The intervertebral disk has an excellent swelling capacity to absorb water, which is thought to be largely due to the high proteoglycan composition. Injury, aging, degeneration, and diurnal loading are all noted by a significant decrease in water content and tissue hydration. The objective of this study was to evaluate the effect of hydration, through osmotic loading, on tissue swelling and compressive stiffness of healthy intervertebral disks. The wet weight of nucleus pulposus (NP) and annulus fibrosus (AF) explants following swelling was 50% or greater, demonstrating significant ability to absorb water under all osmotic loading conditions (0.015 M–3.0 M phosphate buffered saline (PBS)). Estimated NP residual strains, calculated from the swelling ratio, were approximately 1.5 × greater than AF residual strains. Compressive stiffness increased with hyperosmotic loading, which is thought to be due to material compaction from osmotic-loading and the nonlinear mechanical behavior. Importantly, this study demonstrated that residual strains and material properties are greatly dependent on osmotic loading. The findings of this study support the notion that swelling properties from osmotic loading will be important for accurately describing the effect of degeneration and injury on disk mechanics. Furthermore, the tissue swelling will be an important consideration for developing biological repair strategies aimed at restoring mechanical behavior toward a healthy disk.

References

References
1.
Beckstein
,
J. C.
,
Sen
,
S.
,
Schaer
,
T. P.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2008
, “
Comparison of Animal Discs Used in Disc Research to Human Lumbar Disc: Axial Compression Mechanics and Glycosaminoglycan Content
,”
Spine (Phila Pa 1976)
,
33
(
6
), pp.
E166
E173
.
2.
Urban
,
J. P.
, and
McMullin
,
J. F.
,
1988
, “
Swelling Pressure of the Lumbar Intervertebral Discs: Influence of Age, Spinal Level, Composition, and Degeneration
,”
Spine (Phila Pa 1976)
,
13
(
2
), pp.
179
187
.
3.
Adams
,
M. A.
,
Dolan
,
P.
, and
Hutton
,
W. C.
,
1987
, “
Diurnal Variations in the Stresses on the Lumbar Spine
,”
Spine (Phila Pa 1976)
,
12
(
2
), pp.
130
137
.
4.
Ludescher
,
B.
,
Effelsberg
,
J.
,
Martirosian
,
P.
,
Steidle
,
G.
,
Markert
,
B.
,
Claussen
,
C.
, and
Schick
,
F.
,
2008
, “
T2- and Diffusion-Maps Reveal Diurnal Changes of Intervertebral Disc Composition: An In Vivo MRI Study at 1.5 Tesla
,”
J Magn. Reson. Imaging
,
28
(
1
), pp.
252
257
.
5.
Botsford
,
D. J.
,
Esses
,
S. I.
, and
Ogilvie-Harris
,
D. J.
,
1994
, “
In Vivo Diurnal Variation in Intervertebral Disc Volume and Morphology
,”
Spine (Phila Pa 1976)
,
19
(
8
), pp.
935
940
.
6.
Hutton
,
W. C.
,
Malko
,
J. A.
, and
Fajman
,
W. A.
,
2003
, “
Lumbar Disc Volume Measured by MRI: Effects of Bed Rest, Horizontal Exercise, and Vertical Loading
,”
Aviat., Space, Environ. Med.
,
74
(
1
), pp.
73
78
.
7.
O'Connell
,
G. D.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2011
, “
Human Intervertebral Disc Internal Strain in Compression: The Effect of Disc Region, Loading Position, and Degeneration
,”
J. Orthop. Res.
,
29
(
4
), pp.
547
555
.
8.
Kelly
,
T. A.
,
Roach
,
B. L.
,
Weidner
,
Z. D.
,
Mackenzie-Smith
,
C. R.
,
O'Connell
,
G. D.
,
Lima
,
E. G.
,
Stoker
,
A. M.
,
Cook
,
J. L.
,
Ateshian
,
G. A.
, and
Hung
,
C. T.
,
2013
, “
Tissue-Engineered Articular Cartilage Exhibits Tension-Compression Nonlinearity Reminiscent of the Native Cartilage
,”
J. Biomech.
,
46
(
11
), pp.
1784
1791
.
9.
Reiter
,
D. A.
,
Sarigul-Klijn
,
N.
,
Gupta
,
M. C.
, and
Fathallah
,
F. A.
,
2003
, “
In Vitro Measurements of Porcine Anterior Column Units Under Free Swelling
,”
ASME J. Biomech. Eng.
