Free outflow boundary conditions have been widely adopted in hemodynamic model studies, they, however, intrinsically lack the ability to account for the regulatory mechanisms of systemic hemodynamics and hence carry a risk of producing incorrect results when applied to vascular segments with multiple outlets. In the present study, we developed a multiscale model capable of incorporating global cardiovascular properties into the simulation of blood flows in local vascular segments. The multiscale model was constructed by coupling a three-dimensional (3D) model of local arterial segments with a zero-one-dimensional (0-1-D) model of the cardiovascular system. Numerical validation based on an idealized model demonstrated the ability of the multiscale model to preserve reasonable pressure/flow wave transmission among different models. The multiscale model was further calibrated with clinical data to simulate cerebroarterial hemodynamics in a patient undergoing carotid artery operation. The results showed pronounced hemodynamic changes in the cerebral circulation following the operation. Additional numerical experiments revealed that a stand-alone 3D model with free outflow conditions failed to reproduce the results obtained by the multiscale model. These results demonstrated the potential advantage of multiscale modeling over single-scale modeling in patient-specific hemodynamic studies. Due to the fact that the present study was limited to a single patient, studies on more patients would be required to further confirm the findings.

References

References
1.
Xiang
,
J.
,
Tutino
,
V. M.
,
Snyder
,
K. V.
, and
Meng
,
H.
,
2014
, “
CFD: Computational Fluid Dynamics or Confounding Factor Dissemination? The Role of Hemodynamics in Intracranial Aneurysm Rupture Risk Assessment
,”
Am. J. Neuroradiology
,
35
(
10
), pp.
1849
1857
.
2.
Van Ooij
,
P.
,
Guédon
,
A.
,
Poelma
,
C.
,
Schneiders
,
J.
,
Rutten
,
M. C. M.
,
Marquering
,
H. A.
, and
Nederveen
,
A. J.
,
2012
, “
Complex Flow Patterns in a Real-Size Intracranial Aneurysm Phantom: Phase Contrast MRI Compared With Particle Image Velocimetry and Computational Fluid Dynamics
,”
NMR Biomed.
,
25
(
1
), pp.
14
26
.
3.
Mynard
,
J. P.
,
Wasserman
,
B. A.
, and
Steinman
,
D. A.
,
2013
, “
Errors in the Estimation of Wall Shear Stress by Maximum Doppler Velocity
,”
Atherosclerosis
,
227
(
2
), pp.
259
266
.
4.
Castro
,
M.
,
Putman
,
C.
,
Radaelli
,
A.
,
Frangi
,
A.
, and
Cebral
,
J.
,
2009
, “
Hemodynamics and Rupture of Terminal Cerebral Aneurysms
,”
Acad. Radiol.
,
16
(
10
), pp.
1201
1207
.
5.
Chong
,
W.
,
Zhang
,
Y.
,
Qian
,
Y.
,
Lai
,
L.
,
Parker
,
G.
, and
Mitchell
,
K.
,
2014
, “
Computational Hemodynamics Analysis of Intracranial Aneurysms Treated With Flow Diverters: Correlation With Clinical Outcomes
,”
Am. J. Neuroradiology
,
35
(
1
), pp.
136
142
.
6.
Moore
,
S.
,
David
,
T.
,
Chase
,
J. G.
,
Arnold
,
J.
, and
Fink
,
J.
,
2006
, “
3D Models of Blood Flow in the Cerebral Vasculature
,”
J. Biomech.
,
39
(
8
), pp.
1454
1463
.
7.
Geers
,
A. J.
,
Larrabide
,
I.
,
Morales
,
H. G.
, and
Frangi
,
A. F.
,
2014
, “
Approximating Hemodynamics of Cerebral Aneurysms With Steady Flow Simulations
,”
J. Biomech.
,
47
(
1
), pp.
178
185
.
8.
Morales
,
H. G.
, and
Bonnefous
,
O.
,
2014
, “
Peak Systolic or Maximum Intra-Aneurysmal Hemodynamic Condition? Implications on Normalized Flow Variables
,”
J. Biomech.
,
47
(
10
), pp.
2362
2370
.
9.
Morbiducci
,
U.
,
Gallo
,
D.
,
Massai
,
D.
,
Consolo
,
F.
,
Ponzini
,
R.
,
Antiga
,
L.
, and
Redaelli
,
A.
,
2010
, “
Outflow Conditions for Image-Based Hemodynamic Models of the Carotid Bifurcation: Implications for Indicators of Abnormal Flow
,”
ASME J. Biomech. Eng.
,
132
(
9
), p.
091005
.
10.
Morbiducci
,
U.
,
Gallo
,
D.
,
Ponzini
,
R.
,
Massai
,
D.
,
Antiga
,
L.
