Myocardial microstructures are responsible for key aspects of cardiac mechanical function. Natural myocardial deformation across the cardiac cycle induces measurable structural alteration, which varies across disease states. Diffusion tensor magnetic resonance imaging (DT-MRI) has become the tool of choice for myocardial structural analysis. Yet, obtaining the comprehensive structural information of the whole organ, in 3D and time, for subject-specific examination is fundamentally limited by scan time. Therefore, subject-specific finite-element (FE) analysis of a group of rat hearts was implemented for extrapolating a set of initial DT-MRI to the rest of the cardiac cycle. The effect of material symmetry (isotropy, transverse isotropy, and orthotropy), structural input, and warping approach was observed by comparing simulated predictions against in vivo MRI displacement measurements and DT-MRI of an isolated heart preparation at relaxed, inflated, and contracture states. Overall, the results indicate that, while ventricular volume and circumferential strain are largely independent of the simulation strategy, structural alteration predictions are generally improved with the sophistication of the material model, which also enhances torsion and radial strain predictions. Moreover, whereas subject-specific transversely isotropic models produced the most accurate descriptions of fiber structural alterations, the orthotropic models best captured changes in sheet structure. These findings underscore the need for subject-specific input data, including structure, to extrapolate DT-MRI measurements across the cardiac cycle.

References

References
1.
Hales
,
P. W.
,
Schneider
,
J. E.
,
Burton
,
R. A. B.
,
Wright
,
B. J.
,
Bollensdorff
,
C.
, and
Kohl
,
P.
,
2012
, “
Histo-Anatomical Structure of the Living Isolated Rat Heart in Two Contraction States Assessed by Diffusion Tensor MRI
,”
Prog. Biophys. Mol. Biol.
,
110
(
2–3
), pp.
319
330
.
2.
Arts
,
T.
,
Bovendeerd
,
P.
,
Delhaas
,
T.
, and
Prinzen
,
F.
,
2003
, “
Modeling the Relation Between Cardiac Pump Function and Myofiber Mechanics
,”
J. Biomech.
,
36
(
5
), pp.
731
736
.
3.
Bovendeerd
,
P. H.
,
Arts
,
T.
,
Huyghe
,
J. M.
,
van Campen
,
D. H.
, and
Reneman
,
R. S.
,
1992
, “
Dependence of Local Left Ventricular Wall Mechanics on Myocardial Fiber Orientation: A Model Study
,”
J. Biomech.
,
25
(
10
), pp.
1129
1140
.
4.
Waldman
,
L. K.
,
Nosan
,
D.
,
Villarreal
,
F.
, and
Covell
,
J. W.
,
1988
, “
Relation Between Transmural Deformation and Local Myofiber Direction in Canine Left Ventricle
,”
Circ. Res.
,
63
(
3
), pp.
550
562
.
5.
Arts
,
T.
,
Costa
,
K. D.
,
Covell
,
J. W.
, and
McCulloch
,
A. D.
,
2001
, “
Relating Myocardial Laminar Architecture to Shear Strain and Muscle Fiber Orientation
,”
Am. J. Physiol. Heart Circ. Physiol.
,
280
(
5
), pp.
H2222
H2229
.
6.
Rüssel
, I
. K.
,
Götte
,
M. J. W.
,
Bronzwaer
,
J. G.
,
Knaapen
,
P.
,
Paulus
,
W. J.
, and
van Rossum
,
A. C.
,
2009
, “
Left Ventricular Torsion: An Expanding Role in the Analysis of Myocardial Dysfunction
,”
JACC Cardiovasc. Imaging
,
2
(
5
), pp.
648
655
.
7.
Abraham
,
T. P.
, and
Nishimura
,
R. A.
,
2001
, “
Myocardial Strain: Can We Finally Measure Contractility?
,”
J. Am. Coll. Cardiol.
,
37
(
3
), pp.
731
734
.
8.