,
125
(
6
), pp.
875
880
.
10.
Adams
,
M. A.
,
Dolan
,
P.
,
Hutton
,
W. C.
, and
Porter
,
R. W.
,
1990
, “
Diurnal Changes in Spinal Mechanics and Their Clinical Significance
,”
J. Bone Jt. Surg. Br. Vol.
,
72
(
2
), pp.
266
270
.
11.
Masuoka
,
K.
,
Michalek
,
A. J.
,
MacLean
,
J. J.
,
Stokes
,
I. A.
, and
Iatridis
,
J. C.
,
2007
, “
Different Effects of Static Versus Cyclic Compressive Loading on Rat Intervertebral Disc Height and Water Loss In Vitro
,”
Spine (Phila Pa 1976)
,
32
(
18
), pp.
1974
1979
.
12.
O'Connell
,
G. D.
,
Jacobs
,
N. T.
,
Sen
,
S.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2011
, “
Axial Creep Loading and Unloaded Recovery of the Human Intervertebral Disc and the Effect of Degeneration
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
7
), pp.
933
942
.
13.
Arun
,
R.
,
Freeman
,
B. J.
,
Scammell
,
B. E.
,
McNally
,
D. S.
,
Cox
,
E.
, and
Gowland
,
P.
,
2009
, “
2009 ISSLS Prize Winner: What Influence Does Sustained Mechanical Load Have on Diffusion in the Human Intervertebral Disc?: An In Vivo Study Using Serial Postcontrast Magnetic Resonance Imaging
,”
Spine
,
34
(
21
), pp.
2324
2337
.
14.
Adams
,
M. A.
,
McNally
,
D. S.
, and
Dolan
,
P.
,
1996
, “
“Stress” Distributions Inside Intervertebral Discs. The Effects of Age and Degeneration
,”
J. Bone Jt. Surg. Br.
,
78
(
6
), pp.
965
972
.
15.
Johnston
,
S. L.
,
Campbell
,
M. R.
,
Scheuring
,
R.
, and
Feiveson
,
A. H.
,
2010
, “
Risk of Herniated Nucleus Pulposus Among U.S. Astronauts
,”
Aviat., Space, Environ. Med.
,
81
(
6
), pp.
566
574
.
16.
Iatridis
,
J. C.
,
Laible
,
J. P.
, and
Krag
,
M. H.
,
2003
, “
Influence of Fixed Charge Density Magnitude and Distribution on the Intervertebral Disc: Applications of a Poroelastic and Chemical Electric (PEACE) Model
,”
ASME J. Biomech. Eng.
,
125
(
1
), pp.
12
24
.
17.
Ayotte
,
D. C.
,
Ito
,
K.
, and
Tepic
,
S.
,
2001
, “
Direction-Dependent Resistance to Flow in the Endplate of the Intervertebral Disc: An Ex Vivo Study
,”
J. Orthop. Res.
,
19
(
6
), pp.
1073
1077
.
18.
Gu
,
W. Y.
,
Mao
,
X. G.
,
Foster
,
R. J.
,
Weidenbaum
,
M.
,
Mow
,
V. C.
, and
Rawlins
,
B. A.
,
1999
, “
The Anisotropic Hydraulic Permeability of Human Lumbar Annulus Fibrosus. Influence of Age, Degeneration, Direction, and Water Content
,”
Spine
,
24
(
23
), pp.
2449
2455
.
19.
Stokes
,
I. A.
,
Laible
,
J. P.
,
Gardner-Morse
,
M. G.
,
Costi
,
J. J.
, and
Iatridis
,
J. C.
,
2011
, “
Refinement of Elastic, Poroelastic, and Osmotic Tissue Properties of Intervertebral Disks to Analyze Behavior in Compression
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
122
131
.
20.
Andersson
,
G. B.
, and
Schultz
,
A. B.
,
1979
, “
Effects of Fluid Injection on Mechanical Properties of Intervertebral Discs
,”
J. Biomech.
,
12
(
6
), pp.
453
458
.
21.
Urban
,
J. P.
,
Roberts
,
S.
, and
Ralphs
,
J. R.
,
2000
, “
The Nucleus of the Intervertebral Disc From Development to Degeneration
,”
Am. Zool.
,
40
(
1
), pp.
53
61
.
22.
van Dijk
,
B.
,
Potier
,
E.