,
Montevecchi
,
F. M.
, and
Redaelli
,
A.
,
2010
, “
Quantitative Analysis of Bulk Flow in Image-Based Hemodynamic Models of the Carotid Bifurcation: The Influence of Outflow Conditions as Test Case
,”
Ann. Biomed. Eng.
,
38
(
12
), pp.
3688
3705
.
11.
Alastruey
,
J.
,
Moore
,
S. M.
,
Parker
,
K. H.
,
David
,
T.
,
Peiró
,
J.
, and
Sherwin
,
S. J.
,
2008
, “
Reduced Modelling of Blood Flow in the Cerebral Circulation: Coupling 1-D, 0-D and Cerebral Auto-Regulation Models
,”
Int. J. Numer. Methods Fluids
,
56
(
8
), pp.
1061
1067
.
12.
Appanaboyina
,
S.
,
Mut
,
F.
,
Löhner
,
R.
,
Scrivano
,
E.
,
Miranda
,
C.
,
Lylyk
,
P.
, and
Cebral
,
J.
,
2008
, “
Computational Modelling of Blood Flow in Side Arterial Branches After Stenting of Cerebral Aneurysms
,”
Int. J. Comput. Fluid Dyn.
,
22
(
10
), pp.
669
676
.
13.
Dong
,
J.
,
Wong
,
K. K.
, and
Tu
,
J.
,
2013
, “
Hemodynamics Analysis of Patient-Specific Carotid Bifurcation: A CFD Model of Downstream Peripheral Vascular Impedance
,”
Int. J. Numer. Methods Biomed. Eng.
,
29
(
4
), pp.
476
491
.
14.
Huang
,
P. G.
, and
Muller
,
L. O.
,
2015
, “
Simulation of One-Dimensional Blood Flow in Networks of Human Vessels Using a Novel TVD Scheme
,”
Int. J. Numer. Methods Biomed. Eng.
31
(
5
):e02701.
15.
Liang
,
F. Y.
,
Fukasaku
,
K.
,
Liu
,
H.
, and
Takagi
,
S.
,
2011
, “
A Computational Model Study of the Influence of the Anatomy of the Circle of Willis on Cerebral Hyperperfusion Following Carotid Artery Surgery
,”
Biomed. Eng. Online
,
10
(
84
), pp.
1
22
.
16.
Alastruey
,
J.
,
Parker
,
K. H.
,
Peiro
,
J.
,
Byrd
,
S. M.
, and
Sherwin
,
S. J.
,
2007
, “
Modelling the Circle of Willis to Assess the Effects of Anatomical Variations and Occlusions on Cerebral Flows
,”
J. Biomech.
,
40
(
8
), pp.
1794
1805
.
17.
Grinberg
,
L.
,
Cheever
,
E.
,
Anor
,
T.
,
Madsen
,
J. R.
, and
Karniadakis
,
G. E.
,
2011
, “
Modeling Blood Flow Circulation in Intracranial Arterial Networks: A Comparative 3D/1D Simulation Study
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
297
309
.
18.
Esmaily Moghadam
,
M.
,
Vignon-Clementel
, I
. E.
,
Figliola
,
R.
, and
Marsden
,
A. L.
,
2013
, “
A Modular Numerical Method for Implicit 0D/3D Coupling in Cardiovascular Finite Element Simulations
,”
J. Comput. Phys.
,
244
, pp.
63
79
.
19.
Formaggia
,
L.
,
Quarteroni
,
A.
, and
Vergara
,
C.
,
2013
, “
On the Physical Consistency Between Three-Dimensional and One-Dimensional Models in Haemodynamics
,”
J. Comput. Phys.
,
244
, pp.
97
112
.
20.
Passerini
,
T.
,
De Luca
,
M.
,
Formaggia
,
L.
,
Quarteroni
,
A.
, and
Veneziani
,
A.
,
2009
, “
A 3D/1D Geometrical Multiscale Model of Cerebral Vasculature
,”
J. Eng. Math.
,
64
(
4
), pp.
319
330
.
21.
Pennati
,
G.
,
Corsini
,
C.
,
Cosentino
,
D.
,
Hsia
,
T. Y.
,
Luisi
,
V. S.
,
Dubini
,
G.
, and
Migliavacca
,
F.
,
2011
, “
Boundary Conditions of Patient-Specific Fluid Dynamics Modelling of Cavopulmonary Connections: Possible Adaptation of Pulmonary Resistances Results in a Critical Issue for a Virtual Surgical Planning
,”
Interface Focus
,
1
(
3
), pp.
297
307
.
22.
Blanco
,
P. J.
, and
Feijóo
,
R. A.
,
2013
, “
A Dimensionally-Heterogeneous Closed-Loop Model for the Cardiovascular System and Its Applications
,”
Med. Eng. Phys.