Hoit
,
B. D.
,
2011
, “
Strain and Strain Rate Echocardiography and Coronary Artery Disease
,”
Circ. Cardiovasc. Imaging
,
4
(
2
), pp.
179
190
.
9.
Axel
,
L.
,
Montillo
,
A.
, and
Kim
,
D.
,
2005
, “
Tagged Magnetic Resonance Imaging of the Heart: A Survey
,”
Med. Image Anal.
,
9
(
4
), pp.
376
393
.
10.
Strijkers
,
G. J.
,
Bouts
,
A.
,
Blankesteijn
,
W. M.
,
Peeters
,
T. H. J. M.
,
Vilanova
,
A.
,
van Prooijen
,
M. C.
,
Sanders
,
H. M. H. F.
,
Heijman
,
E.
, and
Nicolay
,
K.
,
2009
, “
Diffusion Tensor Imaging of Left Ventricular Remodeling in Response to Myocardial Infarction in the Mouse
,”
NMR Biomed.
,
22
(
2
), pp.
182
190
.
11.
Walker
,
J. C.
,
Ratcliffe
,
M. B.
,
Zhang
,
P.
,
Wallace
,
A. W.
,
Fata
,
B.
,
Hsu
,
E. W.
,
Saloner
,
D.
, and
Guccione
,
J. M.
,
2005
, “
MRI-Based Finite-Element Analysis of Left Ventricular Aneurysm
,”
Am. J. Physiol. Heart Circ. Physiol.
,
289
(
2
), pp.
H692
H700
.
12.
Abdullah
,
O. M.
,
Drakos
,
S. G.
,
Diakos
,
N. A.
,
Wever-Pinzon
,
O.
,
Kfoury
,
A. G.
,
Stehlik
,
J.
,
Selzman
,
C. H.
,
Reid
,
B. B.
,
Brunisholz
,
K.
,
Verma
,
D. R.
,
Myrick
,
C.
,
Sachse
,
F. B.
,
Li
,
D. Y.
, and
Hsu
,
E. W.
,
2014
, “
Characterization of Diffuse Fibrosis in the Failing Human Heart Via Diffusion Tensor Imaging and Quantitative Histological Validation
,”
NMR Biomed.
,
27
(
11
), pp.
1378
1386
.
13.
Schmitt
,
B.
,
Fedarava
,
K.
,
Falkenberg
,
J.
,
Rothaus
,
K.
,
Bodhey
,
N. K.
,
Reischauer
,
C.
,
Kozerke
,
S.
,
Schnackenburg
,
B.
,
Westermann
,
D.
,
Lunkenheimer
,
P. P.
,
Anderson
,
R. H.
,
Berger
,
F.
, and
Kuehne
,
T.
,
2009
, “
Three-Dimensional Alignment of the Aggregated Myocytes in the Normal and Hypertrophic Murine Heart
,”
J. Appl. Physiol.
,
107
(
3
), pp.
921
927
.
14.
Ferreira
,
P. F.
,
Kilner
,
P. J.
,
McGill
,
L.-A.
,
Nielles-Vallespin
,
S.
,
Scott
,
A. D.
,
Ho
,
S. Y.
,
McCarthy
,
K. P.
,
Haba
,
M. M.
,
Ismail
,
T. F.
,
Gatehouse
,
P. D.
,
de Silva
,
R.
,
Lyon
,
A. R.
,
Prasad
,
S. K.
,
Firmin
,
D. N.
, and
Pennell
,
D. J.
,
2014
, “
In Vivo Cardiovascular Magnetic Resonance Diffusion Tensor Imaging Shows Evidence of Abnormal Myocardial Laminar Orientations and Mobility in Hypertrophic Cardiomyopathy
,”
J. Cardiovasc. Magn. Reson.
,
16
(
1
), p.
87
.
15.
Axel
,
L.
