Current musculoskeletal inverse dynamics shoulder models have two limitations to use in the context of nonconforming total shoulder arthroplasty (NC-TSA). First, the ball and socket glenohumeral (GH) joint simplification avoids any humeral head translations. Second, there is no contact at the GH joint to compute the contact area and the center of pressure (COP) between the two components of NC-TSA. In this paper, we adapted the AnyBody™ shoulder model by introducing humeral head translations and contact between the two components of an NC-TSA. Abduction in the scapular plane was considered. The main objective of this study was to adapt the AnyBody™ shoulder model to a NC-TSA context and to compare the results of our model (translations, COP, contact area, GH joint reaction forces (GH-JRFs), and muscular forces) with previous numerical, experimental, and clinical studies. Humeral head translations and contact were successfully introduced in our adapted shoulder model with strong support for our findings by previous studies.

References

References
1.
Favre
,
P.
,
Snedeker
,
J. G.
, and
Gerber
,
C.
,
2009
, “
Numerical Modelling of the Shoulder for Clinical Applications
,”
Philos. Trans. R. Soc., A
,
367
(
1895
), pp.
2095
2118
.
2.
Quental
,
C.
,
Folgado
,
J. A.
,
Ambrósio
,
J.
, and
Monteiro
,
J.
,
2012
, “
A Multibody Biomechanical Model of the Upper Limb Including the Shoulder Girdle
,”
Multibody Syst. Dyn.
,
28
(
1–2
), pp.
83
108
.
3.
Charlton
,
I. W.
, and
Johnson
,
G. R.
,
2006
, “
A Model for the Prediction of the Forces at the Glenohumeral Joint
,”
Proc. Inst. Mech. Eng., Part H
,
220
(
8
), pp.
801
812
.
4.
Masjedi
,
M.
,
Lovell
,
C.
, and
Johnson
,
G. R.
,
2011
, “
Comparison of Range of Motion and Function of Subjects With Reverse Anatomy Bayley-Walker Shoulder Replacement With Those of Normal Subjects
,”
Hum. Mov. Sci.
,
30
(
6
), pp.
1062
1071
.
5.
Karlsson
,
D.
, and
Peterson
,
B.
,
1992
, “
Towards a Model for Force Predictions in the Human Shoulder
,”
J. Biomech.
,
25
(
2
), pp.
189
199
.
6.
Nikooyan
,
A. A.
,
Veeger
,
D. H. E. J.
,
Chadwick
,
E. K. J.
,
Praagman
,
M.
, and
van der Helm
,
F. C. T.
,
2011
, “
Development of a Comprehensive Musculoskeletal Model of the Shoulder and Elbow
,”
Med. Biol. Eng. Comput.
,
49
(
12
), pp.
1425
1435
.
7.
Rasmussen
,
J.
,
de Zee
,
M.
,
Torholm
,
S.
, and
Damsgaard
,
M.
,
2007
, “
Comparison of a Musculoskeletal Shoulder Model With In Vivo Joint Forces
,”
J. Biomech.
,
40
(
Supplement 2
), pp.
S67
.
8.
Lemieux
,
P.-O.
,
Nuño
,
N.
,
Hagemeister
,
N.
, and
Tétreault
,
P.
,
2012
, “
Mechanical Analysis of Cuff Tear Arthropathy During Multiplanar Elevation With the AnyBody Shoulder Model
,”
Clin. Biomech.
,
27
(
8
), pp.
801
806
.
9.
Lemieux
,
P. O.
,
Tétreault
,
P.
,
Hagemeister
,
N.
, and
Nuño
,
N.
,
2013
, “
Influence of Prosthetic Humeral Head Size and Medial Offset on the Mechanics of the Shoulder With Cuff Tear Arthropathy: A Numerical Study
,”
J. Biomech.
,
46
(
4
), pp.
806
812
.
10.
Bergmann
,
G.
,
Graichen
,
F.
,
Bender
,
A.
,
Kääb
,
M.
,
Rohlmann
,
A.
, and
Westerhoff
,
P.
,
2007
, “
In Vivo Glenohumeral Contact Forces—Measurements in the First Patient 7 Months Postoperatively
,”
J. Biomech.
,
40
(
10
), pp.
2139
2149
.
