In the present study, we investigate the hemodynamics inside left atrium (LA) and understand its impact on the development of ventricular flow patterns. We construct the heart model using dynamic-computed tomographic images and perform simulations using an immersed boundary method based flow solver. We show that the atrial hemodynamics is characterized by a circulatory flow generated by the left pulmonary veins (LPVs) and a direct stream from the right pulmonary veins (RPVs). The complex interaction of the vortex rings formed from each of the PVs leads to vortex breakup and annihilation, thereby producing a regularized flow at the mitral annulus. A comparison of the ventricular flow velocities between the physiological and a simplified pipe-based atrium model shows that the overall differences are limited to about 10% of the peak mitral flow velocity. The implications of this finding on the functional morphology of the left heart as well the computational and experimental modeling of ventricular hemodynamics are discussed.

References

References
1.
Al-Saady
,
N. M.
,
Obel
,
O. A.
, and
Camm
,
A. J.
,
1999
, “
Left Atrial Appendage: Structure, Function, and Role in Thromboembolism
,”
Heart
,
82
(
5
), pp.
547
554
.
2.
Stefanadis
,
C.
,
Dernellis
,
J.
, and
Toutouzas
,
P.
,
2001
, “
A Clinical Appraisal of Left Atrial Function
,”
Eur. Heart J.
,
22
(
1
), pp.
22
36
.
3.
Ho
,
S. Y.
,
Cabrera
,
J. A.
, and
Sánchez-Quintana
,
D.
,
2012
, “
Left Atrial Anatomy Revisited
,”
Circ: Arrhythmia Electrophysiol.
,
5
(
1
), pp.
220
228
.
4.
Agmon
,
Y.
,
Khandheria
,
B. K.
,
Gentile
,
F.
, and
Seward
,
J. B.
,
1999
, “
Echocardiographic Assessment of the Left Atrial Appendage
,”
J. Am. Coll. Cardiol.
,
34
(
7
), pp.
1867
1877
.
5.
Koizumi
,
R.
,
Funamoto
,
K.
,
Hayase
,
T.
,
Kanke
,
Y.
,
Shibata
,
M.
,
Shiraishi
,
Y.
, and
Yambe
,
T.
,
2015
, “
Numerical Analysis of Hemodynamic Changes in the Left Atrium Due to Atrial Fibrillation
,”
J. Biomech.
,
48
(
3
), pp.
472
478
.
6.
Appleton
,
C. P.
, and
Kovács
,
S. J.
,
2009
, “
The Role of Left Atrial Function in Diastolic Heart Failure
,”
Circ: Cardiovasc. Imaging
,
2
(
1
), pp.
6
9
.
7.
Fyrenius
,
A.
,
Wigström
,
L.
,
Ebbers
,
T.
,
Karlsson
,
M.
,
Engvall
,
J.
, and
Bolger
,
A. F.
,
2001
. “
Three Dimensional Flow in the Human Left Atrium
,”
Heart
,
86
(
4
), pp.
448
455
.
8.
Kilner
,
P. J.
,
Yang
,
G. Z.
,
Wilkes
,
A. J.
,
Mohiaddin
,
R. H.
,
Firmin
,
D. N.
, and
Yacoub
,
M. H.
,
2000
, “
Asymmetric Redirection of Flow Through the Heart
,”
Nature
,
404
(
6779
), pp.
759
761
.
9.
Park
,
K.-H.
,
Son
,
J.-W.
,
Park
,
W.-J.
,
Lee
,
S.-H.
,
Kim
,
U.
,
Park
,
J.-S.
,
Shin
,
D.-G.
,
Kim
,
Y.-J.
,
Choi
,
J.-H.
,
Houle
,
H.
,
Vannan
,
M. A.
, and
Hong
,
G.-R.
,
2013
, “
Characterization of the Left Atrial Vortex Flow by Two-Dimensional Transesophageal Contrast Echocardiography Using Particle Image Velocimetry
,”
Ultrasound Med. Biol.
,
39
(
1
), pp.
62
71
.
10.