,
Wedeen
,
V. J.
, and
Ennis
,
D. B.
,
2014
, “
Probing Dynamic Myocardial Microstructure With Cardiac Magnetic Resonance Diffusion Tensor Imaging
,”
J. Cardiovasc. Magn. Reson.
,
16
(
1
), p.
89
.
16.
Stoeck
,
C. T.
,
Kalinowska
,
A.
,
C.
von Deuster
,
Harmer
,
J.
,
Chan
,
R. W.
,
Niemann
,
M.
,
Manka
,
R.
,
Atkinson
,
D.
,
Sosnovik
,
D. E.
,
Mekkaoui
,
C.
, and
Kozerke
,
S.
,
2014
, “
Dual-Phase Cardiac Diffusion Tensor Imaging With Strain Correction
,”
PLoS One
,
9
(
9
), p.
e107159
.
17.
Rijcken
,
J.
,
Bovendeerd
,
P. H.
,
Schoofs
,
A. J.
,
van Campen
,
D. H.
, and
Arts
,
T.
,
1999
, “
Optimization of Cardiac Fiber Orientation for Homogeneous Fiber Strain During Ejection
,”
Ann. Biomed. Eng.
,
27
(
3
), pp.
289
297
.
18.
Yang
,
C.
,
Tang
,
C.
,
Haber
,
I.
,
Geva
,
T.
, and
del Nido
,
P. J.
,
2009
, “
In Vivo MRI-Based 3D FSI RV/LV Models for Human Right Ventricle and Patch Design for Potential Computer-Aided Surgery Optimization
,”
Comput. Struct.
,
85
(
11–14
), pp.
988
997
.
19.
Wenk
,
J.
,
Ge
,
L.
, and
Zhang
,
Z.
,
2013
, “
A Coupled Biventricular Finite Element and Lumped-Parameter Circulatory System Model of Heart Failure
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
8
), pp.
807
818
.
20.
LeGrice
, I
. J.
,
Smaill
,
B. H.
,
Chai
,
L. Z.
,
Edgar
,
S. G.
,
Gavin
,
J. B.
, and
Hunter
,
P. J.
,
1995
, “
Laminar Structure of the Heart: Ventricular Myocyte Arrangement and Connective Tissue Architecture in the Dog
,”
Am. J. Physiol. Circ. Physiol.
,
269
(
2
), pp.
H571
H582
.
21.
Hsu
,
E. W.
,
Muzikant
,
A. L.
,
Matulevicius
,
S. A.
,
Penland
,
R. C.
, and
Henriquez
,
C. S.
,
1998
, “
Magnetic Resonance Myocardial Fiber-Orientation Mapping With Direct Histological Correlation
,”
Am. J. Physiol. Heart Circ. Physiol.
,
274
(
5
), pp.
H1627
H1627
.
22.
Scollan
,
D. F.
,
Holmes
,
A.
,
Winslow
,
R.
, and
Forder
,
J.
,
1998
, “
Histological Validation of Myocardial Microstructure Obtained From Diffusion Tensor Magnetic Resonance Imaging
,”
Am. J. Physiol. Heart Circ. Physiol.
,
275
(
6
), pp.
H2308
H2318
.
23.
Helm
,
P. A.
,
Tseng
,
H.-J.
,
Younes
,
L.
,
McVeigh
,
E. R.
, and
Winslow
,
R. L.
,
2005
, “
Ex Vivo 3D Diffusion Tensor Imaging and Quantification of Cardiac Laminar Structure
,”
Magn. Reson. Med.
,
54
(
4
), pp.
850
859
.
24.
Tseng
,
W.-Y. I.
,
Wedeen
,
V. J.
,
Reese
,
T. G.
,
Smith
,
R. N.
, and
Halpern
,
E. F.
,
2003
, “
Diffusion Tensor MRI of Myocardial Fibers and Sheets: Correspondence With Visible Cut-Face Texture
,”
J. Magn. Reson. Imaging
,
17
(
1
), pp.
31
42
.
25.
Helm
,
P.