11.
van der Helm
,
F. C. T.
,
1994
, “
A Finite Element Musculoskeletal Model of the Shoulder Mechanism
,”
J. Biomech.
,
27
(
5
), pp.
551
569
.
12.
Nikooyan
,
A. A.
,
Veeger
,
D. H. E. J.
,
Westerhoff
,
P.
,
Graichen
,
F.
,
Bergmann
,
G.
, and
Van der Helm
,
F. C. T.
,
2010
, “
Validation of the Delft Shoulder and Elbow Model Using In-Vivo Glenohumeral Joint Contact Forces
,”
J. Biomech.
,
43
(
15
), pp.
3007
3014
.
13.
Terrier
,
A.
,
Vogel
,
A.
,
Capezzali
,
M.
, and
Farron
,
A.
,
2008
, “
An Algorithm to Allow Humerus Translation in the Indeterminate Problem of Shoulder Abduction
,”
Med. Eng. Phys.
,
30
(
6
), pp.
710
716
.
14.
Karduna
,
A. R.
,
Williams
,
G. R.
,
Williams
,
J. L.
, and
Iannotti
,
J. P.
,
1997
, “
Glenohumeral Joint Translations Before and After Total Shoulder Arthroplasty. A Study in Cadavera
,”
J. Bone Jt. Surg., Am.
,
79
(
8
), pp.
1166
1174
.
15.
Franklin
,
J. L.
,
Barrett
,
W. P.
,
Jackins
,
S. E.
, and
Matsen
,
F. A.
,
1988
, “
Glenoid Loosening in Total Shoulder Arthroplasty. Association With Rotator Cuff Deficiency
,”
J. Arthroplasty
,
3
(
1
), pp.
39
46
.
16.
Terrier
,
A.
,
Aeberhard
,
M.
,
Michellod
,
Y.
,
Mullhaupt
,
P.
,
Gillet
,
D.
,
Farron
,
A.
, and
Pioletti
,
D. P.
,
2010
, “
A Musculoskeletal Shoulder Model Based on Pseudo-Inverse and Null-Space Optimization
,”
Med. Eng. Phys.
,
32
(
9
), pp.
1050
1056
.
17.
Larrea
,
X.
,
Farron
,
A.
,
Pioletti
,
D. P.
, and
Terrier
,
A.
,
2011
, “
Shoulder Muscle Forces During Abduction With Subscapularis Deficiency After Total Shoulder Arthroplasty
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
Suppl. 1
), pp.
19
20
.
18.
Terrier
,
A.
,
Merlini
,
F.
,
Pioletti
,
D. P.
, and
Farron
,
A.
,
2009
, “
Total Shoulder Arthroplasty: Downward Inclination of the Glenoid Component to Balance Supraspinatus Deficiency
,”
J. Shoulder Elbow Surg.
,
18
(
3
), pp.
360
365
.
19.
Terrier
,
A.
,
Larrea
,
X.
,
Malfroy Camine
,
V.
,
Pioletti
,
D. P.
, and
Farron
,
A.
,
2013
, “
Importance of the Subscapularis Muscle After Total Shoulder Arthroplasty
,”
Clin. Biomech.
,
28
(
2
), pp.
146
150
.
20.
van der Helm
,
F. C. T.
, and
Veenbaas
,
R.
,
1991
, “
Modelling the Mechanical Effect of Muscles With Large Attachment Sites: Application to the Shoulder Mechanism
,”
J. Biomech.
,
24
(
12
), pp.
1151
1163
.
21.
Walch
,
G.
,
Edwards
,
T. B.
,
Boulahia
,
A.
,
Boileau
,
P.
,
Molé
,
D.
, and
Adeleine
,
P.
,
2002
, “
The Influence of Glenohumeral Prosthetic Mismatch on Glenoid Radiolucent Lines: Results of a Multicenter Study
,”
J. Bone Jt. Surg., Am.
84
(
12
), pp.
2186
2191
.
22.
Zajac
,
F. E.
,
1989
, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
,
17
(
4
), pp.
359
411
.
23.
Damsgaard
,
M.
,
Rasmussen
,
J.
,
Christensen
,
S. R. T. R.
,
Surma
,
E.
, and
de Zee
,
M.