Mihalef
,
V.
,
Ionasec
,
R. I.
,
Sharma
,
P.
,
Georgescu
,
B.
,
Voigt
,
I.
,
Suehling
,
M.
, and
Comaniciu
,
D.
,
2011
, “
Patient-Specific Modeling of Whole Heart Anatomy, Dynamics and Haemodynamics From Four-Dimensional Cardiac CT Images
,”
J. R. Soc. Int. Focus
,
1
(3), pp.
286
296
.
11.
Domenichini
,
F.
,
Pedrizzetti
,
G.
, and
Baccani
,
B.
,
2005
, “
Three-Dimensional Filling Flow Into a Model Left Ventricle
,”
J. Fluid Mech.
,
539
, pp.
179
198
.
12.
Schenkel
,
T.
,
Malve
,
M.
,
Reik
,
M.
,
Markl
,
M.
,
Jung
,
B.
, and
Oertel
,
H.
,
2009
, “
MRI-Based CFD Analysis of Flow in a Human Left Ventricle: Methodology and Application to a Healthy Heart
,”
Ann. Biomed. Eng.
,
37
(
3
), pp.
503
515
.
13.
Krittian
,
S.
,
Schenkel
,
T.
,
Janoske
,
U.
, and
Oertel
,
H.
,
2010
, “
Partitioned Fluid–Solid Coupling for Cardiovascular Blood Flow: Validation Study of Pressure-Driven Fluid-Domain Deformation
,”
Ann. Biomed. Eng.
,
38
(
8
), pp.
2676
2689
.
14.
Le
,
T. B.
, and
Sotiropoulos
,
F.
,
2012
, “
On the Three-Dimensional Vortical Structure of Early Diastolic Flow in a Patient-Specific Left Ventricle
,”
Eur. J. Mech. B-Fluids
,
35
, pp.
20
24
.
15.
Seo
,
J. H.
, and
Mittal
,
R.
,
2013
, “
Effect of Diastolic Flow Patterns on the Function of the Left Ventricle
,”
Phys. Fluids
,
25
(
11
), p.
110801
.
16.
Doenst
,
T.
,
Spiegel
,
K.
,
Reik
,
M.
,
Markl
,
M.
,
Hennig
,
J.
,
Nitzsche
,
S.
,
Beyersdorf
,
F.
, and
Oertel
,
H.
,
2009
, “
Fluid-Dynamic Modeling of the Human Left Ventricle: Methodology and Application to Surgical Ventricular Reconstruction
,”
Ann. Throac. Surg.
,
87
(
11
), pp.
1187
1195
.
17.
Zheng
,
X.
,
Seo
,
J. H.
,
Vedula
,
V.
,
Abraham
,
T.
, and
Mittal
,
R.
,
2012
, “
Computational Modeling and Analysis of Intracardiac Flows in Simple Models of Left Ventricle
,”
Eur. J. Mech. B-Fluids
,
35
, pp.
31
39
.
18.
Seo
,
J. H.
,
Vedula
,
V.
,
Abraham
,
T.
, and
Mittal
,
R.
,
2013
, “
Multiphysics Computational Models for Cardiac Flow and Virtual Cardiography
,”
Int. J. Numer. Methods Biomed. Eng.
,
29
(
8
), pp.
850
869
.
19.
Saber
,
N. R.
,
Wood
,
N. B.
,
Gosman
,
A. D.
,
Merrifield
,
R. D.
,
Yang
,
G. Z.
,
Charrier
,
C. L.
,
Gatehouse
,
P. D.
, and
Firmin
,
D. N.
,
2003
, “
Progress Towards Patient-Specific Computational Flow Modeling of the Left Heart Via Combination of Magnetic Resonance Imaging With Computational Fluid Dynamics
,”
Ann. Biomed. Eng.
,
31
(
1
), pp.
42
52
.
20.
Pasipoularides
,
A. D.
,
Shu
,
M.
,
Womack
,
M. S.
,
Shah
,
A.