,
Beg
,
M. F.
,
Miller
,
M. I.
, and
Winslow
,
R. L.
,
2005
, “
Measuring and Mapping Cardiac Fiber and Laminar Architecture Using Diffusion Tensor MR Imaging
,”
Ann. N. Y. Acad. Sci.
,
1047
, pp.
296
307
.
26.
Hunter
,
P. J.
,
McCulloch
,
A. D.
, and
ter Keurs
,
H. E.
,
1998
, “
Modelling the Mechanical Properties of Cardiac Muscle
,”
Prog. Biophys. Mol. Biol.
,
69
(
2–3
), pp.
289
331
.
27.
Chen
,
J.
,
Liu
,
W.
,
Zhang
,
H.
,
Lacy
,
L.
,
Yang
,
X.
,
Song
,
S.-K.
,
Wickline
,
S. A.
, and
Yu
,
X.
,
2005
, “
Regional Ventricular Wall Thickening Reflects Changes in Cardiac Fiber and Sheet Structure During Contraction: Quantification With Diffusion Tensor MRI
,”
Am. J. Physiol. Heart Circ. Physiol.
,
289
(
5
), pp.
H1898
H1907
.
28.
Smerup
,
M.
,
Partridge
,
J.
,
Agger
,
P.
,
Ringgaard
,
S.
,
Pedersen
,
M.
,
Petersen
,
S.
,
Hasenkam
,
J. M.
,
Niederer
,
P.
,
Lunkenheimer
,
P. P.
, and
Anderson
,
R. H.
,
2013
, “
A Mathematical Model of the Mechanical Link Between Shortening of the Cardiomyocytes and Systolic Deformation of the Left Ventricular Myocardium
,”
Technol. Health Care
,
21
(
1
), pp.
63
79
.
29.
Lohezic
,
M.
,
Teh
,
I.
,
Bollensdorff
,
C.
,
Peyronnet
,
R.
,
Hales
,
P. W.
,
Grau
,
V.
,
Kohl
,
P.
, and
Schneider
,
J. E.
,
2014
, “
Interrogation of Living Myocardium in Multiple Static Deformation States With Diffusion Tensor and Diffusion Spectrum Imaging
,”
Prog. Biophys. Mol. Biol.
,
115
(
2–3
), pp.
213
225
.
30.
Welsh
,
C.
,
Di Bella
,
E.
, and
Hsu
,
E.
,
2015
, “
Higher-Order Motion-Compensation for In Vivo Cardiac Diffusion Tensor Imaging in Rats
,”
IEEE Trans. Med. Imaging
,
34
(
9
), pp.
1843
1853
.
31.
Lau
,
A. Z.
,
Tunnicliffe
,
E. M.
,
Frost
,
R.
,
Koopmans
,
P. J.
,
Tyler
,
D. J.
, and
Robson
,
M. D.
,
2015
, “
Accelerated Human Cardiac Diffusion Tensor Imaging Using Simultaneous Multislice Imaging
,”
Magn. Reson. Med.
,
73
(
3
), pp.
995
1004
.
32.
Nielles-Vallespin
,
S.
,
Mekkaoui
,
C.
,
Gatehouse
,
P.
,
Reese
,
T. G.
,
Keegan
,
J.
,
Ferreira
,
P. F.
,
Collins
,
S.
,
Speier
,
P.
,
Feiweier
,
T.
,
de Silva
,
R.
,
Jackowski
,
M. P.
,
Pennell
,
D. J.
,
Sosnovik
,
D. E.
, and
Firmin
,
D.
,
2013
, “
In Vivo Diffusion Tensor MRI of the Human Heart: Reproducibility of Breath-Hold and Navigator-Based Approaches
,”
Magn. Reson. Med.
,
70
(
2
), pp.
454
465
.
33.
Carapella
,
V.
,
Bordas
,
R.
,
Pathmanathan
,
P.
,
Lohezic
,
M.