,
2006
, “
Analysis of Musculoskeletal Systems in the AnyBody Modeling System
,”
Simul. Modell. Pract. Theory
,
14
(
8
), pp.
1100
1111
.
24.
Wu
,
G.
,
Van der Helm
,
F. C. T.
,
Veeger
,
D. H. E. J.
,
Makhsous
,
M.
,
Van Roy
,
P.
,
Anglin
,
C.
,
Nagels
,
J.
,
Karduna
,
A. R.
,
McQuade
,
K.
,
Wang
,
X.
,
Werner
,
F. W.
, and
Buchholz
,
B.
,
2005
, “
ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion—Part II: Shoulder, Elbow, Wrist and Hand
,”
J. Biomech.
,
38
(
5
), pp.
981
992
.
25.
de Groot
,
J. H.
,
Brand
,
R.
, and
Groot
,
J. H.
,
2001
, “
A Three-Dimensional Regression Model of the Shoulder Rhythm
,”
Clin. Biomech.
,
16
(
9
), pp.
735
743
.
26.
Carbes
,
S.
,
2011
, “
Shoulder Rhythm
,” AnyBody Technology A/S, Aalborg, Denmark, Technical Report No. 26367042.
27.
van der Helm
,
F. C. T.
,
Veeger
,
D. H. E. J.
,
Pronk
,
G. M.
,
van der Woude
,
L. H.
, and
Rozendal
,
R. H.
,
1992
, “
Geometry Parameters for Musculoskeletal Modelling of the Shoulder System
,”
J. Biomech.
,
25
(
2
), pp.
129
144
.
28.
Veeger
,
D. H. E. J.
,
van der Helm
,
F. C. T.
,
van der Woude
,
L. H.
,
Pronk
,
G. M.
, and
Rozendal
,
R. H.
,
1991
, “
Inertia and Muscle Contraction Parameters for Musculoskeletal Modelling of the Shoulder Mechanism
,”
J. Biomech.
,
24
(
7
), pp.
615
629
.
29.
Veeger
,
D. H. E. J.
,
Yu
,
B.
,
An
,
K.-N.
, and
Rozendal
,
R. H.
,
1997
, “
Parameters for Modeling the Upper Extremity
,”
J. Biomech.
,
30
(
6
), pp.
647
652
.
30.
Andersen
,
M. S.
,
Marra
,
M.
,
Vanheule
,
V.
,
Fluit
,
R.
,
Verdonschot
,
N.
, and
Rasmussen
,
J.
,
2014
, “
Patient-Specific Musculoskeletal Modelling of Total Knee Arthroplasty Using Force-Dependent Kinematics
,”
7th World Congress of Biomechanics, Boston, July 4–11
.
31.
Andersen
,
M. S.
,
Damsgaard
,
M.
, and
Rasmussen
,
J.
,
2011
, “
Force-Dependent Kinematics: A New Analysis Method for Non-Conforming Joints
,”
XIII International Symposium on Computer Simulation in Biomechanics
, Leuven, Belgium, June 30–July 2, pp.
2
3
.
32.
Bitter
,
J.
,
2013
, “
Effects of the Glenohumeral Joint Center on the Role of the Middle Deltoid: Implications for Reverse Total Shoulder Arthroplasty
,” M.Sc. thesis, Faculty of Baylor University, Waco, TX.
33.
Bigliani
,
L. U.
,
Pollock
,
R. G.
,
Soslowsky
,
L. J.
,
Flatow
,
E. L.
,
Pawluk
,
R. J.
, and
Mow
,
V. C.
,
1992
, “
Tensile Properties of the Inferior Glenohumeral Ligament
,”
J. Orthop. Res.
,
10
(
2
), pp.
187
197
.
34.
Warner
,
J. P.
,
Debski
,
R. E.
,
Wong
,
E. K. K.
,
Woo
,
S. L. Y.
, and
Fu
,
F. H.
,
1999
, “
An Analytical Approach to Determine the In Situ Forces in the Glenohumeral Ligaments
,”
ASME J. Biomech. Eng.
,
121
(
3
), pp.
311
315
.
35.
Massimini
,
D. F.
,
Boyer
,
P. J.
,
Papannagari
,
R.
,
Gill
,
T. J.
,
Warner
,
J. P.
, and
Li
,
G.
