Computational musculoskeletal models have been developed to predict mechanical joint loads on the human spine, such as the forces and moments applied to vertebral and facet joints and the forces that act on ligaments and muscles because of difficulties in the direct measurement of joint loads. However, many whole-spine models lack certain elements. For example, the detailed facet joints in the cervical region or the whole spine region may not be implemented. In this study, a detailed cervico-thoraco-lumbar multibody musculoskeletal model with all major ligaments, separated structures of facet contact and intervertebral disk joints, and the rib cage was developed. The model was validated by comparing the intersegmental rotations, ligament tensile forces, facet joint contact forces, compressive and shear forces on disks, and muscle forces were to those reported in previous experimental and computational studies both by region (cervical, thoracic, or lumbar regions) and for the whole model. The comparisons demonstrated that our whole spine model is consistent with in vitro and in vivo experimental studies and with computational studies. The model developed in this study can be used in further studies to better understand spine structures and injury mechanisms of spinal disorders.

References

References
1.
Dreischarf
,
M.
,
Rohlmann
,
A.
,
Zhu
,
R.
,
Schmidt
,
H.
, and
Zander
,
T.
,
2013
, “
Is it Possible to Estimate the Compressive Force in the Lumbar Spine From Intradiscal Pressure Measurements? A Finite Element Evaluation
,”
Med. Eng. Phys.
,
35
(
9
), pp.
1385
1390
.
2.
de Zee
,
M.
,
Hansen
,
L.
,
Wong
,
C.
,
Rasmussen
,
J.
, and
Simonsem
,
E. B.
,
2007
, “
A Generic Detailed Rigid-Body Lumbar Spine Model
,”
J. Biomech.
,
40
(
6
), pp.
1219
1227
.
3.
Christophy
,
M.
,
FarukSenan
,
N. A.
,
Lotz
,
J. C.
, and
O’Reilly
,
O. M.
,
2012
, “
A Musculoskeletal Model for Lumbar Spine
,”
Biomech. Model. Mechanobiol.
,
11
(
1–2
), pp.
19
34
.
4.
Huynh
,
K. T.
,
Gibson
,
I.
,
Jagdish
,
B. N.
, and
Lu
,
W. F.
,
2015
, “
Development and Validation of a Discretised Multi-Body Spine Model in LifeMOD for Biodynamic Behavior Simulation
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
2
), pp.
175
184
.
5.
Rohlmann
,
A. R.
,
Graichen
,
F.
,
Kayser
,
R.
,
Bender
,
A.
, and
Bergmann
,
G.
,
2008
, “
Loads on a Telemeterized Vertebral Body Replacement Measured in Two Patients
,”
Spine
,
33
(
11
), pp.
1170
1179
.
6.
Wilke
,
H. J.
,
Neef
,
P.
,
Caimi
,
M.
,
Hoogland
,
T.
, and
Claes
,
L. E.
,
1999
, “
New In Vivo Measurement of Pressures in the Intervertebral Disc in Daily Life
,”
Spine
,
24
(
8
), pp.
755
762
.
7.
Polga
,
D. J.
,
Beaubien
,
B. P.
,
Kallemeier
,
P. M.
,
Schellhas
,
K. P.
,
Lew
,
W. D.
,
Buttermann
,
G. R.
, and
Wood
,
K. B.
,
2004
, “
Measurement of In Vivo Intradiscal Pressure in Healthy Thoracic Intervertebral Discs
,”
Spine
,
29
(
12
), pp.
1320
1324
.
8.
Vasavada
,
A. N.
,
Li
,
S.
, and
Delp
,
S. L.
,
1998
, “
Influence of Muscle Morphometry and Moment Arms on the Moment-Generating Capacity of Human Neck Muscles
,”
Spine
,
23
(
4
), pp.
412
422
.
9.
Ahn
,
H. S.
, and
DiAngelo
,
D. J.
,
2007
, “
Biomechanical Testing Simulation of a Cadaver Spine Specimen
,”
Spine
,
32
(
11
), pp.
E330
E336
.
10.
Bogduk
,
N.
,
Macintosh
,
J. E.
, and
Pearcy
,
M. J.
,
1992
, “
A Universal Model of the Lumbar Back Muscles in the Upright Position
,”
Spine
,
17
(
8
), pp.
897
913
.
11.
Han
,
K. S.
,
Zander
,
T.
,
Taylor
,
W. R.
, and
Rohlmann
,
A.
,
2012
, “
An Enhanced and Validated Generic Thoraco-Lumbar Spine Model for Prediction of Muscle Forces
,”
Med. Eng. Phys.
,
34
(
6
), pp.
709
716
.
12.
Han
,
K. S.
,
Rohlmann
,
A.
,
Kim
,
K.
,
Cho
,
K. W.
, and
Kim
,
Y. H.
,
2012
, “
Effect of Ligament Stiffness on Spinal Loads and Muscle Forces in Flexed Positions
,”
Int. J. Precis. Eng. Manuf.
,
13
(
12
), pp.
2233
2238
.
13.
deLeva
,
P.