,
Ramm
,
O. V.
, and
Glower
,
D. D.
,
2003
, “
RV Functional Imaging: 3D Echo-Derived Dynamic Geometry and Flow Field Simulations
,”
Am. J. Physiol. Heart Circ. Physiol.
,
284
(
1
), pp.
H56
H65
.
21.
Long
,
Q.
,
Merrifield
,
R.
,
Yang
,
G.
,
Xu
,
X.
,
Kilner
,
P.
, and
Firmin
,
D.
,
2003
, “
The Influence of Inflow Boundary Conditions on Intra Left Ventricle Flow Predictions
,”
ASME J. Biomech. Eng.
,
125
(
6
), pp.
922
927
.
22.
Seo
,
J. H.
,
Vedula
,
V.
,
Abraham
,
T.
,
Lardo
,
A.
,
Dawoud
,
F.
,
Luo
,
H.
, and
Mittal
,
R.
,
2014
, “
Effect of the Mitral Valve on Diastolic Flow Patterns
,”
Phys. Fluids
,
26
(
12
), p.
121901
.
23.
Ranganathan
,
N.
,
Lam
,
J.
,
Wigle
,
E.
, and
Silver
,
M.
,
1970
, “
Morphology of the Human Mitral Valve II—The Valve Leaflets
,”
Circulation
,
41
(
3
), pp.
459
467
.
24.
Mittal
,
R.
,
Dong
,
H.
,
Bozkurttas
,
M.
,
Najjar
,
F. M.
,
Vargas
,
A.
, and
von Loebbecke
,
A.
,
2008
, “
A Versatile Sharp Interface Immersed Boundary Method for Incompressible Flows With Complex Boundaries
,”
J. Comput. Phys.
,
227
(
10
), pp.
4825
4852
.
25.
Seo
,
J. H.
, and
Mittal
,
R.
,
2011
, “
A Sharp-Interface Immersed Boundary Method With Improved Mass Conservation and Reduced Spurious Pressure Oscillations
,”
J. Comput. Phys.
,
230
(
19
), pp.
7347
7363
.
26.
Vedula
,
V.
,
Fortini
,
S.
,
Seo
,
J. H.
,
Querzoli
,
G.
, and
Mittal
,
R.
,
2014
, “
Computational Modeling and Validation of Intraventricular Flow in a Simple Model of the Left Ventricle
,”
Theor. Comput. Fluid Dyn.
,
28
(
6
), pp.
589
604
.
27.
Rangayyan
,
R. M.
,
2004
,
Biomedical Image Analysis
,
CRC Press-Taylor & Francis Group
, Boca Raton, FL.
28.
Charonko
,
J. J.
,
Kumar
,
R.
,
Stewart
,
K.
,
Little
,
W. C.
, and
Vlachos
,
P. P.
,
2013
, “
Vortices Formed on Mitral Valve Tips Aid Normal Left Ventricular Filling
,”
Ann. Biomed. Eng.
,
41
(
5
), pp.
1049
1061
.
29.
Kulp
,
S.
,
Gao
,
M.
,
Zhang
,
S.
,
Qian
,
Z.
,
Voros
,
S.
,
Metaxas
,
D.
, and
Axel
,
L.
,
2011
, “
Using High Resolution Cardiac CT Data to Model and Visualize Patient-Specific Interactions Between Trabeculae and Blood Flow
,”
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2011
,
Springer-Verlag
,
Berlin Heidelberg
, pp.
468
475
.
30.
Upton
,
M. T.
,
Gibson
,
D. G.
, and
Brown
,
D. J.
,
1976
, “
Instantaneous Mitral Valve Leaflet Velocity and Its Relation to Left Ventricular Wall Movement in Normal Subjects
,”
Br. Heart J.
,
38
(
1
), pp.
51
58
.
31.
Beg
,
M. F.
,
Miller
,
M. I.
,
Trouvé
,
A.
, and
Younes
,
L.
,
2005
, “
Computing Large Deformation Metric Mappings Via Geodesic Flows of Diffeomorphisms
,”
Int. J. Comput. Vision
,
61
(
2
), pp.
139
157
.