,
Schneider
,
J. E.
,
Kohl
,
P.
,
Burrage
,
K.
, and
Grau
,
V.
,
2014
, “
Quantitative Study of the Effect of Tissue Microstructure on Contraction in a Computational Model of Rat Left Ventricle
,”
PLoS One
,
9
(
4
), p.
e92792
.
34.
Usyk
,
T. P.
,
Mazhari
,
R.
, and
McCulloch
,
A. D.
,
2000
, “
Effect of Laminar Orthotropic Myofiber Architecture on Regional Stress and Strain in the Canine Left Ventricle
,”
J. Elasticity Phys. Sci. Solids
,
61
(
1–3
), pp.
143
164
.
35.
Aletras
,
A. H.
,
Ding
,
S.
,
Balaban
,
R. S.
, and
Wen
,
H.
,
1999
, “
DENSE: Displacement Encoding With Stimulated Echoes in Cardiac Functional MRI
,”
J. Magn. Reson.
,
137
(
1
), pp.
247
252
.
36.
Kim
,
D.
,
Gilson
,
W. D.
,
Kramer
,
C. M.
, and
Epstein
,
F. H.
,
2004
, “
Myocardial Tissue Tracking With Two-Dimensional Cine Imaging: Development and Initial Evaluation
,”
Radiology
,
230
(
3
), pp.
862
871
.
37.
Costantini
,
M.
,
1998
, “
A Novel Phase Unwrapping Method Based on Network Programming
,”
IEEE Trans. Geosci. Remote Sens.
,
36
(
3
), pp.
813
821
.
38.
Gomez
,
A. D.
,
Merchant
,
S. S.
, and
Hsu
,
E. W.
,
2014
, “
Accurate High-Resolution Measurements of 3-D Tissue Dynamics With Registration-Enhanced Displacement Encoded MRI
,”
IEEE Trans. Med. Imaging
,
33
(
6
), pp.
1350
1362
.
39.
Liu
,
W.
,
Ashford
,
M. W.
,
Chen
,
J.
,
Watkins
,
M. P.
,
Williams
,
T. A.
,
Wickline
,
S. A.
, and
Yu
,
X.
,
2006
, “
MR Tagging Demonstrates Quantitative Differences in Regional Ventricular Wall Motion in Mice, Rats, and Men
,”
Am. J. Physiol. Heart Circ. Physiol.
,
291
(
5
), pp.
H2515
H2521
.
40.
Rohmer
,
D.
,
Sitek
,
A.
, and
Gullberg
,
G. T.
,
2007
, “
Reconstruction and Visualization of Fiber and Laminar Structure in the Normal Human Heart From Ex Vivo Diffusion Tensor Magnetic Resonance Imaging (DTMRI) Data
,”
Invest. Radiol.
,
42
(
11
), pp.
777
789
.
41.
Rouhani
,
M.
, and
Sappa
,
A. D.
,
2011
, “
Implicit B-Spline Fitting Using the 3L Algorithm
,”
18th IEEE International Conference on Image Processing
(
ICIP
), Brussels, Belgium, Sept. 11–14, pp.
893
896
.
42.
Pacher
,
P.
,
Nagayama
,
T.
,
Mukhopadhyay
,
P.
,
S.
Bátkai
, and
Kass
,
D. A.
,
2008
, “
Measurement of Cardiac Function Using Pressure-Volume Conductance Catheter Technique in Mice and Rats
,”
Nat. Protoc.
,
3
(
9
), pp.
1422
1434
.
43.
Veress
,
A. I.
,
Gullberg
,
G. T.
, and
Weiss
,
J. A.
,
2005
, “
Measurement of Strain in the Left Ventricle During Diastole With Cine-MRI and Deformable Image Registration
,”
ASME J. Biomech. Eng.
,
127
(
7
), pp.
1195
1207
.
44.
