Intervertebral translations and rotations are likely dependent on intervertebral stiffness properties. The objective of this study was to incorporate realistic intervertebral stiffnesses in a musculoskeletal model of the lumbar spine using a novel force-dependent kinematics approach, and examine the effects on vertebral compressive loading and intervertebral motions. Predicted vertebral loading and intervertebral motions were compared to previously reported in vivo measurements. Intervertebral joint reaction forces and motions were strongly affected by flexion stiffness, as well as force–motion coupling of the intervertebral stiffness. Better understanding of intervertebral stiffness and force–motion coupling could improve musculoskeletal modeling, implant design, and surgical planning.

References

1.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.
2.
Hoy
,
D.
,
Bain
,
C.
,
Williams
,
G.
,
March
,
L.
,
Brooks
,
P.
,
Blyth
,
F.
,
Woolf
,
A.
,
Vos
,
T.
, and
Buchbinder
,
R.
,
2012
, “
A Systematic Review of the Global Prevalence of Low Back Pain
,”
Arthritis Rheum.
,
64
(
6
), pp.
2028
2037
.
3.
Martin
,
B. I.
,
Deyo
,
R. A.
,
Mirza
,
S. K.
,
Turner
,
J. A.
,
Comstock
,
B. A.
,
Hollingworth
,
W.
, and
Sullivan
,
S. D.
,
2008
, “
Expenditures and Health Status Among Adults With Back and Neck Problems
,”
JAMA
,
299
(
6
), pp.
656
664
.
4.
Huynh
,
K. T.
,
Gibson
,
I.
,
Jagdish
,
B. N.
, and
Lu
,
W. F.
,
2015
, “
Development and Validation of a Discretised Multi-Body Spine Model in LifeMOD for Biodynamic Behaviour Simulation
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
2
), pp.
175
184
.
5.
Stokes
,
I. A.
, and
Gardner-Morse
,
M.
,
1995
, “
Lumbar Spine Maximum Efforts and Muscle Recruitment Patterns Predicted by a Model With Multijoint Muscles and Joints With Stiffness
,”
J. Biomech.
,
28
(
2
), pp.
173
186
.
6.
Christophy
,
M.
,
Faruk Senan
,
N. A.
,
Lotz
,
J. C.
, and
O'Reilly
,
O. M.
,
2012
, “
A Musculoskeletal Model for the Lumbar Spine
,”
Biomech. Model. Mechanobiol.
,
11
(
1–2
), pp.
19
34
.
7.
de Zee
,
M.
,
Hansen
,
L.
,
Wong
,
C.
,
Rasmussen
,
J.
, and
Simonsen
,
E. B.
,
2007
, “
A Generic Detailed Rigid-Body Lumbar Spine Model
,”
J. Biomech.
,
40
(
6
), pp.
1219
1227
.
8.
Fujii
,
R.
,
Sakaura
,
H.
,
Mukai
,
Y.
,
Hosono
,
N.
,
Ishii
,
T.
,
Iwasaki
,
M.
,
Yoshikawa
,
H.
, and
Sugamoto
,
K.
,
2007
, “
Kinematics of the Lumbar Spine in Trunk Rotation: In Vivo Three-Dimensional Analysis Using Magnetic Resonance Imaging
,”
Eur. Spine J.
,
16
(
11
), pp.
1867
1874
.
9.
Neuschwander
,
T. B.
,
Cutrone
,
J.
,
Macias
,
B. R.
,
Cutrone
,
S.
,
Murthy
,
G.
,
Chambers
,
H.
, and
Hargens
,
A. R.
,
2010
, “
The Effect of Backpacks on the Lumbar Spine in Children: A Standing Magnetic Resonance Imaging Study
,”
Spine
,
35
(
1
), pp.
83
88
.
10.
Li
,
G.
,
Wang
,
S.
,
Passias
,
P.
,
Xia
,
Q.
, and
Wood
,
K.
,
2009
, “
Segmental In Vivo Vertebral Motion During Functional Human Lumbar Spine Activities
,”
Eur. Spine J.
,
18
(
7
), pp.
1013
1021
.
11.
Wang
,
S.
,
Xia
,
Q.
,
Passias
,
P.
,
Wood
,
K.
, and
Li
,
G.