,
35
(
5
), pp.
652
667
.
23.
Oshima
,
M.
,
Torii
,
R.
,
Tokuda
,
S.
,
Yamada
,
S.
, and
Koizumi
,
A.
,
2012
, “
Patient-Specific Modeling and Multi-Scale Blood Simulation for Computational Hemodynamic Study on the Human Cerebrovascular System
,”
Curr. Pharm. Biotechnol.
,
13
(
11
), pp.
2153
2165
.
24.
Alastruey
,
J.
,
Khir
,
A. W.
,
Matthys
,
K. S.
,
Segers
,
P.
,
Sherwin
,
S. J.
,
Verdonck
,
P. R.
,
Parker
,
K. P.
, and
Peiró
,
J.
,
2011
, “
Pulse Wave Propagation in a Model Human Arterial Network: Assessment of 1-D Visco-Elastic Simulations Against In Vitro Measurements
,”
J. Biomech.
,
44
(
12
), pp.
2250
2258
.
25.
Reymond
,
P.
,
Merenda
,
F.
,
Perren
,
F.
,
Rüfenacht
,
D.
, and
Stergiopulos
,
N.
,
2009
, “
Validation of a One-Dimensional Model of the Systemic Arterial Tree
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
297
(
1
), pp.
H208
H222
.
26.
Xiao
,
N.
,
Alastruey
,
J.
, and
Alberto Figueroa
,
C.
,
2014
, “
A Systematic Comparison Between 1-D and 3-D Hemodynamics in Compliant Arterial Models
,”
Int. J. Numer. Methods Biomed. Eng.
,
30
(
2
), pp.
204
231
.
27.
Liang
,
F. Y.
,
Takagi
,
S.
,
Himeno
,
R.
, and
Liu
,
H.
,
2009
, “
Multi-Scale Modeling of the Human Cardiovascular System With Applications to Aortic Valvular and Arterial Stenosis
,”
Med. Biol. Eng. Comput.
,
47
(
7
), pp.
743
755
.
28.
Müller
,
L. O.
, and
Toro
,
E. F.
,
2014
, “
A Global Multiscale Mathematical Model for the Human Circulation With Emphasis on the Venous System
,”
Int. J. Numer. Methods Biomed. Eng.
,
30
(
7
), pp.
681
725
.
29.
Mynard
,
J. P.
, and
Nithiarasu
,
P.
,
2008
, “
A 1D Arterial Blood Flow Model Incorporating Ventricular Pressure, Aortic Valve and Regional Coronary Flow Using the Locally Conservative Galerkin (LCG) Method
,”
Commun. Numer. Methods Eng.
,
24
(
5
), pp.
367
417
.
30.
Liang
,
F. Y.
,
Takagi
,
S.
,
Himeno
,
R.
, and
Liu
,
H.
,
2009
, “
Biomechanical Characterization of Ventricular–Arterial Coupling During Aging: A Multi-Scale Model Study
,”
J. Biomech.
,
42
(
6
), pp.
692
704
.
31.
Formaggia
,
L.
,
Lamponi
,
D.
,
Tuveri
,
M.
, and
Veneziani
,
A.
,
2006
, “
Numerical Modeling of 1D Arterial Networks Coupled With a Lumped Parameters Description of the Heart
,”
Comput. Methods Biomech. Biomed. Eng.
,
9
(
5
), pp.
273
288
.
32.
Tokuda
,
S.
,
2007
, “
Hemodynamic Simulation for Prediction of Initiation and Growth of Cardiovascular Diseases
,” Ph.D. thesis, The University of Tokyo, Bunkyo, Tokyo.
33.
Cousins
,
W.
, and
Gremaud
,
P. A.
,
2012
, “
Boundary Conditions for Hemodynamics: The Structured Tree Revisited
,”
J. Comput. Phys.
,
231
(
18
), pp.
6086
6096
.
34.
Reymond
,
P.
,
Bohraus
,
Y.
,
Perren
,
F.
,
Lazeyras
,
F.
, and
Stergiopulos
,
N.
,
2011
, “
Validation of a Patient-Specific One-Dimensional Model of the Systemic Arterial Tree
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
301
(
3
), pp.
H1173
H1182
.
35.
Cebral
,
J. R.
,
Castro
,
M. A.
,
Burgess
,
J. E.
,
Pergolizzi
,
R. S.
,
Sheridan
,
M. J.
, and
Putman
,
C. M.
,
2005
, “
Characterization of Cerebral Aneurysms for Assessing Risk of Rupture by Using Patient-Specific Computational Hemodynamics Models
,”
Am. J. Neuroradiology
,
26
(
10
), pp.
2550
2559
.
36.
Cebral
,
J. R.
,
Mut
,
F.