,
1996
, “
Adjustment to Zatsiorsky–Seluyanov’s Segment Inertia Parameters
,”
J. Biomech.
,
29
(
9
), pp.
1223
1230
.
14.
Pearsall
,
D. J.
,
Reid
,
J. G.
, and
Livingston
,
L. A.
,
1996
, “
Segmental Inertial Parameters of the Human Trunk as Determined From Computed Tomography
,”
Ann. Biomed. Eng.
,
24
(
2
), pp.
198
210
.
15.
Panjabi
,
M. M.
,
Summers
,
D. J.
,
Pelker
,
R. R.
,
Videman
,
T.
,
Friedlaender
,
G.
, and
Southwick
,
W. O.
,
1986
, “
Three-Dimensional Load–Displacement Curves due to Forces on the Cervical Spine
,”
J. Orthop. Res.
,
4
(
2
), pp.
152
161
.
16.
Heuer
,
F.
,
Schmidt
,
H.
,
Klezl
,
Z.
,
Claes
,
L.
, and
Wilke
,
H. J.
,
2007
, “
Stepwise Reduction of Functional Spinal Structures Increase Range of Motion and Change Lordosis Angle
,”
J. Biomech.
,
40
(
2
), pp.
271
280
.
17.
Schultz
,
A. B.
, and
Ashton-Miller
,
J. A.
,
1997
, “
Biomechanics of the Human Spine
,”
Basic Orthopaedic Biomechanics
,
V. C.
Mowes
,
W. C.
Hayes
, eds.,
Lippincott Williams & Wilkins
,
New York
.
18.
Panjabi
,
M. M.
,
Oxland
,
T.
,
Takata
,
K.
,
Goel
,
V.
,
Duranceau
,
J.
, and
Krag
,
M.
,
1993
, “
Articular Facets of the Human Spine. Quantitative Three-Dimensional Anatomy
,”
Spine
,
18
(
10
), pp.
1298
1310
.
19.
Sharma
,
M.
,
Langrana
,
N. A.
, and
Rodriguez
,
J.
,
1995
, “
Role of Ligaments and Facets in Lumbar Spinal Stability
,”
Spine
,
20
(
8
), pp.
887
900
.
20.
Duprey
,
S.
,
Subit
,
D.
,
Guillemot
,
H.
, and
Kent
,
R. W.
,
2010
, “
Biomechanical Properties of the Costovertebral Joint
,”
Med. Eng. Phys.
,
32
(
2
), pp.
222
227
.
21.
Sham
,
M. L.
,
Zander
,
T.
,
Rohlmann
,
A.
, and
Bergmann
,
G.
,
2005
, “
Effects of the Rib Cage on Thoracic Spine Flexibility
,”
Biomed. Tech.
,
50
(
11
), pp.
361
365
.
22.
Pezowicz
,
C.
, and
Glowacki
,
M.
,
2012
, “
The Mechanical Properties of Human Ribs in Young Adult
,”
Acta Bioeng. Biomech.
,
14
(
2
), pp.
53
60
.
23.
Myklebust
,
J. B.
,
Pintar
,
F.
,
Yoganandan
,
N.
,
Cusick
,
J. F.
,
Maiman
,
D.
,
Myers
,
T. J.
, and
Sances
,
A.
, Jr
.,
1988
, “
Tensile Strength of Spinal Ligaments
,”
Spine
,
13
(
5
), pp.
526
531
.
24.
Pintar
,
F. A.
,
Yoganandan
,
N.
,
Myers
,
T.
,
Elhagediab
,
A.
, and
Sances
,
A.
, Jr
.,
1992
, “
Biomechanical Properties of Human Lumbar Spine Ligaments
,”
J. Biomech.
,
25
(
11
), pp.
1351
1356
.
25.
Panjabi
,
M. M.
,
Crisco
,
J. J.
,
Vasavada
,
A.
,
Oda
,
T.
,
Cholewicki
,
J.
,
Nibu
,
K.
, and
Shin
,
E.
,
2001
, “
Mechanical Properties of the Human Cervical Spine as Shown by Three-Dimensional Load–Displacement Curves
,”
Spine
,
26
(
24
), pp.
2692
2700
.
26.
Wheeldon
,
J. A.
,
Pintar
,
F. A.
,
Knowles
,
S.
, and
Yoganandan
,
N.
,
2006
, “
Experimental Flexion/Extension Data Corridors for Validation of Finite Element Models of the Young, Normal Cervical Spine
,”
J. Biomech.
,
39
(
2
), pp.
375
380
.
27.
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Stemper
,
B. D.
,
Wolfla
,
C. E.
,
Shender
,
B. S.
, and
Paskoff
,
G.
,
2007
, “
Level-Dependent Coronal and Axial Moment-Rotation Corridors of Degeneration-Free Cervical Spines in Lateral Flexion
,”
J. Bone Joint Surg. Am.
,
89
(
5
), pp.
1066
1074
.
28.
Watkins
,
R.
, 4th.
,
Watkins
,
R.
,
3rd.