,
2009
, “
Measurement of Geometric Deformation of Lumbar Intervertebral Discs Under In-Vivo Weightbearing Condition
,”
J. Biomech.
,
42
(
6
), pp.
705
711
.
12.
Wu
,
M.
,
Wang
,
S.
,
Driscoll
,
S. J.
,
Cha
,
T. D.
,
Wood
,
K. B.
, and
Li
,
G.
,
2014
, “
Dynamic Motion Characteristics of the Lower Lumbar Spine: Implication to Lumbar Pathology and Surgical Treatment
,”
Eur. Spine J.
,
23
(
11
), pp.
2350
2358
.
13.
Adams
,
M. A.
, and
Dolan
,
P.
,
1991
, “
A Technique for Quantifying the Bending Moment Acting on the Lumbar Spine In Vivo
,”
J. Biomech.
,
24
(
2
), pp.
117
126
.
14.
Han
,
K. S.
,
Zander
,
T.
,
Taylor
,
W. R.
, and
Rohlmann
,
A.
,
2012
, “
An Enhanced and Validated Generic Thoraco-Lumbar Spine Model for Prediction of Muscle Forces
,”
Med. Eng. Phys.
,
34
(
6
), pp.
709
716
.
15.
Andersen
,
M. S.
, and
Rasmussen
,
J.
,
2011
, “
Total Knee Replacement Musculoskeletal Model Using a Novel Simulation Method for Non-Conforming Joints
,”
International Society of Biomechanics Conference
(ISB 2011),
Brussels
, Belgium, July 3–7, Paper No. 343.
16.
Marra
,
M. A.
,
Vanheule
,
V.
,
Fluit
,
R.
,
Koopman
,
B. H.
,
Rasmussen
,
J.
,
Verdonschot
,
N.
, and
Andersen
,
M. S.
,
2015
, “
A Subject-Specific Musculoskeletal Modeling Framework to Predict In Vivo Mechanics of Total Knee Arthroplasty
,”
ASME J. Biomech. Eng.
,
137
(
2
), p.
020904
.
17.
de Leva
,
P.
,
1996
, “
Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters
,”
J. Biomech.
,
29
(
9
), pp.
1223
1230
.
18.
McConville
,
J. T.
,
Churchill
,
T. D.
,
Kaleps
,
I.
,
Clauser
,
C. E.
, and
Cuzzi
,
J.
,
1980
, “
Anthropometric Relationships of Body and Body Segment Moments of Inertia
,” Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, OH, Report No. AFAMRL-TR-80-119.
19.
Millard
,
M.
,
Uchida
,
T.
,
Seth
,
A.
, and
Delp
,
S. L.
,
2013
, “
Flexing Computational Muscle: Modeling and Simulation of Musculotendon Dynamics
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021005
.
20.
Arjmand
,
N.
, and
Shirazi-Adl
,
A.
,
2006
, “
Role of Intra-Abdominal Pressure in the Unloading and Stabilization of the Human Spine During Static Lifting Tasks
,”
Eur. Spine J.
,
15
(
8
), pp.
1265
1275
.
21.
Schultz
,
A.
,
Andersson
,
G.
,
Ortengren
,
R.
,
Haderspeck
,
K.
, and
Nachemson
,
A.
,
1982
, “
Loads on the Lumbar Spine. Validation of a Biomechanical Analysis by Measurements of Intradiscal Pressures and Myoelectric Signals
,”
J. Bone Jt. Surg.
,
64
(
5
), pp.
713
720
.
22.
Marras
,
W. S.
, and
Mirka
,
G. A.
,
1996
, “
Intra-Abdominal Pressure During Trunk Extension Motions
,”
Clin. Biomech.
,
11
(
5
), pp.
267
274
.
23.
Gardner-Morse
,
M. G.
, and
Stokes
,
I. A.
,
2004
, “
Structural Behavior of Human Lumbar Spinal Motion Segments
,”
J. Biomech.
,
37
(
2
), pp.
205
212
.
24.
Panjabi
,
M. M.
,
Brand
,
R. A.
, Jr.
, and
White
,
A. A.
, III
,
1976
, “
Three-Dimensional Flexibility and Stiffness Properties of the Human Thoracic Spine
,”
J. Biomech.
,
9
(
4
), pp.
185
192
.
25.
Heuer
,
F.
,
Schmidt
,
H.
,
Klezl
,
Z.
,
Claes
,
L.