, and
Ito
,
K.
,
2011
, “
Culturing Bovine Nucleus Pulposus Explants by Balancing Medium Osmolarity
,”
Tissue Eng. Part C Methods
,
17
(
11
), pp.
1089
1096
.
23.
Urban
,
J. P.
, and
McMullin
,
J. F.
,
1985
, “
Swelling Pressure of the Inervertebral Disc: Influence of Proteoglycan and Collagen Contents
,”
Biorheology
,
22
(
2
), pp.
145
157
.
24.
Urban
,
J. P.
,
Maroudas
,
A.
,
Bayliss
,
M. T.
, and
Dillon
,
J.
,
1979
, “
Swelling Pressures of Proteoglycans at the Concentrations Found in Cartilaginous Tissues
,”
Biorheology
,
16
(
6
), pp.
447
464
.
25.
Hendry
,
N. G.
,
1958
, “
The Hydration of the Nucleus Pulposus and Its Relation to Intervertebral Disc Derangement
,”
J. Bone Jt Surg. Br. Vol.
,
40-B
(
1
), pp.
132
144
.
26.
Ateshian
,
G. A.
,
Chahine
,
N. O.
,
Basalo
,
I. M.
, and
Hung
,
C. T.
,
2004
, “
The Correspondence Between Equilibrium Biphasic and Triphasic Material Properties in Mixture Models of Articular Cartilage
,”
J. Biomech.
,
37
(
3
), pp.
391
400
.
27.
Chahine
,
N. O.
,
Albro
,
M. B.
,
Lima
,
E. G.
,
Wei
,
V. I.
,
Dubois
,
C. R.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2009
, “
Effect of Dynamic Loading on the Transport of Solutes Into Agarose Hydrogels
,”
Biophys. J.
,
97
(
4
), pp.
968
975
.
28.
Adam
,
M.
, and
Deyl
,
Z.
,
1984
, “
Degenerated Annulus Fibrosus of the Intervertebral Disc Contains Collagen Type II
,”
Ann. Rheum. Dis.
,
43
(
2
), pp.
258
263
.
29.
Antoniou
,
J.
,
Steffen
,
T.
,
Nelson
,
F.
,
Winterbottom
,
N.
,
Hollander
,
A. P.
,
Poole
,
R. A.
,
Aebi
,
M.
, and
Alini
,
M.
,
1996
, “
The Human Lumbar Intervertebral Disc: Evidence for Changes in the Biosynthesis and Denaturation of the Extracellular Matrix With Growth, Maturation, Ageing, and Degeneration
,”
J. Clin. Invest.
,
98
(
4
), pp.
996
1003
.
30.
Urban
,
J. P.
, and
Roberts
,
S.
,
2003
, “
Degeneration of the Intervertebral Disc
,”
Arthritis Res. Ther.
,
5
(
3
), pp.
120
130
.
31.
Yu
,
J.
,
Schollum
,
M. L.
,
Wade
,
K. R.
,
Broom
,
N. D.
, and
Urban
,
J. P.
,
2015
, “
A Detailed Examination of the Elastic Network Leads to a New Understanding of Annulus Fibrosus Organisation
,”
Spine
,
40
(
15
), pp.
1149
1157
.
32.
Ferguson
,
S. J.
,
Ito
,
K.
, and
Nolte
,
L. P.
,
2004
, “
Fluid Flow and Convective Transport of Solutes Within the Intervertebral Disc
,”
J. Biomech.
,
37
(
2
), pp.
213
221
.
33.
Costi
,
J. J.
,
Hearn
,
T. C.
, and
Fazzalari
,
N. L.
,
2002
, “
The Effect of Hydration on the Stiffness of Intervertebral Discs in an Ovine Model
,”
Clin. Biomech.
,
17
(
6
), pp.
446
455
.
34.
Race
,
A.
,
Broom
,
N. D.
, and
Robertson
,
P.
,
2000
, “
Effect of Loading Rate and Hydration on the Mechanical Properties of the Disc
,”
Spine
,
25
(
6
), pp.
662
669
.
35.
Chahine
,
N. O.
,
Wang
,
C. C.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2004
, “
Anisotropic Strain-Dependent Material Properties of Bovine Articular Cartilage in the Transitional Range From Tension to Compression
,”
J. Biomech.
,
37
(
8
), pp.
1251
1261
.
36.
