Patient-specific gait optimizations capable of predicting post-treatment changes in joint motions and loads could improve treatment design for gait-related disorders. To maximize potential clinical utility, such optimizations should utilize full-body three-dimensional patient-specific musculoskeletal models, generate dynamically consistent gait motions that reproduce pretreatment marker measurements closely, and achieve accurate foot motion tracking to permit deformable foot-ground contact modeling. This study enhances an existing residual elimination algorithm (REA) Remy, C. D., and Thelen, D. G., 2009, “Optimal Estimation of Dynamically Consistent Kinematics and Kinetics for Forward Dynamic Simulation of Gait,” ASME J. Biomech. Eng., 131(3), p. 031005) to achieve all three requirements within a single gait optimization framework. We investigated four primary enhancements to the original REA: (1) manual modification of tracked marker weights, (2) automatic modification of tracked joint acceleration curves, (3) automatic modification of algorithm feedback gains, and (4) automatic calibration of model joint and inertial parameter values. We evaluated the enhanced REA using a full-body three-dimensional dynamic skeletal model and movement data collected from a subject who performed four distinct gait patterns: walking, marching, running, and bounding. When all four enhancements were implemented together, the enhanced REA achieved dynamic consistency with lower marker tracking errors for all segments, especially the feet (mean root-mean-square (RMS) errors of 3.1 versus 18.4 mm), compared to the original REA. When the enhancements were implemented separately and in combinations, the most important one was automatic modification of tracked joint acceleration curves, while the least important enhancement was automatic modification of algorithm feedback gains. The enhanced REA provides a framework for future gait optimization studies that seek to predict subject-specific post-treatment gait patterns involving large changes in foot-ground contact patterns made possible through deformable foot-ground contact models.

References

References
1.
Murphy
,
L.
, and
Helmick
,
C. G.
,
2012
, “
The Impact of Osteoarthritis in the United States: A Population-Health Perspective: A Population-Based Review of the Fourth Most Common Cause of Hospitalization in U.S. Adults
,”
Orthop. Nurs.
,
31
(
2
), pp.
85
91
.
2.
Perry
,
J.
,
Garrett
,
M.
,
Gronley
,
J. K.
, and
Mulroy
,
S. J.
,
1995
, “
Classification of Walking Handicap in the Stroke Population
,”
Stroke
,
26
(
6
), pp.
982
989
.
3.
Davie
,
C.
,
2008
, “
A Review of Parkinson's Disease
,”
Br. Med. Bull.
,
86
(
1
), pp.
109
127
.
4.
Centers for Disease Control and Prevention
,
2009
, “
Prevalence and Most Common Causes of Disability Among Adults—United States, 2005
,”
MMWR
,
58
(
16
), pp.
421
426
.
5.
Ostir
,
G. V.
,
Berges
,
I. M.
,
Kuo
,
Y. F.
,
Goodwin
,
J. S.
,
Fisher
,
S. R.
, and
Guralnik
,
J. M.
,
2013
, “
Mobility Activity and Its Value as a Prognostic Indicator of Survival in Hospitalized Older Adults
,”
J. Am. Geriatr. Soc.
,
61
(
4
), pp.
551
557
.
6.
Mutikainen
,
S.
,
Rantanen
,
T.
,
Alén
,
M.
,
Kauppinen
,
M.
,
Karjalainen
,
J.
,
Kaprio
,
J.
, and
Kujala
,
U. M.
,
2011
, “
Walking Ability and All-Cause Mortality in Older Women
,”
Int. J. Sports Med.
,
32
(
3
), pp.
216
222
.
7.
Blair
,
S. N.
,
Kohl
,
H. W.
,
Paffenbarger
,
R. S.
,
Clark
,
D. G.
,
Cooper
,
K. H.
, and
Gibbons
,
L. W.
,
1989
, “
Physical Fitness and All-Cause Mortality. A Prospective Study of Healthy Men and Women
,”
JAMA
,
262
(
17
), pp.
2395
2401
.
8.
Bogey
,
R.
, and
Hornby
,
G. T.
,
2007
, “
Gait Training Strategies Utilized in Poststroke Rehabilitation: Are We Really Making a Difference?