,
2012
, “
In-Vivo Glenohumeral Translation and Ligament Elongation During Abduction and Abduction With Internal and External Rotation
,”
J. Orthop. Surg. Res.
,
7
(
1
), p.
29
.
36.
Motzkin
,
N. E. E.
,
Itoi
,
E.
,
Morrey
,
B. F.
, and
An
,
K.-N.
,
1998
, “
Contribution of Capsuloligamentous Structures to Passive Static Inferior Glenohumeral Stability
,”
Clin. Biomech.
,
13
(
1
), pp.
54
61
.
37.
Urayama
,
M.
,
Itoi
,
E.
,
Hatakeyama
,
Y.
,
Pradhan
,
R. L.
, and
Sato
,
K.
,
2001
, “
Function of the 3 Portions of the Inferior Glenohumeral Ligament: A Cadaveric Study
,”
J. Shoulder Elbow Surg.
,
10
(
6
), pp.
207
213
.
38.
Lin
,
M. C.
, and
Otaduy
,
M.
,
2008
,
Haptic Rendering: Foundations, Algorithms, and Applications
,
CRC Press
,
Boca Raton, FL
.
39.
Johnson
,
K.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
New York
.
40.
Hopkins
,
A. R.
,
Hansen
,
U. N.
,
Amis
,
A. A.
,
Knight
,
L.
,
Taylor
,
M.
,
Levy
,
O.
, and
Copeland
,
S. A.
,
2007
, “
Wear in the Prosthetic Shoulder: Association With Design Parameters
,”
ASME J. Biomech. Eng.
,
129
(
2
), pp.
223
230
.
41.
Terrier
,
A.
,
Merlini
,
F.
,
Pioletti
,
D. P.
, and
Farron
,
A.
,
2009
, “
Comparison of Polyethylene Wear in Anatomical and Reversed Shoulder Prostheses
,”
J. Bone Jt. Surg., Br.
,
91
(
7
), pp.
977
982
.
42.
Poppen
,
N.
, and
Walker
,
P. S.
,
1978
, “
Forces at the Glenohumeral Joint in Abduction
,”
Clin. Orthop. Relat. Res.
,
135
, pp.
165
170
.
43.
Karduna
,
A. R.
,
Williams
,
G. R.
,
Williams
,
J. L.
, and
Iannotti
,
J. P.
,
1997
, “
Joint Stability After Total Shoulder Arthroplasty in a Cadaver Model
,”
J. Shoulder Elbow Surg.
,
6
(
6
), pp.
506
511
.
44.
Lund
,
M. E.
,
de Zee
,
M.
,
Andersen
,
M. S.
, and
Rasmussen
,
J.
,
2012
, “
On Validation of Multibody Musculoskeletal Models
,”
Proc. Inst. Mech. Eng., Part H
,
226
(
2
), pp.
82
94
.
45.
Bey
,
M. J.
,
Peltz
,
C. D.
,
Ciarelli
,
K.
,
Kline
,
S. K.
,
Divine
,
G. W.
,
van Holsbeeck
,
M.
,
Muh
,
S.
,
Kolowich
,
P. A.
,
Lock
,
T. R.
, and
Moutzouros
,
V.
,
2011
, “
In Vivo Shoulder Function After Surgical Repair of a Torn Rotator Cuff: Glenohumeral Joint Mechanics, Shoulder Strength, Clinical Outcomes, and Their Interaction
,”
Am. J. Sports Med.
,
39
(
10
), pp.
2117
2129
.
46.
Bey
,
M. J.
,
Kline
,
S. K.
,
Zauel
,
R.
,
Lock
,
T. R.
, and
Kolowich
,
P. A.
,
2008
, “
Measuring Dynamic In-Vivo Glenohumeral Joint Kinematics: Technique and Preliminary Results
,”
J. Biomech.
,
41
(
3
), pp.
711
714
.
47.
Wuelker
,
N.
,
Schmotzer
,
H.
,
Thren
,
K.
, and
Korell
,
M.
,
1994
, “
Translation of the Glenohumeral Joint With Simulated Active Elevation
,”
Clin. Orthop. Relat. Res.
,
309
, pp.
193
200
.
48.
Friedman
,
R. J.
,
1992
, “
Glenohumeral Translation After Total Shoulder Arthroplasty
,”
J. Shoulder Elbow Surg.
,
1
(
6
), pp.