Cortes
,
D. H.
, and
Elliott
,
D. M.
,
2012
, “
Extra-Fibrillar Matrix Mechanics of Annulus Fibrosus in Tension and Compression
,”
Biomech. Model. Mechanobiol.
,
11
(
6
), pp.
781
790
.
37.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
,
1991
, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
113
(
3
), pp.
245
258
.
38.
Wuertz
,
K.
,
Urban
,
J. P.
,
Klasen
,
J.
,
Ignatius
,
A.
,
Wilke
,
H. J.
,
Claes
,
L.
, and
Neidlinger-Wilke
,
C.
,
2007
, “
Influence of Extracellular Osmolarity and Mechanical Stimulation on Gene Expression of Intervertebral Disc Cells
,”
J. Orthop. Res.
,
25
(
11
), pp.
1513
1522
.
39.
Johannessen
,
W.
,
Cloyd
,
J. M.
,
O'Connell
,
G. D.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2006
, “
Trans-Endplate Nucleotomy Increases Deformation and Creep Response in Axial Loading
,”
Ann. Biomed. Eng.
,
34
(
4
), pp.
687
696
.
40.
Keller
,
T. S.
,
Spengler
,
D. M.
, and
Hansson
,
T. H.
,
1987
, “
Mechanical Behavior of the Human Lumbar Spine. I. Creep Analysis During Static Compressive Loading
,”
J. Orthop. Res.
,
5
(
4
), pp.
467
478
.
41.
O'Connell
,
G. D.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2007
, “
Comparison of Animals Used in Disc Research to Human Lumbar Disc Geometry
,”
Spine
,
32
(
3
), pp.
328
333
.
42.
Johannaber
,
K.
, and
Fathallah
,
F. A.
,
2012
, “
Spinal Disc Hydration Status During Simulated Stooped Posture
,”
Work
,
41
(
Suppl. 1
), pp.
2384
2386
.
43.
Waters
,
T. R.
, and
Dick
,
R. B.
,
2015
, “
Evidence of Health Risks Associated With Prolonged Standing at Work and Intervention Effectiveness
,”
Rehabil. Nurs.
,
40
(
3
), pp.
148
165
.
44.
Cortes
,
D. H.
,
Han
,
W. M.
,
Smith
,
L. J.
, and
Elliott
,
D. M.
,
2013
, “
Mechanical Properties of the Extra-Fibrillar Matrix of Human Annulus Fibrosus are Location and Age Dependent
,”
J. Orthop. Res.
,
31
(
11
), pp.
1725
1732
.
45.
Best
,
B. A.
,
Guilak
,
F.
,
Setton
,
L. A.
,
Zhu
,
W.
,
Saed-Nejad
,
F.
,
Ratcliffe
,
A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
,
1994
, “
Compressive Mechanical Properties of the Human Annulus Fibrosus and Their Relationship to Biochemical Composition
,”
Spine
,
19
(
2
), pp.
212
221
.
46.
Perie
,
D. S.
,
Maclean
,
J. J.
,
Owen
,
J. P.
, and
Iatridis
,
J. C.
,
2006
, “
Correlating Material Properties With Tissue Composition in Enzymatically Digested Bovine Annulus Fibrosus and Nucleus Pulposus Tissue
,”
Ann. Biomed. Eng.
,
34
(
5
), pp.
769
777
.
47.
Michalek
,
A. J.
,
Gardner-Morse
,
M. G.
, and
Iatridis
,
J. C.
,
2012
, “
Large Residual Strains are Present in the Intervertebral Disc Annulus Fibrosus in the Unloaded State
,”
J. Biomech.
,
45
(
7
), pp.
1227
1231
.
48.
Johannessen
,
W.
, and
Elliott
,
D. M.
,
2005
, “
Effects of Degeneration on the Biphasic Material Properties of Human Nucleus Pulposus in Confined Compression
,”
Spine
,
30
(
24
), pp.
E724
E729
.
49.
Han
,
E. H.
,
Chen
,
S. S.
,
Klisch
,
S. M.
, and
Sah
,
R. L.
,
2011
, “
Contribution of Proteoglycan Osmotic Swelling Pressure to the Compressive Properties of Articular Cartilage
,”
Biophys. J.
,
101
(
4
), pp.
916
924
.
50.
Cortes
,
D. H.
,
Jacobs
,
N. T.
,
DeLucca
,
J. F.
, and
Elliott
,
D. M.
,
2014
, “
Elastic, Permeability and Swelling Properties of Human Intervertebral Disc Tissues: A Benchmark for Tissue Engineering
,”
J. Biomech.
,
47
(
9
), pp.