Costa
,
K. D.
,
Holmes
,
J. W.
, and
Mcculloch
,
A. D.
,
2001
. “
Modelling Cardiac Mechanical Properties in Three Dimensions
,”
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
,
359
(
1783
), pp.
1233
1250
.
45.
Omens
,
J. H.
,
MacKenna
,
D. A.
, and
McCulloch
,
A. D.
,
1993
, “
Measurement of Strain and Analysis of Stress in Resting Rat Left Ventricular Myocardium
,”
J. Biomech.
,
26
(
6
), pp.
665
676
.
46.
Maas
,
S.
,
Rawlings
,
D.
,
Weiss
,
J. A.
, and
Ateshian
,
G. A.
,
2014
, febio:
Finite Elements for Biomechanics-Theory Manual
,
University of Utah
,
Salt Lake City, UT
.
47.
Healy
,
L. J.
,
Jiang
,
Y.
, and
Hsu
,
E. W.
,
2011
, “
Quantitative Comparison of Myocardial Fiber Structure Between Mice, Rabbit, and Sheep Using Diffusion Tensor Cardiovascular Magnetic Resonance
,”
J. Cardiovasc. Magn. Reson.
,
13
(
1
), p.
74
.
48.
Gilbert
,
S. H.
,
Benoist
,
D.
,
Benson
,
A. P.
,
White
,
E.
,
Tanner
,
S. F.
,
Holden
,
A. V.
,
Dobrzynski
,
H.
,
Bernus
,
O.
, and
Radjenovic
,
A.
,
2012
, “
Visualization and Quantification of Whole Rat Heart Laminar Structure Using High-Spatial Resolution Contrast-Enhanced MRI
,”
Am. J. Physiol. Heart Circ. Physiol.
,
302
(
1
), pp.
H287
H298
.
49.
Dokos
,
S.
,
Smaill
,
B. H.
,
Young
,
A. A.
, and
LeGrice
,
I. J.
,
2002
, “
Shear Properties of Passive Ventricular Myocardium
,”
Am. J. Physiol. Heart Circ. Physiol.
,
283
(
6
), pp.
H2650
H2659
.
50.
Sun
,
K.
,
Stander
,
N.
,
Jhun
,
C.-S.
,
Zhang
,
Z.
,
Suzuki
,
T.
,
Wang
,
G.-Y.
,
Maythem
,
S.
,
Wallace
,
A. W.
,
Tseng
,
E. E.
,
Baker
,
A. J.
,
Saloner
,
D.
,
Einstein
,
D. R.
,
Ratcliffe
,
M. B.
, and
Guccione
,
J. M.
,
2009
, “
A Computationally Efficient Formal Optimization of Regional Myocardial Contractility in a Sheep With Left Ventricular Aneurysm
,”
ASME J. Biomech. Eng.
,
131
(
11
), pp.
1
21
.
51.
Ateshian
,
G. A.
, and
Costa
,
K. D.
,
2009
, “
A Frame-Invariant Formulation of Fung Elasticity
,”
J. Biomech.
,
42
(
6
), pp.
781
785
.
52.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2012
, “
febio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011005
.
53.
Guccione
,
J. M.
, and
McCulloch
,
A. D.
,
1993
, “
Mechanics of Active Contraction in Cardiac Muscle—Part I: Constitutive Relations for Fiber Stress That Describe Deactivation
,”
ASME J. Biomech. Eng.
,
115
(
1
), pp.
72
81
.
54.
Guccione
,
J. M.
,
Waldman
,
L. K.
, and
McCulloch
,
A. D.
,
1993
, “
Mechanics of Active Contraction in Cardiac Muscle—Part II: Cylindrical Models of the Systolic Left Ventricle
,”
ASME J. Biomech. Eng.
,
115
(
1
), pp.
82
90
.
55.
Bayer
,
J. D.
,
Blake
,
R. C.
,
Plank
,
G.
, and
Trayanova
,
N. A.
,
2012
, “
A Novel Rule-Based Algorithm for Assigning Myocardial Fiber Orientation to Computational Heart Models
,”
Ann. Biomed. Eng.
