Thomopoulos
,
S.
,
Birman
,
V.
, and
Genin
,
G. M.
,
2013
,
Structural Interfaces and Attachments in Biology
,
Springer
,
New York
.
44.
Miserez
,
A.
,
Schneberk
,
T.
,
Sun
,
C. J.
,
Zok
,
F. W.
, and
Waite
,
J. H.
,
2008
, “
The Transition From Stiff to Compliant Materials in Squid Beaks
,”
Science
,
319
(
5871
), pp.
1816
1819
.
45.
Sun
,
C.
, and
Waite
,
J. H.
,
2005
, “
Mapping Chemical Gradients Within and Along a Fibrous Structural Tissue, Mussel Byssal Threads
,”
J. Biol. Chem.
,
280
(
47
), pp.
39332
39336
.
46.
Khanarian
,
N. T.
,
Boushell
,
M. K.
,
Spalazzi
,
J. P.
,
Pleshko
,
N.
,
Boskey
,
A. L.
, and
Lu
,
H. H.
,
2014
, “
FTIR-I Compositional Mapping of the Cartilage-to-Bone Interface as a Function of Tissue Region and Age
,”
J. Bone Miner. Res.
,
29
(
12
), pp.
2643
2652
.
47.
Spalazzi
,
J. P.
,
Boskey
,
A. L.
,
Pleshko
,
N.
, and
Lu
,
H. H.
,
2013
, “
Quantitative Mapping of Matrix Content and Distribution Across the Ligament-to-Bone Insertion
,”
PLoS One
,
8
(
9
), p.
e74349
.
48.
Abraham
,
A. C.
,
Pauly
,
H. M.
, and
Haut Donahue
,
T. L.
,
2014
, “
Deleterious Effects of Osteoarthritis on the Structure and Function of the Meniscal Enthesis
,”
Osteoarthritis Cartilage
,
22
(
2
), pp.
275
283
.
49.
Hauch
,
K. N.
,
Oyen
,
M. L.
,
Odegard
,
G. M.
, and
Haut Donahue
,
T. L.
,
2009
, “
Nanoindentation of the Insertional Zones of Human Meniscal Attachments Into Underlying Bone
,”
J. Mech. Behav. Biomed. Mater.
,
2
(
4
), pp.
339
347
.
50.
Lu
,
H. H.
, and
Thomopoulos
,
S.
,
2013
, “
Functional Attachment of Soft Tissues to Bone: Development, Healing, and Tissue Engineering
,”
Annu. Rev. Biomed. Eng.
,
15
(
1
), pp.
201
226
.
51.
Alexander
,
R. M.
,
1995
, “
Big Flies Have Bigger Cells
,”
Nature
,
375
(
6526
), p.
20
.
52.
Stevenson
,
R. D.
,
Hill
,
M. F.
, and
Bryant
,
P. J.
,
1995
, “
Organ and Cell Allometry in Hawaiian Drosophila: How to Make a Big Fly
,”
Proc. R. Soc. London, Ser. B
,
259
(
1355
), pp.
105
110
.
53.
D'Emic
,
M. D.
, and
Benson
,
R. B. J.
,
2013
, “
Measurement, Variation, and Scaling of Osteocyte Lacunae: A Case Study in Birds
,”
Bone
,
57
(
1
), pp.
300
310
.
54.
Breur
,
G. J.
,
VanEnkevort
,
B. A.
,
Farnum
,
C. E.
, and
Wilsman
,
N. J.
,
1991
, “
Linear Relationship Between the Volume of Hypertrophic Chondrocytes and the Rate of Longitudinal Bone Growth in Growth Plates
,”
J. Orthop. Res.
,
9
(
3
), pp.
348
359
.
55.
McMahon
,
T.
,
1973
, “
Size and Shape in Biology
,”
Science
,
179
(
4079
), pp.
1201
1204
.
You do not currently have access to this content.