2088
2094
.
51.
Mikawa
,
Y.
,
Hamagami
,
H.
,
Shikata
,
J.
, and
Yamamuro
,
T.
,
1986
, “
Elastin in the Human Intervertebral Disk. A Histological and Biochemical Study Comparing It With Elastin in the Human Yellow Ligament
,”
Arch. Orthop. Trauma Surg.
,
105
(
6
), pp.
343
349
.
52.
Carmo
,
M.
,
Colombo
,
L.
,
Bruno
,
A.
,
Corsi
,
F. R.
,
Roncoroni
,
L.
,
Cuttin
,
M. S.
,
Radice
,
F.
,
Mussini
,
E.
, and
Settembrini
,
P. G.
,
2002
, “
Alteration of Elastin, Collagen and Their Cross-Links in Abdominal Aortic Aneurysms
,”
Eur. J. Vasc. Endovasc. Surg.
,
23
(
6
), pp.
543
549
.
53.
Zeller
,
P. J.
, and
Skalak
,
T. C.
,
1998
, “
Contribution of Individual Structural Components in Determining the Zero-Stress State in Small Arteries
,”
J. Vasc. Res.
,
35
(
1
), pp.
8
17
.
54.
Venturi
,
M.
,
Bonavina
,
L.
,
Annoni
,
F.
,
Colombo
,
L.
,
Butera
,
C.
,
Peracchia
,
A.
, and
Mussini
,
E.
,
1996
, “
Biochemical Assay of Collagen and Elastin in the Normal and Varicose Vein Wall
,”
J. Surg. Res.
,
60
(
1
), pp.
245
248
.
55.
Gunning
,
J. L.
,
Callaghan
,
J. P.
, and
McGill
,
S. M.
,
2001
, “
Spinal Posture and Prior Loading History Modulate Compressive Strength and Type of Failure in the Spine: A Biomechanical Study Using a Porcine Cervical Spine Model
,”
Clin. Biomech.
,
16
(
6
), pp.
471
480
.
56.
Eisenberg
,
S. R.
, and
Grodzinsky
,
A. J.
,
1985
, “
Swelling of Articular Cartilage and Other Connective Tissues: Electromechanochemical Forces
,”
J. Orthop. Res.
,
3
(
2
), pp.
148
159
.
57.
Holguin
,
N.
,
Muir
,
J.
,
Rubin
,
C.
, and
Judex
,
S.
,
2009
, “
Short Applications of Very Low-Magnitude Vibrations Attenuate Expansion of the Intervertebral Disc During Extended Bed Rest
,”
Spine J.: Off. J. North Am. Spine Soc.
,
9
(
6
), pp.
470
477
.
58.
Lu
,
Y. M.
,
Hutton
,
W. C.
, and
Gharpuray
,
V. M.
,
1996
, “
Do Bending, Twisting, and Diurnal Fluid Changes in the Disc Affect the Propensity to Prolapse? A Viscoelastic Finite Element Model
,”
Spine
,
21
(
22
), pp.
2570
2579
.
59.
Elliott
,
D. M.
, and
Setton
,
L. A.
,
2001
, “
Anisotropic and Inhomogeneous Tensile Behavior of the Human Annulus Fibrosus: Experimental Measurement and Material Model Predictions
,”
ASME J. Biomech. Eng.
,
123
(
3
), pp.
256
263
.
60.
Chahine
,
N. O.
,
Wang
,
C. C.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2004
, “
Anisotropic Strain-Dependent Material Properties of Bovine Articular Cartilage in the Transitional Range From Tension to Compression
,”
J. Biomech.
,
37
(
8
), pp.
1251
1261
.
61.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1997
, “
A Triphasic Analysis of Negative Osmotic Flows Through Charged Hydrated Soft Tissues
,”
J. Biomech.
,
30
(
1
), pp.
71
78
.
62.
Yao
,
H.
, and
Gu
,
W. Y.
,
2007
, “
Three-Dimensional Inhomogeneous Triphasic Finite-Element Analysis of Physical Signals and Solute Transport in Human Intervertebral Disc Under Axial Compression
,”
J. Biomech.
,
40
(
9
), pp.
2071
2077
.
63.