,”
Top Stroke Rehabil.
,
14
(
6
), pp.
1
8
.
9.
Andriacchi
,
T. P.
,
1994
, “
Dynamics of Knee Malalignment
,”
Orthop. Clin. North Am.
,
25
(
3
), pp.
395
403
.
10.
Reinbolt
,
J. A.
,
Haftka
,
R. T.
,
Chmielewski
,
T. L.
, and
Fregly
,
B. J.
,
2008
, “
A Computational Framework to Predict Post-Treatment Outcome for Gait-Related Disorders
,”
Med. Eng. Phys.
,
30
(
4
), pp.
434
443
.
11.
Allen
,
J. L.
,
Kautz
,
S. A.
, and
Neptune
,
R. R.
,
2013
, “
The Influence of Merged Muscle Excitation Modules on Post-Stroke Hemiparetic Walking Performance
,”
Clin. Biomech.
,
28
(
6
), pp.
697
704
.
12.
Xiang
,
Y.
,
Arora
,
J. S.
, and
Abdel-Malek
,
K.
,
2011
, “
Optimization-Based Prediction of Asymmetric Human Gait
,”
J. Biomech.
,
44
(
4
), pp.
683
693
.
13.
Remy
,
C. D.
, and
Thelen
,
D. G.
,
2009
, “
Optimal Estimation of Dynamically Consistent Kinematics and Kinetics for Forward Dynamic Simulation of Gait
,”
ASME J. Biomech. Eng.
,
131
(
3
), p.
031005
.
14.
Kim
,
H. J.
,
Wang
,
Q.
,
Rahmatalla
,
S.
,
Swan
,
C. C.
,
Arora
,
J. S.
,
Abdel-Malek
,
K.
, and
Assouline
,
J. G.
,
2008
, “
Dynamic Motion Planning of 3D Human Locomotion Using Gradient-Based Optimization
,”
ASME J. Biomech. Eng.
,
130
(
3
), p.
031002
.
15.
Fregly
,
B. J.
,
Reinbolt
,
J. A.
,
Rooney
,
K. L.
,
Mitchell
,
K. H.
, and
Chmielewski
,
T. L.
,
2007
, “
Design of Patient-Specific Gait Modifications for Knee Osteoarthritis Rehabilitation
,”
IEEE Trans. Biomed. Eng.
,
54
(
9
), pp.
1687
1695
.
16.
Thelen
,
D. G.
, and
Anderson
,
F. C.
,
2006
, “
Using Computed Muscle Control to Generate Forward Dynamic Simulations of Human Walking From Experimental Data
,”
J. Biomech.
,
39
(
6
), pp.
1107
1115
.
17.
Arnold
,
A. S.
,
Anderson
,
F. C.
,
Pandy
,
M. G.
, and
Delp
,
S. L.
,
2005
, “
Muscular Contributions to Hip and Knee Extension During the Single Limb Stance Phase of Normal Gait: A Framework for Investigating the Causes of Crouch Gait
,”
J. Biomech.
,
38
(
11
), pp.
2181
2189
.
18.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2001
, “
Dynamic Optimization of Human Walking
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
381
390
.
19.
Higginson
,
J. S.
,
Ramsay
,
J. W.
, and
Buchanan
,
T. S.
,
2012
, “
Hybrid Models of the Neuromusculoskeletal System Improve Subject-Specificity
,”
Proc. Inst. Mech. Eng. Part H
,
226
(
2
), pp.
113
119
.
20.
Jansen
,
K.
,
De Groote
,
F.
,
Duysens
,
J.
, and
Jonkers
,
I.
,
2014
, “
How Gravity and Muscle Action Control Mediolateral Center of Mass Excursion During Slow Walking: A Simulation Study
,”
Gait Posture
,
39
(
1
), pp.
91
97
.
21.
Thompson
,
J. A.
,
Chaudhari
,
A. M.
,
Schmitt
,
L. C.
,
Best
,
T. M.
, and
Siston
,
R. A.
,
2013
, “
Gluteus Maximus and Soleus Compensate for Simulated Quadriceps Atrophy and Activation Failure During Walking
,”
J Biomech
,
46
(
13
), pp.