,
40
(
10
), pp.
2243
2254
.
56.
Gilbert
,
S. H.
,
Benson
,
A. P.
,
Li
,
P.
, and
Holden
,
A. V.
,
2007
, “
Regional Localisation of Left Ventricular Sheet Structure: Integration With Current Models of Cardiac Fibre, Sheet and Band Structure
,”
Eur. J. Cardiothorac. Surg.
,
32
(
2
), pp.
231
249
.
57.
Streeter
,
D. D.
,
Vaishnav
,
R. N.
,
Patel
,
D. J.
,
Spotnitz
,
H. M.
,
Ross
,
J.
, and
Sonnenblick
,
E. H.
,
1970
, “
Stress Distribution in the Canine Left Ventricle During Diastole and Systole
,”
Biophys. J.
,
10
(
4
), pp.
345
363
.
58.
Geerts
,
L.
,
Bovendeerd
,
P.
,
Nicolay
,
K.
, and
Arts
,
T.
,
2002
, “
Characterization of the Normal Cardiac Myofiber Field in Goat Measured With MR-Diffusion Tensor Imaging
,”
Am. J. Physiol. Heart Circ. Physiol.
,
283
(
1
), pp.
H139
H145
.
59.
Yuan
,
K.-Y.
,
Huang
,
Y.-S.
,
Yang
,
H.-T.
, and
Pian
,
T. H. H.
,
1994
, “
The Inverse Mapping and Distortion Measures for 8-Node Hexahedral Isoparametric Elements
,”
Comput. Mech.
,
14
(
2
), pp.
189
199
.
60.
Peyrat
,
J.-M.
,
Sermesant
,
M.
,
Pennec
,
X.
,
Delingette
,
H.
,
Xu
,
C.
,
McVeigh
,
E. R.
, and
Ayache
,
N.
,
2007
, “
A Computational Framework for the Statistical Analysis of Cardiac Diffusion Tensors: Application to a Small Database of Canine Hearts
,”
IEEE Trans. Med. Imaging
,
26
(
11
), pp.
1500
1514
.
61.
Alexander
,
D. C.
,
Pierpaoli
,
C.
,
Basser
,
P. J.
, and
Gee
,
J. C.
,
2001
, “
Spatial Transformations of Diffusion Tensor Magnetic Resonance Images
,”
IEEE Trans. Med. Imaging
,
20
(
11
), pp.
1131
1139
.
62.
Bachner-Hinenzon
,
N.
,
Ertracht
,
O.
,
Leitman
,
M.
,
Vered
,
Z.
,
Shimoni
,
S.
,
Beeri
,
R.
,
Binah
,
O.
, and
Adam
,
D.
,
2010
, “
Layer-Specific Strain Analysis by Speckle Tracking Echocardiography Reveals Differences in Left Ventricular Function Between Rats and Humans
,”
Am. J. Physiol. Heart Circ. Physiol.
,
299
(
3
), pp.
H664
672
.
63.
Phatak
,
N. S.
,
Maas
,
S. A.
,
Veress
,
A. I
,
Pack
,
N. A.
,
Di Bella
,
E. V. R.
, and
Weiss
, and
J. A.
,
2009
, “
Strain Measurement in the Left Ventricle During Systole With Deformable Image Registration
,”
Med. Image Anal.
,
13
(
2
), pp.
354
361
.
64.
Wang
,
H. M.
,
Luo
,
X. Y.
,
Gao
,
H.
,
Ogden
,
R. W.
,
Griffith
,
B. E.
,
Berry
,
C.
, and
Wang
,
T. J.
,
2014
, “
A Modified Holzapfel-Ogden Law for a Residually Stressed Finite Strain Model of the Human Left Ventricle in Diastole
,”
Biomech. Modell. Mechanobiol.
,
13
(
1
), pp.
99
113
.
You do not currently have access to this content.