32.
Ardekani
,
S.
,
Jain
,
A.
,
Jain
,
S.
,
Abraham
,
T.
,
Abraham
,
M.
,
Zimmerman
,
S.
,
Winslow
,
R.
,
Miller
,
M.
, and
Younes
,
L.
,
2012
, “
Matching Sparse Sets of Cardiac Image Cross-Sections Using Large Deformation Diffeomorphic Metric Mapping Algorithm
,”
Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges
(Lecture Notes in Computer Science),
O.
Camara
,
E.
Konukoglu
,
M.
Pop
,
K.
Rhode
,
M.
Sermesant
, and
A.
Young
, eds., Vol.
7085
,
Springer
,
Berlin
, pp.
234
243
.
33.
Timek
,
T. A.
, and
Miller
,
D. C.
,
2001
, “
Experimental and Clinical Assessment of Mitral Annular Area and Dynamics: What Are We Actually Measuring?
Ann. Thorac. Surg.
,
72
(
3
), pp.
966
974
.
34.
Chnafa
,
C.
,
Mendez
,
S.
, and
Nicoud
,
F.
,
2014
, “
Image-Based Large-Eddy Simulation in a Realistic Left Heart
,”
Comput. Fluids
,
94
, pp.
173
187
.
35.
Mittal
,
R.
, and
Iaccarino
,
G.
,
2005
, “
Immersed Boundary Methods
,”
Ann. Rev. Fluid Mech.
,
37
(
1
), pp.
239
261
.
36.
Bowman
,
A. W.
, and
Kovacs
,
S. J.
,
2005
, “
Prediction and Assessment of the Time-Varying Effective Pulmonary Vein Area Via Cardiac MRI and Doppler Echocardiography
,”
Am. J. Physiol.—Heart Circ. Physiol.
,
288
(
5
), pp.
H280
H286
.
37.
Zhou
,
J.
,
Adrian
,
R.
,
Balachandar
,
S.
, and
Kendall
,
T.
,
1999
, “
Mechanisms for Generating Coherent Packets of Hairpin Vortices in Channel Flow
,”
J. Fluid Mech.
,
387
, pp.
353
396
.
38.
Lim
,
T. T.
,
1989
, “
An Experimental Study of a Vortex Ring Interacting With an Inclined Wall
,”
Exp. Fluids
,
7
(
7
), pp.
453
463
.
39.
Bellhouse
,
B. J.
,
1972
, “
Fluid Mechanics of a Mitral Valve and Left Ventricle
,”
Cardiovas. Res.
,
6
(
2
), pp.
199
210
.
40.
Töger
,
J.
,
Kanski
,
M.
,
Carlsson
,
M.
,
Kovács
,
S. J.
,
Söderlind
,
G.
,
Arheden
,
H.
, and
Heiberg
,
E.
,
2012
, “
Vortex Ring Formation in the Left Ventricle of the Heart: Analysis by 4D Flow MRI and Lagrangian Coherent Structures
,”
Ann. Biomed. Eng.
,
40
(
12
), pp.
2652
2662
.
41.
Pedrizzetti
,
G.
, and
Domenichini
,
F.
,
2005
, “
Nature Optimizes Swirling Flow in the Human Left Ventricle
,”
Phys. Rev. Lett.
,
95
(
10
), p.
108101
.
42.
Watanabe
,
H.
,
Sugiura
,
S.
, and
Hisada
,
T.
,
2008
, “
The Looped Heart Does Not Save Energy by Maintaining the Momentum of Blood Flowing in the Ventricle
,”
Am. J. Physiol. Heart Circ. Physiol.
,
294
(
5
), pp.
H2191
H2196
.
43.
Kheradvar
,
A.
,
Houle
,
H.
,
Pedrizzetti
,
G.
,
Tonti
,
G.
,
Belcik
,
T.
,
Ashraf
,
M.
,
Lindner
,
J. R.
,
Gharib
,
M.
, and
Sahn
,
D.