312
316
.
49.
Graichen
,
H.
,
Hinterwimmer
,
S.
,
von Eisenhart-Rothe
,
R.
,
Vogl
,
T.
,
Englmeier
,
K.-H.
, and
Eckstein
,
F.
,
2005
, “
Effect of Abducting and Adducting Muscle Activity on Glenohumeral Translation, Scapular Kinematics and Subacromial Space Width In Vivo
,”
J. Biomech.
,
38
(
4
), pp.
755
760
.
50.
Massimini
,
D. F.
,
Li
,
G.
, and
Warner
,
J. P.
,
2010
, “
Glenohumeral Contact Kinematics in Patients After Total Shoulder Arthroplasty
,”
J. Bone Jt. Surg.
,
92
(
4
), pp.
916
926
.
51.
Hammond
,
G.
,
Tibone
,
J. E.
,
McGarry
,
M. H.
,
Jun
,
B.-J. J.
, and
Lee
,
T. Q.
,
2012
, “
Biomechanical Comparison of Anatomic Humeral Head Resurfacing and Hemiarthroplasty in Functional Glenohumeral Positions
,”
J. Bone Jt. Surg., Am.
,
94
(
1
), pp.
68
76
.
52.
Soslowsky
,
L. J.
,
Flatow
,
E. L.
,
Bigliani
,
L. U.
,
Pawluk
,
R. J.
,
Ateshian
,
G. A. A.
, and
Mow
,
V. C.
,
1992
, “
Quantitation of In Situ Contact Areas at the Glenohumeral Joint: A Biomechanical Study
,”
J. Orthop. Res.
,
10
(
4
), pp.
524
534
.
53.
Blalock
,
R.
, and
Galatz
,
L. M.
,
2012
, “
Rotator Cuff Tears After Arthroplasty
,”
Semin. Arthroplasty
,
23
(
2
), pp.
114
117
.
54.
Prinold
,
J. A. L.
,
Masjedi
,
M.
,
Johnson
,
G. R.
, and
Bull
,
A. M.
,
2013
, “
Musculoskeletal Shoulder Models: A Technical Review and Proposals for Research Foci
,”
Proc. Inst. Mech. Eng., Part H
,
227
(
10
), pp.
1041
1057
.
55.
Dickerson
,
C. R.
,
Chaffin
,
D. B.
, and
Hughes
,
R. E.
,
2007
, “
A Mathematical Musculoskeletal Shoulder Model for Proactive Ergonomic Analysis
,”
Comput. Methods Biomech. Biomed. Eng.
,
10
(
6
), pp.
389
400
.
56.
Westerhoff
,
P.
,
Graichen
,
F.
,
Bender
,
A.
,
Halder
,
A. M.
,
Beier
,
A.
,
Rohlmann
,
A.
, and
Bergmann
,
G.
,
2009
, “
In Vivo Measurement of Shoulder Joint Loads During Activities of Daily Living
,”
J. Biomech.
,
42
(
12
), pp.
1840
1849
.
57.
Buchler
,
P.
,
Ramaniraka
,
N. A.
,
Rakotomanana
,
L.
,
Iannotti
,
J. P.
,
Farron
,
A.
, and
Büchler
,
P.
,
2002
, “
A Finite Element Model of the Shoulder: Application to the Comparison of Normal and Osteoarthritic Joints
,”
Clin. Biomech.
,
17
(
9–10
), pp.
630
639
.
58.
Terrier
,
A.
,
Brighenti
,
V.
,
Pioletti
,
D. P.
, and
Farron
,
A.
,
2012
, “
Importance of Polyethylene Thickness in Total Shoulder Arthroplasty: A Finite Element Analysis
,”
Clin. Biomech.
,
27
(
5
), pp.
443
448
.
59.
Zhang
,
J.
,
Kim
,
H. M.
,
Yongpravat
,
C.
,
Levine
,
W. N.
,
Bigliani
,
L. U.
,
Gardner
,
T. R.
, and
Ahmad
,
C. S.
,
2013
, “
Glenoid Articular Conformity Affects Stress Distributions in Total Shoulder Arthroplasty
,”
J. Shoulder Elbow Surg.
,
22
(
3
), pp.
350
356
.
You do not currently have access to this content.