,
Weir
,
J.
, and
Putman
,
C. M.
,
2011
, “
Association of Hemodynamic Characteristics and Cerebral Aneurysm Rupture
,”
Am. J. Neuroradiology
,
32
(
2
), pp.
264
270
.
37.
Chung
,
B.
, and
Cebral
,
J. R.
,
2015
, “
CFD for Evaluation and Treatment Planning of Aneurysms: Review of Proposed Clinical Uses and Their Challenges
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
122
138
.
38.
Mut
,
F.
,
Ruijters
,
D.
,
Babic
,
D.
,
Bleise
,
C.
,
Lylyk
,
P.
, and
Cebral
,
J. R.
,
2014
, “
Effects of Changing Physiologic Conditions on the in vivo Quantification of Hemodynamic Variables in Cerebral Aneurysms Treated With Flow Diverting Devices
,”
Int. J. Numer. Methods Biomed. Eng.
,
30
(
1
), pp.
135
142
.
39.
Pereira
,
V. M.
,
Brina
,
O.
,
Marcos Gonzales
,
A.
,
Narata
,
A. P.
,
Bijlenga
,
P.
,
Schaller
,
K.
, and
Ouared
,
R.
,
2013
, “
Evaluation of the Influence of Inlet Boundary Conditions on Computational Fluid Dynamics for Intracranial Aneurysms: A Virtual Experiment
,”
J. Biomech.
,
46
(
9
), pp.
1531
1539
.
40.
Xiang
,
J.
,
Siddiqui
,
A. H.
, and
Meng
,
H.
,
2014
, “
The Effect of Inlet Waveforms on Computational Hemodynamics of Patient-Specific Intracranial Aneurysms
,”
J. Biomech.
,
47
, pp.
3882
3890
.
41.
Evju
,
Ø.
,
Valen-Sendstad
,
K.
, and
Mardal
,
K. A.
,
2013
, “
A Study of Wall Shear Stress in 12 Aneurysms With Respect to Different Viscosity Models and Flow Conditions
,”
J. Biomech.
,
46
(
16
), pp.
2802
2808
.
42.
Westerhof
,
N.
,
Sipkema
,
P.
,
Van Den Bos
,
G. C.
, and
Elzinga
,
G.
,
1972
, “
Forward and Backward Waves in the Arterial System
,”
Cardiovasc. Res.
,
6
(
6
), pp.
648
656
.
43.
Valencia
,
A.
,
Munoz
,
F.
,
Araya
,
S.
,
Rivera
,
R.
, and
Bravo
,
E.
,
2009
, “
Comparison Between Computational Fluid Dynamics, Fluid–Structure Interaction and Computational Structural Dynamics Predictions of Flow-Induced Wall Mechanics in an Anatomically Realistic Cerebral Aneurysm Model
,”
Int. J. Comput. Fluid Dyn.
,
23
(
9
), pp.
649
666
.
44.
Tricerri
,
P.
,
Dedè
,
L.
,
Deparis
,
S.
,
Quarteroni
,
A.
,
Robertson
,
A. M.
, and
Sequeira
,
A.
,
2015
, “
Fluid–Structure Interaction Simulations of Cerebral Arteries Modeled by Isotropic and Anisotropic Constitutive Laws
,”
Comput. Mech.
,
55
, pp.
479
498
.
45.
Torii
,
R.
,
Oshima
,
M.
,
Kobayashi
,
T.
,
Takagi
,
K.
, and
Tezduyar
,
T. E.
,
2011
, “
Influencing Factors in Image-Based Fluid–Structure Interaction Computation of Cerebral Aneurysms
,”
Int. J. Numer. Methods Fluids
,
65
(
1–3
), pp.
324
340
.
46.
Torii
,
R.
,
Oshima
,
M.
,
Kobayashi
,
T.
,
Takagi
,
K.
, and
Tezduyar
,
T. E.
,
2010
, “
Influence of Wall Thickness on Fluid–Structure Interaction Computations of Cerebral Aneurysms
,”
Int. J. Numer. Methods Biomed. Eng.
,
26
(
3–4
), pp.
336
347
.
47.
David
,
T.
,
Brown
,
M.
, and
Ferrandez
,
A.
,
2003
, “
Auto-Regulation and Blood Flow in the Cerebral Circulation
,”
Int. J. Numer. Methods Fluids
,
43
(
6–7
), pp.
701
713
.
48.
Kim
,
H. J.
,
Vignon-Clementel
,
I. E.
,
Coogan
,
J. S.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
,
2010
, “
Patient-Specific Modeling of Blood Flow and Pressure in Human Coronary Arteries
,”
Ann. Biomed. Eng.
,
38
(
10
), pp.
3195
3209
.
You do not currently have access to this content.