,
2010
, “
Echocardiographic Particle Image Velocimetry: A Novel Technique for Quantification of Left Ventricular Blood Vorticity Pattern
,”
J. Am. Soc. Echocardiogr.
,
23
(
1
), pp.
86
94
.
44.
Sengupta
,
P. P.
,
Pedrizzetti
,
G.
,
Kilner
,
P. J.
,
Kheradvar
,
A.
,
Ebbers
,
T.
,
Tonti
,
G.
,
Fraser
,
A. G.
, and
Narula
,
J.
,
2012
, “
Emerging Trends in CV Flow Visualization
,”
JACC Cardiovasc. Imaging
,
5
(
3
), pp.
305
316
.
45.
Mangual
,
J. O.
,
Kraigher-Krainer
,
E.
,
De Luca
,
A.
,
Toncelli
,
L.
,
Shah
,
A.
,
Solomon
,
S.
,
Galanti
,
G.
,
Domenichini
,
F.
, and
Pedrizzetti
,
G.
,
2013
, “
Comparative Numerical Study on Left Ventricular Fluid Dynamics After Dilated Cardiomyopathy
,”
J. Biomech.
,
46
(
10
), pp.
1611
1617
.
46.
Choi
,
Y. J.
,
Vedula
,
V.
, and
Mittal
,
R.
,
2014
, “
Computational Study of the Dynamics of a Bileaflet Mechanical Heart Valve in the Mitral Position
,”
Ann. Biomed. Eng.
,
42
(
8
), pp.
1668
1680
.
47.
Pasipoularides
,
A.
,
2010
,
The Heart's Vortex: Intracardiac Blood Flow
,
PMPH
,
Shelton, CT
.
48.
Faludi
,
R.
,
Szulik
,
M.
,
D'hooge
,
J.
,
Herijgers
,
P.
,
Rademakers
,
F.
,
Pedrizzetti
,
G.
, and
Voigt
,
J.-U.
,
2010
, “
Left Ventricular Flow Patterns in Healthy Subjects and Patients With Prosthetic Mitral Valves: An In Vivo Study Using Echocardiographic Particle Image Velocimetry
,”
J. Thorac. Cardiovasc. Surg.
,
139
(
6
), pp.
1501
1510
.
49.
Hong
,
G.-R.
,
Pedrizzetti
,
G.
,
Tonti
,
G.
,
Li
,
P.
,
Wei
,
Z.
,
Kim
,
J. K.
,
Baweja
,
A.
,
Liu
,
S.
,
Chung
,
N.
,
Houle
,
H.
,
Narula
,
J.
, and
Vannan
,
M. A.
,
2008
, “
Characterization and Quantification of Vortex Flow in the Human Left Ventricle by Contrast Echocardiography Using Vector Particle Image Velocimetry
,”
JACC Cardiovasc. Imaging
,
1
(
6
), pp.
705
717
.
50.
Thorning
,
C.
,
Hamady
,
M.
,
Liaw
,
J. V. P.
,
Juli
,
C.
,
Lim
,
P. B.
,
Dhawan
,
R.
,
Peters
,
N. S.
,
Davies
,
D. W.
,
Kanagaratnam
,
P.
,
O'Neill
,
M. D.
, and
Wright
,
A. R.
,
2011
, “
CT Evaluation of Pulmonary Venous Anatomy Variation in Patients Undergoing Catheter Ablation for Atrial Fibrillation
,”
Clin. Imaging
,
35
(
1
), pp.
1
9
.
51.
Le
,
T. B.
,
Sotiropoulos
,
F.
,
Coffey
,
D.
, and
Keefe
,
D.
,
2012
, “
Vortex Formation and Instability in the Left Ventricle
,”
Phys. Fluids
,
24
(
9
), p.
091110
.
52.
Vedula
,
V.
,
Seo
,
J. H.
,
Lardo
,
A. C.
, and
Mittal
,
R.
,
2014
, “
Effect of Trabeculae and Papillary Muscles on the Hemodynamics of the Left Ventricle
,”
Theor. Comp. Fluid Dyn.
, pp.
1
19
.
You do not currently have access to this content.