,
Williams
,
L.
,
Ahlbrand
,
S.
,
Garcia
,
R.
,
Karamanian
,
A.
,
Sharp
,
L.
,
Vo
,
C.
, and
Hedman
,
T.
,
2005
, “
Stability Provided by the Sternum and Rib Cage in the Thoracic Spine
,”
Spine
,
30
(
11
), pp.
1283
1286
.
29.
Panjabi
,
M. M.
,
Brand
,
R. A.
, Jr.
, and
White
,
A. A.
,
3rd
,
1976
, “
Mechanical Properties of the Human Thoracic Spine as Shown by Three-Dimensional Load–Displacement Curves
,”
J. Bone Joint Surg. Am.
,
58
(
5
), pp.
642
652
.
30.
Guan
,
Y.
,
Yoganandan
,
N.
,
Moore
,
J.
,
Pintar
,
F. A.
,
Zhang
,
J.
,
Maiman
,
D. J.
, and
Laud
,
P.
,
2007
, “
Moment-Rotation Responses of the Human Lumbosacral Spinal Column
,”
J. Biomech.
,
40
(
9
), pp.
1975
1980
.
31.
Panjabi
,
M. M.
,
Oxland
,
T. R.
,
Yamamoto
,
I.
, and
Crisco
,
J. J.
,
1994
, “
Mechanical Behavior of the Human Lumbar and Lumbosacral Spine as Shown by Three-Dimensional Load–Displacement Curves
,”
J. Bone Joint Surg. Am.
,
76
(
3
), pp.
413
424
.
32.
Schultz
,
A.
,
Andersson
,
G.
,
Ortengren
,
R.
,
Haderspeck
,
K.
, and
Nachemson
,
A.
,
1982
, “
Loads on the Lumbar Spine. Validation of a Biomechanical Analysis by Measurements of Intradiscal Pressures and Myoelectric Signals
,”
J. Bone Joint Surg. Am.
,
64
(
5
), pp.
713
720
.
33.
Kim
,
K.
,
Kim
,
Y. H.
, and
Lee
,
S.
,
2007
, “
Increase of Load-Carrying Capacity Under Load Generated by Trunk Muscles in Lumbar Spine
,”
Proc. Inst. Mech. Eng.
, Part H,
221
(
3
), pp.
229
235
.
34.
Ha
,
S. K.
,
2006
, “
Finite Element Modeling of Multi-Level Cervical Spinal Segments (C3–C6) and Biomechanical Analysis of an Elastomer-Type Prosthetic Disc
,”
Med. Eng. Phys.
,
28
(
6
), pp.
534
541
.
35.
Lee
,
S. H.
,
Im
,
Y. J.
,
Kim
,
K. T.
,
Kim
,
Y. H.
,
Park
,
W. M.
, and
Kim
,
K.
,
2011
, “
Comparison of Cervical Spine Biomechanics After Fixed- and Mobile-Core Artificial Disc Replacement: A Finite Element Analysis
,”
Spine
,
36
(
9
), pp.
700
708
.
36.
Faizan
,
A.
,
Goel
, V
. K.
,
Garfin
,
S. R.
,
Bono
,
C. M.
,
Serhan
,
H.
,
Biyani
,
A.
,
Elgafy
,
H.
,
Krishna
,
M.
, and
Friesem
,
T.
,
2012
, “
Do Design Variations in the Artificial Disc Influence Cervical Spine Biomechanics? A Finite Element Investigation
,”
Eur. Spine J.
,
21
(
Suppl. 5
), pp.
S653
S662
.
37.
Rohlmann
,
A.
,
Zander
,
T.
,
Schmidt
,
H.
,
Wilke
,
H. J.
, and
Bergmann
,
G.
,
2006
, “
Analysis of the Influence of Disc Degeneration on the Mechanical Behavior of a Lumbar Motion Segment Using the Finite Element Method
,”
J. Biomech.
,
39
(
13
), pp.
2484
2490
.
38.
Park
,
W. M.
,
Kim
,
Y. H.
, and
Lee
,
S.
,
2013
, “
Effect of Intervertebral Disc Degeneration on Biomechanical Behaviors of a Lumbar Motion Segment Under Physiological Loading Conditions
,”
J. Mech. Sci. Technol.
,
27
(
2
), pp.
483
489
.
39.
Gagnon
,
D.
,
Arjmand
,
N.
,
Plamondon
,
A.
,
Shirazi-Adl
,
A.
, and
Lariviere
,
C.
,
2011
, “
An Improved Multi-Joint EMG-Assisted Optimization Approach to Estimate Joint and Muscle Forces in a Musculoskeletal Model of the Lumbar Spine
,”
J. Biomech.
,
44
(
8
), pp.
1521
1529
.
40.
Li
,
G.
,
Pierce
,
J. E.
, and
Herndon
,
J. H.
,
2006
, “
A Global Optimization Method for Prediction of Muscle Forces of Human Musculoskeletal System
,”
J. Biomech.
,
39
(
3
), pp.
522
529
.
You do not currently have access to this content.