Huyghe
,
J. M.
,
Houben
,
G. B.
,
Drost
,
M. R.
, and
van Donkelaar
,
C. C.
,
2003
, “
An Ionised/Non-Ionised Dual Porosity Model of Intervertebral Disc Tissue
,”
Biomech. Model. Mechanobiol.
,
2
(
1
), pp.
3
19
.
64.
Eyre
,
D. R.
,
1979
, “
Biochemistry of the Intervertebral Disc
,”
Int. Rev. Connect Tissue Res.
,
8
, pp.
227
291
.
65.
Yao
,
H.
,
Justiz
,
M. A.
,
Flagler
,
D.
, and
Gu
,
W. Y.
,
2002
, “
Effects of Swelling Pressure and Hydraulic Permeability on Dynamic Compressive Behavior of Lumbar Annulus Fibrosus
,”
Ann. Biomed. Eng.
,
30
(
10
), pp.
1234
1241
.
66.
O'Connell
,
G. D.
,
Newman
,
I. B.
, and
Carapezza
,
M. A.
,
2014
, “
Effect of Long-Term Osmotic Loading Culture on Matrix Synthesis From Intervertebral Disc Cells
,”
BioRes. Open Access
,
3
(
5
), pp.
242
249
.
67.
Johnson
,
Z. I.
,
Shapiro
,
I. M.
, and
Risbud
,
M. V.
,
2014
, “
Extracellular Osmolarity Regulates Matrix Homeostasis in the Intervertebral Disc and Articular Cartilage: Evolving Role of TonEBP
,”
Matrix Biol.
,
40
, pp.
10
16
.
68.
Boyd
,
L. M.
,
Richardson
,
W. J.
,
Chen
,
J.
,
Kraus
,
V. B.
,
Tewari
,
A.
, and
Setton
,
L. A.
,
2005
, “
Osmolarity Regulates Gene Expression in Intervertebral Disc Cells Determined by Gene Array and Real-Time Quantitative RT-PCR
,”
Ann. Biomed. Eng.
,
33
(
8
), pp.
1071
1077
.
69.
Galbusera
,
F.
,
Schmidt
,
H.
,
Noailly
,
J.
,
Malandrino
,
A.
,
Lacroix
,
D.
,
Wilke
,
H. J.
, and
Shirazi-Adl
,
A.
,
2011
, “
Comparison of Four Methods to Simulate Swelling in Poroelastic Finite Element Models of Intervertebral Discs
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
7
), pp.
1234
1241
.
70.
Schroeder
,
Y.
,
Wilson
,
W.
,
Huyghe
,
J. M.
, and
Baaijens
,
F. P.
,
2006
, “
Osmoviscoelastic Finite Element Model of the Intervertebral Disc
,”
Eur. Spine J.
,
15
(
Suppl. 3
), pp.
S361
371
.
71.
Chuong
,
C. J.
, and
Fung
,
Y. C.
,
1986
, “
On Residual Stresses in Arteries
,”
ASME J. Biomech. Eng.
,
108
(
2
), pp.
189
192
.
72.
Lanir
,
Y.
,
2012
, “
Osmotic Swelling and Residual Stress in Cardiovascular Tissues
,”
J. Biomech.
,
45
(
5
), pp.
780
789
.
73.
Sorrentino
,
T. A.
,
Fourman
,
L.
,
Ferruzzi
,
J.
,
Miller
,
K. S.
,
Humphrey
,
J. D.
, and
Roccabianca
,
S.
,
2015
, “
Local Versus Global Mechanical Effects of Intramural Swelling in Carotid Arteries
,”
ASME J. Biomech. Eng.
,
137
(
4
), p.
041008
.
74.
Azeloglu
,
E. U.
,
Albro
,
M. B.
,
Thimmappa
,
V. A.
,
Ateshian
,
G. A.
, and
Costa
,
K. D.
,
2008
, “
Heterogeneous Transmural Proteoglycan Distribution Provides a Mechanism for Regulating Residual Stresses in the Aorta
,”
Am. J. Physiol. Heart Circ. Physiol.
,
294
(
3
), pp.
H1197
1205
.
75.
Adams
,
M. A.
, and
Green
,
T. P.
,
1993
, “
Tensile Properties of the Annulus Fibrosus. I. The Contribution of Fibre–Matrix Interactions to Tensile Stiffness and Strength
,”
Eur. Spine J.
,
2
(
4
), pp.
203
208
.
You do not currently have access to this content.