, and
Wilke
,
H. J.
,
2007
, “
Stepwise Reduction of Functional Spinal Structures Increase Range of Motion and Change Lordosis Angle
,”
J. Biomech.
,
40
(
2
), pp.
271
280
.
26.
Panjabi
,
M. M.
,
Oxland
,
T. R.
,
Yamamoto
,
I.
, and
Crisco
,
J. J.
,
1994
, “
Mechanical Behavior of the Human Lumbar and Lumbosacral Spine as Shown by Three-Dimensional Load-Displacement Curves
,”
J. Bone Jt. Surg.
,
76
(
3
), pp.
413
424
.
27.
Tencer
,
A. F.
,
Ahmed
,
A. M.
, and
Burke
,
D. L.
,
1982
, “
Some Static Mechanical Properties of the Lumbar Intervertebral Joint, Intact and Injured
,”
ASME J. Biomech. Eng.
,
104
(
3
), pp.
193
201
.
28.
Yamamoto
,
I.
,
Panjabi
,
M. M.
,
Crisco
,
T.
, and
Oxland
,
T.
,
1989
, “
Three-Dimensional Movements of the Whole Lumbar Spine and Lumbosacral Joint
,”
Spine
,
14
(
11
), pp.
1256
1260
.
29.
Lin
,
H. S.
,
Liu
,
Y. K.
, and
Adams
,
K. H.
,
1978
, “
Mechanical Response of the Lumbar Intervertebral Joint Under Physiological (Complex) Loading
,”
J. Bone Jt. Surg., Am.
,
60
(
1
), pp.
41
55
.
30.
Markolf
,
K. L.
,
1972
, “
Deformation of the Thoracolumbar Intervertebral Joints in Response to External Loads: A Biomechanical Study Using Autopsy Material
,”
J. Bone Jt. Surg.
,
54
(
3
), pp.
511
533
.
31.
El Ouaaid
,
Z.
,
Shirazi-Adl
,
A.
,
Plamondon
,
A.
, and
Lariviere
,
C.
,
2013
, “
Trunk Strength, Muscle Activity and Spinal Loads in Maximum Isometric Flexion and Extension Exertions: A Combined In Vivo-Computational Study
,”
J. Biomech.
,
46
(
13
), pp.
2228
2235
.
32.
Tafazzol
,
A.
,
Arjmand
,
N.
,
Shirazi-Adl
,
A.
, and
Parnianpour
,
M.
,
2014
, “
Lumbopelvic Rhythm During Forward and Backward Sagittal Trunk Rotations: Combined In Vivo Measurement With Inertial Tracking Device and Biomechanical Modeling
,”
Clin. Biomech.
,
29
(
1
), pp.
7
13
.
33.
Wong
,
K. W.
,
Luk
,
K. D.
,
Leong
,
J. C.
,
Wong
,
S. F.
, and
Wong
,
K. K.
,
2006
, “
Continuous Dynamic Spinal Motion Analysis
,”
Spine
,
31
(
4
), pp.
414
419
.
34.
Wilke
,
H.
,
Neef
,
P.
,
Hinz
,
B.
,
Seidel
,
H.
, and
Claes
,
L.
,
2001
, “
Intradiscal Pressure Together With Anthropometric Data—A Data Set for the Validation of Models
,”
Clin. Biomech.
,
16
(
Suppl. 1
), pp.
S111
S126
.
35.
Busscher
,
I.
,
van Dieen
,
J. H.
,
van der Veen
,
A. J.
,
Kingma
,
I.
,
Meijer
,
G. J.
,
Verkerke
,
G. J.
, and
Veldhuizen
,
A. G.
,
2011
, “
The Effects of Creep and Recovery on the In Vitro Biomechanical Characteristics of Human Multi-Level Thoracolumbar Spinal Segments
,”
Clin. Biomech.
,
26
(
5
), pp.
438
444
.
36.
Zhao
,
F.
,
Pollintine
,
P.
,
Hole
,
B. D.
,
Dolan
,
P.
, and
Adams
,
M. A.
,
2005
, “
Discogenic Origins of Spinal Instability
,”
Spine
,
30
(
23
), pp.
2621
2630
.
37.
Gardner-Morse
,
M. G.
, and
Stokes
,
I. A.
,
1998
, “
The Effects of Abdominal Muscle Coactivation on Lumbar Spine Stability
,”
Spine
,
23
(
1
), pp.