2165
2172
.
22.
Fey
,
N. P.
,
Klute
,
G. K.
, and
Neptune
,
R. R.
,
2013
, “
Altering Prosthetic Foot Stiffness Influences Foot and Muscle Function During Below-Knee Amputee Walking: A Modeling and Simulation Analysis
,”
J. Biomech.
,
46
(
4
), pp.
637
644
.
23.
Ackermann
,
M.
, and
van den Bogert
,
A. J.
,
2012
, “
Predictive Simulation of Gait at Low Gravity Reveals Skipping as the Preferred Locomotion Strategy
,”
J. Biomech.
,
45
(
7
), pp.
1293
1298
.
24.
van den Bogert
,
A. J.
,
Blana
,
D.
, and
Heinrich
,
D.
,
2011
, “
Implicit Methods for Efficient Musculoskeletal Simulation and Optimal Control
,”
Procedia IUTAM
,
2
(
2011
), pp.
297
316
.
25.
Halloran
,
J. P.
,
Ackermann
,
M.
,
Erdemir
,
A.
, and
van den Bogert
,
A. J.
,
2010
, “
Concurrent Musculoskeletal Dynamics and Finite Element Analysis Predicts Altered Gait Patterns to Reduce Foot Tissue Loading
,”
J. Biomech.
,
43
(
14
), pp.
2810
2815
.
26.
Mahboobin
,
A.
,
Cham
,
R.
, and
Piazza
,
S. J.
,
2010
, “
The Impact of a Systematic Reduction in Shoe-Floor Friction on Heel Contact Walking Kinematics—A Gait Simulation Approach
,”
J. Biomech.
,
43
(
8
), pp.
1532
1539
.
27.
Miller
,
R. H.
,
Brandon
,
S. C.
, and
Deluzio
,
K. J.
,
2013
, “
Predicting Sagittal Plane Biomechanics That Minimize the Axial Knee Joint Contact Force During Walking
,”
ASME J. Biomech. Eng.
,
135
(
1
), p.
011007
.
28.
Reinbolt
,
J. A.
,
Haftka
,
R. T.
,
Chmielewski
,
T. L.
, and
Fregly
,
B. J.
,
2007
, “
Are Patient-Specific Joint and Inertial Parameters Necessary for Accurate Inverse Dynamics Analyses of Gait?
,”
IEEE Trans. Biomed. Eng.
,
54
(
5
), pp.
782
793
.
29.
Söderkvist
,
I.
, and
Wedin
,
P. A.
,
1993
, “
Determining the Movements of the Skeleton Using Well-Configured Markers
,”
J. Biomech.
,
26
(
12
), pp.
1473
1477
.
30.
Cahouët
,
V.
,
Luc
,
M.
, and
David
,
A.
,
2002
, “
Static Optimal Estimation of Joint Accelerations for Inverse Dynamics Problem Solution
,”
J. Biomech.
,
35
(
11
), pp.
1507
1513
.
31.
Nagurka
,
M. L.
, and
Yen
,
V.
,
1990
, “
Fourier-Based Optimal Control of Nonlinear Dynamic Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
112
(
1
), pp.
17
26
.
32.
Koh
,
B. I.
,
Reinbolt
,
J. A.
,
George
,
A. D.
,
Haftka
,
R. T.
, and
Fregly
,
B. J.
,
2009
, “
Limitations of Parallel Global Optimization for Large-Scale Human Movement Problems
,”
Med. Eng. Phys.
,
31
(
5
), pp.
515
521
.
33.
Fregly
,
B. J.
,
2009
, “
Design of Optimal Treatments for Neuromusculoskeletal Disorders Using Patient-Specific Multibody Dynamic Models
,”
Int. J. Comput. Vis. Biomech.
,
2
(
2
), pp.
145
155
.
34.
Greenwood
,
D. T.
,
1988
,
Principles of Dynamics
,
2nd ed.
,
Prentice-Hall
,
Upper Saddle River, NJ
.
35.
de Leva
,
P.
,
1996
, “
Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters
,”
J. Biomech.
,
29
(
9
), pp.
1223
1230
.
You do not currently have access to this content.