86
91
; discussion 91–92.
38.
Stokes
,
I. A.
, and
Gardner-Morse
,
M.
,
2001
, “
Lumbar Spinal Muscle Activation Synergies Predicted by Multi-Criteria Cost Function
,”
J. Biomech.
,
34
(
6
), pp.
733
740
.
39.
Stokes
,
I. A.
, and
Gardner-Morse
,
M.
,
2003
, “
Spinal Stiffness Increases With Axial Load: Another Stabilizing Consequence of Muscle Action
,”
J. Electromyogr. Kinesiol.
,
13
(
4
), pp.
397
402
.
40.
Christophy
,
M.
,
Curtin
,
M.
,
Senan
,
N. A. F.
,
Lotz
,
J. C.
, and
O'Reilly
,
O. M.
,
2013
, “
On the Modeling of the Intervertebral Joint in Multibody Models for the Spine
,”
Multibody Syst. Dyn.
,
30
(
4
), pp.
413
432
.
41.
Weisse
,
B.
,
Aiyangar
,
A. K.
,
Affolter
,
C.
,
Gander
,
R.
,
Terrasi
,
G. P.
, and
Ploeg
,
H.
,
2012
, “
Determination of the Translational and Rotational Stiffnesses of an L4-L5 Functional Spinal Unit Using a Specimen-Specific Finite Element Model
,”
J. Mech. Behav. Biomed. Mater.
,
13
, pp.
45
61
.
42.
Izzo
,
R.
,
Guarnieri
,
G.
,
Guglielmi
,
G.
, and
Muto
,
M.
,
2013
, “
Biomechanics of the Spine. Part II: Spinal Instability
,”
Eur. J. Radiol.
,
82
(
1
), pp.
127
138
.
43.
Harris
,
B. M.
,
Hilibrand
,
A. S.
,
Savas
,
P. E.
,
Pellegrino
,
A.
,
Vaccaro
,
A. R.
,
Siegler
,
S.
, and
Albert
,
T. J.
,
2004
, “
Transforaminal Lumbar Interbody Fusion: The Effect of Various Instrumentation Techniques on the Flexibility of the Lumbar Spine
,”
Spine
,
29
(
4
), pp.
E65
E70
.
44.
Sim
,
H. B.
,
Murovic
,
J. A.
,
Cho
,
B. Y.
,
Lim
,
T. J.
, and
Park
,
J.
,
2010
, “
Biomechanical Comparison of Single-Level Posterior Versus Transforaminal Lumbar Interbody Fusions With Bilateral Pedicle Screw Fixation: Segmental Stability and the Effects on Adjacent Motion Segments
,”
J. Neurosurg. Spine
,
12
(
6
), pp.
700
708
.
45.
Demetropoulos
,
C. K.
,
Sengupta
,
D. K.
,
Knaub
,
M. A.
,
Wiater
,
B. P.
,
Abjornson
,
C.
,
Truumees
,
E.
, and
Herkowitz
,
H. N.
,
2010
, “
Biomechanical Evaluation of the Kinematics of the Cadaver Lumbar Spine Following Disc Replacement With the ProDisc-L Prosthesis
,”
Spine
,
35
(
1
), pp.
26
31
.
46.
Cripton
,
P. A.
,
Bruehlmann
,
S. B.
,
Orr
,
T. E.
,
Oxland
,
T. R.
, and
Nolte
,
L. P.
,
2000
, “
In Vitro Axial Preload Application During Spine Flexibility Testing: Towards Reduced Apparatus-Related Artefacts
,”
J. Biomech.
,
33
(
12
), pp.
1559
1568
.
47.
Gardner-Morse
,
M. G.
, and
Stokes
,
I. A.
,
2003
, “
Physiological axial Compressive Preloads Increase Motion Segment Stiffness, Linearity and Hysteresis in all Six Degrees of Freedom for Small Displacements About the Neutral Posture
,”
J. Orthop. Res.
,
21
(
3
), pp.
547
552
.
48.
Janevic
,
J.
,
Ashton-Miller
,
J. A.
, and
Schultz
,
A. B.
,
1991
, “
Large Compressive Preloads Decrease Lumbar Motion Segment Flexibility
,”
J. Orthop. Res.
,
9
(
2
), pp.
228
236
.
You do not currently have access to this content.